JPH0312121B2 - - Google Patents

Info

Publication number
JPH0312121B2
JPH0312121B2 JP59046161A JP4616184A JPH0312121B2 JP H0312121 B2 JPH0312121 B2 JP H0312121B2 JP 59046161 A JP59046161 A JP 59046161A JP 4616184 A JP4616184 A JP 4616184A JP H0312121 B2 JPH0312121 B2 JP H0312121B2
Authority
JP
Japan
Prior art keywords
hydrogen
powder
copper
plating
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59046161A
Other languages
Japanese (ja)
Other versions
JPS60190570A (en
Inventor
Hiroshi Ishikawa
Keisuke Oguro
Akihiko Kato
Hiroshi Suzuki
Yasunori Zairi
Yukikazu Moritsu
Shigemitsu Kawagishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP59046161A priority Critical patent/JPS60190570A/en
Publication of JPS60190570A publication Critical patent/JPS60190570A/en
Publication of JPH0312121B2 publication Critical patent/JPH0312121B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • C23C18/40Coating with copper using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は優れた特性を有する水素吸蔵合金材料
の製造方法に関し、更に詳しくは粉末である水素
吸蔵合金材料と、成形品である水素吸蔵合金材料
の製造方法に関する。 近年、水素を吸蔵する性質を有する合金の利用
が各分野で急速に発展している。例えば、水素を
貯蔵や輸送する場合、従来は耐圧、耐低温の特殊
容器中で高圧縮して行つていたが、水素吸蔵合金
材料を用いることにより、通常の容器でより安全
に貯蔵、輸送ができる。また、水素吸蔵合金は水
素のみを吸蔵するために、水素の吸収と放出をく
り返すことによつて水素を精製を行うことができ
る。また、水素吸蔵合金が水素を吸収または放出
する際の発熱または吸熱エネルギーが大きいので
これを利用して蓄熱、ヒートポンプ、冷暖房シス
テム材料などのエネルギー変換体としての用途や
応用も可能である。 しかしながら、この水素吸蔵合金は比較的高価
であるのでくり返し使用できることが望ましい
が、水素の吸収放出のくり返しに伴う、水素吸蔵
合金の表面の汚染による吸収、放出能力の低下、
及び水素の吸収、放出のくり返しにより合金が崩
壊し微粉化するため、水素ガスに同併されて移動
散逸し、フイルターの目づまりを起こすなどの問
題がある。また該合金は熱伝導性が悪いために、
熱の円滑な出入の必要なヒートポンプ等には単独
では使用し難いなどの問題点もある。 これらの問題点を解消するために、水素吸蔵合
金の表面に異種金属をコーテイングする方法、及
びアルミニウム、銅およびニツケルのうち少くと
も一種の金属の粉末またはフレークと混合し、20
トン/cm2以上の高荷重下に圧縮して固形化する方
法(USP4292265)などの試みが行われている
が、それぞれ種々の欠点を有している。 例えば、異種金属をコーテイングする方法とし
ては、 (1) 真空蒸着またはスパツタリング法 (2) 有機金属化合物と合金粉末を混合した後、熱
分解し、残存金属で合金粉末をコーテイングす
る熱分解法 (3) 湿式置換型無電解めつき法 (4) 電気めつき法 などの方法を行つたが次のような欠点があつた。 上記(1)の場合には水素吸蔵合金の形態が一般的
に粉末であるために均一に付着させるのが難し
く、また厚くコーテイングするには時間がかか
る、(2)の場合には400〜450℃以上に加熱するため
合金が変質し、またコーテイング金属が均一に連
続にならず微粉末で薄くコーテイングする形態の
ため効果が不充分である、(3)の場合には水素吸蔵
合金の種類が制限され、該合金が侵食されやす
く、また薄いコーテイングしかできない、(4)の場
合には水素吸蔵合金が粉末であるため、均一にめ
つきすることが極めて困難である等である。 また水素吸蔵合金をアルミニウム、銅、および
ニツケルのうち少くとも一種の金属の粉末または
フレークと混合して20トン/cm2以上の高荷重下で
圧縮、固形化して形成する方法の場合には水素の
吸収、放出をくり返すことにより合金粒子の微粉
化や成形品の崩壊はさけられないのが現状であ
り、また前記した方法による異種金属を被覆した
合金粉末を使用して成形品とした場合にも、やは
り成形品の崩壊はさけられなかつた。 本発明者らはこのような問題点を解決するため
に鋭意研究した結果、水素吸蔵合金粉末の表面を
とくに還元剤を用いる自己触媒型の湿式無電解め
つき法により、銅および/またはニツケル金属を
被覆した場合には、粉末において優れた性質を有
するのみならず成形品とした場合においてもさら
に優れた性質を発揮することを見出しここに本発
明を完成した。 即ち、本発明は、水素吸蔵合金粉末の表面に還
元剤を用いる自己触媒型の湿式無電解めつき方法
により銅および/またはニツケル金属を被覆する
ことを特徴とする水素吸蔵合金材料の製造方法、
及び水素吸蔵合金粉末の表面に還元剤を用いる自
己触媒型の湿式無電解めつき方法により銅およ
び/またはニツケル金属を被覆し、次いで成形す
ることを特徴とする水素吸蔵合金材料の製造方法
に係る。 本発明の方法は水素吸蔵合金粉末表面を還元剤
を用いた自己触媒型の湿式無電解めつき方法によ
つて銅および/またはニツケル金属でコーテイン
グし一種のカプセル化を行うものであり、この方
法による銅および/またはニツケルのめつき皮膜
は均一で非常に密着性がよく、また、水素が通過
して吸収、放出を行う機能を損うことがない程度
の微細な孔を有しており種々の利点がある。 例えば、水素吸蔵合金表面を銅および/または
ニツケルで完全に皮覆するため、使用雰囲気中に
おける不純物による水素吸蔵合金本体の汚染が防
止でき、汚染のための機能低下がないこと、また
水素吸蔵合金は通常空気中の酸素で酸化されて酸
化膜を形成しているため、活性化が必要であり、
従来は耐圧容器中で水素圧数10Kg/cm2以上、数
100℃、1〜数日以上の処理が必要であつたが、
本発明方法により得られる合金材料では酸化皮膜
はほとんど生じないので通常活性化は原則として
不必要であり、合金の種類により活性化がたとえ
必要な場合でも1〜2時間以内の処理で充分であ
ること、また水素の吸収、放出をくり返した場合
にもカプセル化の働きにより、合金粉末の微粉化
が少くなり、微粉化した場合にも銅および/また
はニツケルの外層壁にさえぎられて移動散逸が非
常に少くなること、また水素を吸蔵した合金は非
常に活性であり、合金によつては空気中に取り出
すと、合金表面で水素の触媒燃焼が起こり自然発
火の危険性があつたが、本発明の合金材料では銅
および/またはニツケル皮膜により合金表面への
酸素の急速な拡散が妨げられるために自然発火が
起こりにくくなり安全性が向上することなどであ
る。 また、成形品にした場合には、従来水素の吸
収、放出をくり返すと10回以内で微粉化していた
ものが、本発明による成形分では1000回以上くり
返しても微粉化しないこと、また従来は水素の吸
収、放出をくり返すと成形品の崩壊がおこりやす
かつたものが、本発明の成形品では1000回以上く
り返しても外観の変化がないこと、また各合金粒
子がめつきされた金属を介して密着しているので
熱伝導率が大巾に向上することなどの利点があ
る。しかも成形する際に、未処理の合金粉末の場
合には20トン/cm2以上の高荷圧下で圧縮する必要
があつたものが、本発明による方法では1/20〜
1/2の1〜10トン/cm2の荷重下で容易に成形が
できるため、ローラーを用いたシート状成形品の
作製や複雑な形状の成形品の作製が可能となる。
ここで成形荷重圧20トン/cm2以上と1〜10トン/
cm2とでは数値的には大差がないように見えるが、
実際の成形時に用いる金型の材質を考慮すると大
きなちがいが出てくる。すなわち5トン/cm2程度
以下ではステンレス製金型が使用できるが20ト
ン/cm2以上ではタングステン鋼などの特殊鋼が必
要とされる。 また本発明により得られた成形品と、本発明以
外の方法により異種金属を被覆した合金粉末を用
いた成形品とを比較すると水素の吸収、放出をく
り返した場合に後者のほうがはるかに速く成形品
が崩壊し、また熱伝導度を比較すると本発明品の
ほうが高い熱伝導度を有しているなど本発明によ
る成形品が優れた性質を有していることがわか
る。 本発明に於いて使用する水素吸蔵合金粉末とし
ては、従来公知のものが使用でき、例えば
LaNi5、TiCo0.5Fe0.5、TiCo0.5Mn0.5、MmNi4.5
Mn0.5、MmNi4.5Al0.5(ここではMmはミツシユメ
タルと称されLa、Ce、Ndなどの混合物)等が使
用できる。粉末の粒径は0.1〜100μm程度がよく、
より好ましくは1〜30μmのものが使用できる。
水素吸蔵合金は通常インゴツトの状態のものが多
いのでこの場合には粉末化することが必要であ
る。合金を粉末化する方法としては通常の機械的
粉砕方法も可能であるが、好ましくは水素中で水
素の吸収、放出をくり返して粉末化する方法がよ
い。 本発明では無電解めつきに先立ち、水素吸蔵合
金粉末の表面を清浄にすることが必要であり、鋭
脂によつて油、汚れ等の除去を行う。 脱脂剤としては弱酸性〜弱アルカリ水溶液タイ
プの通常の脱脂剤が使用出来、例えばアルクリー
ン100、アルクリーン120(奥野製薬工業K.K製)
などが使用できる。また、アセトン、アルコー
ル、トリクロルエチレンなどの溶剤による脱脂を
行つてもよく、単独であるいは上記弱酸性〜弱ア
ルカリ水溶液タイプの脱脂剤と併用によつて脱脂
を行うことができる。脱脂方法としては特に制限
はなく、例えば浸漬方法によつて行うことが出来
る。 脱脂後は水洗を行い、還元剤を用いる自己触媒
型の湿式無電解銅めつき、またはニツケルメツキ
を行う。 無電解めつき方法は従来公知の方法で行うこと
が出来、直接めつき液中に浸漬して行うか、ある
いは直接浸漬しただけでは開始反応が不充分な場
合には活性化処理を行つてからめつきをおこな
う。 活性化処理としては従来公知の方法が使用でき
例えば次のような方法がある。 (a) 0.5〜5%の塩酸、硫酸、フツ化水素酸等の
鉱酸の水溶液中に10〜40℃で0.5〜5分間浸漬
する方法 (b) 無電解めつき用触媒金属を付着させる方法例
えば、アクチベータ液に浸漬する方法、センシ
タイザー→アクチベーター法、キヤタリスト→
アクセレーター法等の通常知られている方法で
行うことが出来る。 (c) パラジウムまたは銀化合物を有機溶剤に溶解
乃至分散させた液中に浸漬した後加熱する方法 なおこの場合の銀化合物としては塩化銀、硝酸
銀、酢酸銀等、パラジウム化合物としては塩化パ
ラジウム、酢酸パラジウム等、溶剤としてはメタ
ノール、エタノール等のアルコール系溶剤、アセ
トン、メチルエチルケトン等のケトン系溶剤、酢
酸エチル、アセト酢酸ブチル等のエステル系溶剤
等が例示できる。加熱条件としては80〜250℃で
5〜20分間が好ましい。 なお上記(c)の方法では合金粉末の溶解が非常に
少いので強酸、強アルカリで溶解し易い合金粉末
の活性化方法としては非常に有益である。 つづいて無電解銅めつきまたは無電解ニツケル
めつきを行う。 無電解銅めつき液としては還元剤を用いた自己
触媒性のめつき液であれば特に限定はなく、還元
剤としてはホルムアルデヒド、ナトリウムボロハ
イドライド、ジメチルアミンボラン等を0.1〜1
モル/、銅塩として硫酸銅、塩化銅、塩基性炭
酸銅等を0.01〜0.1モル/、錯化剤として
EDTA、酒石酸、ニトリロトリ酢酸、クエン酸、
エチレンジアミントリエタノールアミン、コード
ロール等を0.01〜0.5モル/を含む水溶液にア
ルカリとしてアンモニア、水酸化ナトリウム、水
酸化カリウム等を加えてPH9〜13に調整した液が
一般に使用できる。また上記液中に安定剤として
NaCN、黄血塩等のシアン化物、チオ尿素、ジエ
チルジチオスルフアミン酸ソーダ、キサントゲン
酸カリ等のイオウ化合物等を0.01〜20ppm加える
場合もある。めつきする際の液温は通常15〜60℃
程度である。 無電解ニツケルめつき液としては、還元剤を用
いた自己触媒性のめつき液であれば特に制限はな
いが、還元剤として次亜リン酸ナトリウム、ジメ
チルアミンボラン等を0.1〜1モル/、ニツケ
ル塩として、硫酸ニツケル、塩化ニツケル等を
0.02〜0.2モル/、錯化剤としてクエン酸、酒
石酸、リンゴ酸、EDTA、ニトリロトリ酢酸、
トリエタノールアミン、グリシン等を0.01〜0.5
モル/を含む水溶液を酸として硫酸、塩酸等、
アルカリとしてアンモニア、水酸化ナトリウム、
水酸化カリウム等を使用してPH4〜10の範囲に調
整した水溶液が使用できる。また、上記水溶液中
に安定剤として硝酸鉛、EDTA−鉛等の鉛化合
物、ジエチルチオ尿素、2メルカプトベンゾチア
ゾール等のイオウ化合物等を0.01〜10ppm程度加
える場合がある。めつきする際の液温は25〜95℃
の範囲があり、一般には、PHが低い程高温でめつ
きする必要がある。 次にめつき方法としては無電解銅めつき、無電
解ニツケルめつきともに同様の方法で行うことが
でき、機械的またはおよび空気やN2ガスを吹き
込んだ撹拌のもとに調整した無電解めつき液中に
あらかじめ処理した水素吸蔵合金粉末を入れれば
よい。また、一度に多量の粉末をめつきする場
合、めつき時に発生する水素ガスが多量となつて
作業性の低下がある場合には、水溶液中にあらか
じめ銅またはニツケル塩、錯化剤、安定剤等を添
加した後該合金粉末を添加し、その後に還元剤を
少量づつ添加してめつきする方法も有効である。 無電解めつきの形態としては銅またはニツケル
を単独でめつきする形態、無電解銅めつきをした
後その上から無電解ニツケルめつきをする形態、
または無電解ニツケルめつきをした上に無電解銅
めつきをする形態等が包含される。 無電解めつきする厚さは上記した各場合ともに
合計で0.2〜5μm好ましくは0.5〜2μm程度であ
り、0.2μm以下の膜厚ではカプセル化した効果が
不充分であり、5μm以上では不経済であるばか
りでなく、めつき皮膜の細孔が埋められる状態と
なつて水素吸蔵速度の低下をもたらす。 無電解めつきした後は充分水洗し、場合により
アルコール、アセトン等の有機溶剤で洗浄してか
ら100℃以下で乾燥する。これでもなお使用した
有機薬品類が残留しているおそれがある場合に
は、さらに水素気流中200〜300℃で15分間程度熱
処理を行えば空気中に放置しても変色しないもの
が得られる。 このようにして得られた粉末の水素吸蔵合金材
料は前述したようにすぐれた性質をもつが、もう
一つの特徴として成形品として用いた場合にも優
れた特性を有する。 成形の方法としては、1トン/cm2程度の低い荷
重下で極めて容易に圧縮成形ができ、成形品の作
成が可能であるが、くり返し使用に伴なう成形品
の崩壊を防ぐためには3トン/cm2以上の荷重圧が
望ましい。 成形の際には銅をめつきした合成粉末とニツケ
ルをめつきした合金粉末を混合して成形してもよ
く、また必要に応じて銅、アルミニウムおよびニ
ツケルのうちの1種以上の金属の粉末またはフレ
ークの形態のものをめつきした合金と混合した後
に成形することもできる。 本発明の成形品の形状としては特に制限はな
く、各種の用途に応じて適宜に決定される。たと
えばペレツト状、筒状、シート状、角形状などを
例示できる。その機械的強度としても用途に応じ
た実用強度を有しているかぎり特に制限はなく、
またその密度も広い範囲から適宜に選択すれば良
い。 なお、この成形品に水素を吸蔵させると合金粒
子が膨張するため、成形品自体も数パーセント膨
張する。しかし、いつたん膨張した成形品は水素
を放出させても収縮しないため、実際に成形品と
して利用する場合には、この膨張率を見込んで成
形しておけばよい。 また、この圧縮成形に際してAl粉末等を混合
すれば若干ではあるが成形品の膨張率を低減でき
る。 なお、Ti系合金のように水素解離圧が低く、
その水素化物を空気中に取り出しても室温では水
素を放出しないものでは、めつきした合金粉末を
あらかじめ水素化した状態で圧縮成形すれば膨張
しない成形品の作成も可能である。また、常圧下
では水素を放出してしまう合金の場合でも、加圧
水素ガス中で圧縮成形することが考えられる。 このようにして無電解めつきした水素吸蔵合金
粉末はそのまま、または成形して水素の貯蔵、輸
送、精製およびヒートポンプ、冷暖房システム、
畜熱などのエネルギー変換体等に利用される。 次に実施例を示して更に詳しく説明する。 実施例 1 あらかじめ20Kg/cm2の水素加圧下、20〜100℃
の範囲で水素の吸収と放出を20回くり返して平均
粒径約15μmに粉砕した粉末MmNi4.5Mn0.510g
をアセトン50ml中に25℃、5分間浸漬して脱脂し
た後水洗する。次に、塩化第1スズ20g、塩酸15
ml、水40mを混合溶解した後(センシタイザー
液と称する)中に25℃、5分間浸漬した後水洗す
る。次に塩化パラジウム0.2g、塩酸5ml、水25
mlを混合溶解した液(アクチベーター液と称す
る)中に25℃、3分間浸漬して水洗する。次にホ
ルムアルデヒドを還元剤とする無電解めつき液
TMP化学銅#500(奥野製薬工業K.K製)液1
中で撹拌しながら30℃で40分間めつきして約1μ
m圧の銅めつき皮膜を形成した。このときのめつ
きされた銅の総量は2.8gである。 次に水洗した後アセトンで洗浄してから50℃、
60分加熱して乾燥する。該めつきした粉末500mg
を5トン/cm2の荷重下に直径13mmのベレツトに成
形した。 次に比較例として真空蒸着法(比較例1)、熱
分解法(比較例2)、湿式置換型無電解めつき法
(比較例3)、および電気めつき法(比較例4)に
よる銅コーテイング合金粉末を調整し、実施例と
同じ方法で成形した。 比較例 1 実施例1にもとずいて粉砕した粉末 MmNi4.5Mn0.51gを抵抗加熱式真空蒸着装置
を用いて銅コーテイングした。このとき容器に入
れた粉末試料は薄くのばし、蒸着中手動で振動さ
せ、かつ数回にわたつて取り出し撹拌を行い、出
来るだけ均一なコーテイングが行えるようにし
た。コーテイングする銅量は実施例1とほぼ同じ
の合金1gに対して0.28gとした。 比較例 2 実施例1にもとづいて粉砕した粉末 MmNi4.5Mn0.510gをギ酸銅を含むペースト
(ギ酸銅30gとブチルカルビトールアセテート20
gをよく混合したもの)とよく混合した後、窒素
ガス中で450℃、60分間加熱した。 比較例 3 実施例1にもとづいて粉砕した粉末 MmNi4.5Mn0.510gを硫酸酸性タイプの置換型
銅めつき液サブスターCu(奥野製薬工業K.K製)
液1中で30℃、30分間めつきした。次に水洗し
て実施例1と同じ方法で乾燥した。 比較例 4 実施例1にもとづいて粉砕した粉末 MmNi4.5Mn0.510gを鉄製容器に入れて、撹拌し
ながら電気銅めつきした。電気銅めつき液は通常
の硫酸銅浴で20℃、3A/dm2でめつきし、該粉
末表面に付着する銅量が約2.8gになるまでめつ
きした。水洗した後実施例1と同じ方法で乾燥し
た。 表1は本発明(実施例1)および比較例1〜4
により調製したCuコーテイングMmNi4.5Mn0.5
末およびその成形品についてコーテイング状態、
水素吸蔵特性、耐久性などを比較したものであ
る。 本発明により調製したものは比較例1〜4のい
ずれよりも均一なコーテイングが行われており、
しかも合金の水素吸蔵特性は全くそこなわれてい
ない。比較例1〜4では、いずれも合金粒子表面
の変質あるいは組成変化により、水素吸蔵特性が
低下している。さらに本発明による成形品では熱
伝導度も改善されており、1000回の水素吸蔵放出
のくり返し後もペレツトの崩壊は認められなかつ
た。 すなわち本発明によれば高い伝導度を有し、し
かも長期間くり返し使用しても崩壊しない成形品
が作成できることを示している。なおペレツトの
膨張率は20回の水素吸蔵放出のくり返しで一定値
(直径方向で約8%)となつた。
The present invention relates to a method for manufacturing a hydrogen storage alloy material having excellent properties, and more particularly to a method for manufacturing a hydrogen storage alloy material in the form of a powder and a hydrogen storage alloy material in the form of a molded product. In recent years, the use of alloys that have the property of absorbing hydrogen has rapidly developed in various fields. For example, when storing and transporting hydrogen, conventionally it was highly compressed in special pressure- and low-temperature-resistant containers, but by using hydrogen-absorbing alloy materials, it can be stored and transported more safely in regular containers. Can be done. Further, since the hydrogen storage alloy stores only hydrogen, hydrogen can be purified by repeatedly absorbing and releasing hydrogen. Furthermore, since the hydrogen storage alloy generates a large amount of exothermic or endothermic energy when it absorbs or releases hydrogen, it can be used as an energy converter for heat storage, heat pumps, air-conditioning system materials, etc. However, since this hydrogen storage alloy is relatively expensive, it is desirable that it can be used repeatedly.
As the alloy collapses and becomes fine powder due to repeated absorption and release of hydrogen, it is mixed with hydrogen gas and moves and dissipates, causing problems such as clogging of filters. Also, since the alloy has poor thermal conductivity,
There are also problems in that it is difficult to use alone for heat pumps and the like that require smooth flow of heat in and out. In order to solve these problems, a method of coating a different metal on the surface of a hydrogen storage alloy, and mixing it with powder or flakes of at least one metal among aluminum, copper and nickel.
Attempts have been made to solidify the material by compressing it under a high load of ton/cm 2 or more (USP 4,292,265), but each method has various drawbacks. For example, methods for coating dissimilar metals include: (1) Vacuum deposition or sputtering method (2) Pyrolysis method in which an organometallic compound and alloy powder are mixed, then pyrolyzed, and the alloy powder is coated with the remaining metal (3) ) Wet displacement electroless plating method (4) Methods such as electroplating method were used, but they had the following drawbacks. In the case of (1) above, the hydrogen storage alloy is generally in the form of a powder, so it is difficult to apply it uniformly, and it takes time to coat it thickly. In the case of (3), the alloy changes in quality due to heating above ℃, and the coating metal is not uniform and continuous, resulting in a thin coating of fine powder.In the case of (3), the type of hydrogen storage alloy is In the case of (4), since the hydrogen storage alloy is powder, it is extremely difficult to plate it uniformly. In addition, in the case of a method in which a hydrogen storage alloy is mixed with powder or flakes of at least one metal among aluminum, copper, and nickel, and compressed and solidified under a high load of 20 tons/cm 2 or more, hydrogen At present, it is impossible to avoid the pulverization of alloy particles and the collapse of molded products due to the repeated absorption and release of However, the collapse of the molded product was still unavoidable. The present inventors have conducted extensive research to solve these problems, and have found that copper and/or nickel metal can be coated on the surface of hydrogen-absorbing alloy powder using an autocatalytic wet electroless plating method that uses a reducing agent. We have now completed the present invention by discovering that not only does it have excellent properties when coated with powder, but it also exhibits even more excellent properties when molded. That is, the present invention provides a method for producing a hydrogen storage alloy material, which comprises coating the surface of a hydrogen storage alloy powder with copper and/or nickel metal by an autocatalytic wet electroless plating method using a reducing agent.
and a method for producing a hydrogen storage alloy material, which comprises coating the surface of hydrogen storage alloy powder with copper and/or nickel metal by an autocatalytic wet electroless plating method using a reducing agent, and then molding. . The method of the present invention involves coating the surface of a hydrogen-absorbing alloy powder with copper and/or nickel metal by an autocatalytic wet electroless plating method using a reducing agent to achieve a type of encapsulation. The copper and/or nickel plating film is uniform and has very good adhesion, and has fine pores that allow hydrogen to pass through without impairing its ability to absorb and release hydrogen. There are advantages. For example, since the surface of the hydrogen storage alloy is completely coated with copper and/or nickel, it is possible to prevent the main body of the hydrogen storage alloy from being contaminated by impurities in the usage atmosphere, and there is no loss of functionality due to contamination. is normally oxidized by oxygen in the air to form an oxide film, so activation is necessary.
Conventionally, hydrogen pressure was 10Kg/cm2 or more in a pressure-resistant container.
Treatment at 100℃ for one to several days was required, but
Since almost no oxide film is formed in the alloy material obtained by the method of the present invention, activation is generally unnecessary, and depending on the type of alloy, even if activation is necessary, treatment within 1 to 2 hours is sufficient. Furthermore, even when hydrogen is repeatedly absorbed and released, the encapsulation reduces the possibility of pulverization of the alloy powder, and even when it is pulverized, it is blocked by the outer wall of copper and/or nickel, preventing movement and dissipation. In addition, alloys that store hydrogen are very active, and when some alloys are taken out into the air, catalytic combustion of hydrogen occurs on the alloy surface, posing a risk of spontaneous combustion. In the alloy material of the invention, the rapid diffusion of oxygen to the alloy surface is prevented by the copper and/or nickel film, which makes spontaneous combustion less likely to occur and improves safety. Furthermore, when made into a molded product, conventional hydrogen absorption and release would be pulverized within 10 times, but the molded product of the present invention will not become pulverized even after 1000 cycles or more. The molded product of the present invention tends to collapse when hydrogen absorption and release are repeated, but the molded product of the present invention shows no change in appearance even after repeated hydrogen absorption and release over 1000 times, and the metal plated with each alloy particle. Since they are in close contact with each other through the , there are advantages such as a significant improvement in thermal conductivity. Moreover, when molding untreated alloy powder, it was necessary to compress it under a high load pressure of 20 tons/cm 2 or more, but with the method of the present invention, it is possible to compress it under a high load pressure of 1/20 to
Since it can be easily molded under a load of 1 to 10 tons/cm 2 , it is possible to produce sheet-like molded products using rollers or molded products with complex shapes.
Here, the molding load pressure is 20 tons/ cm2 or more and 1 to 10 tons/cm2.
There doesn't seem to be much difference numerically between cm 2 , but
There is a big difference when considering the material of the mold used during actual molding. In other words, a stainless steel mold can be used for a production of 5 tons/cm 2 or less, but a special steel such as tungsten steel is required for a production of 20 tons/cm 2 or more. Furthermore, when comparing the molded product obtained by the present invention with a molded product using alloy powder coated with dissimilar metals by a method other than the present invention, the latter molds much faster when hydrogen is absorbed and released repeatedly. It can be seen that the molded product according to the present invention has excellent properties, as the product disintegrates, and when comparing the thermal conductivity, the product according to the present invention has a higher thermal conductivity. As the hydrogen storage alloy powder used in the present invention, conventionally known ones can be used, such as
LaNi 5 , TiCo 0.5 Fe 0.5 , TiCo 0.5 Mn 0.5 , MmNi 4.5
Mn 0.5 , MmNi 4.5 Al 0.5 (here, Mm is called Mitsushimetal and is a mixture of La, Ce, Nd, etc.), etc. can be used. The particle size of the powder is preferably about 0.1 to 100 μm,
More preferably, one having a diameter of 1 to 30 μm can be used.
Hydrogen storage alloys are usually in the form of ingots, so in this case they need to be pulverized. As a method for pulverizing the alloy, a conventional mechanical pulverization method is also possible, but a method of pulverizing the alloy by repeatedly absorbing and desorbing hydrogen in hydrogen is preferable. In the present invention, it is necessary to clean the surface of the hydrogen-absorbing alloy powder prior to electroless plating, and oil, dirt, etc. are removed using sharp grease. As a degreasing agent, normal degreasing agents of the weakly acidic to weakly alkaline aqueous solution type can be used, such as Alclean 100 and Alclean 120 (manufactured by Okuno Pharmaceutical Industries KK).
etc. can be used. Further, degreasing may be performed using a solvent such as acetone, alcohol, or trichlorethylene, and degreasing can be performed alone or in combination with the above-mentioned weakly acidic to weakly alkaline aqueous solution type degreasing agent. There are no particular restrictions on the degreasing method, and for example, a dipping method can be used. After degreasing, wash with water and perform autocatalytic wet electroless copper plating using a reducing agent or nickel plating. Electroless plating can be carried out by conventionally known methods, such as by direct immersion in the plating solution, or if the initiation reaction is insufficient with direct immersion, an activation treatment is performed. Do the Tsuki. Conventionally known methods can be used for the activation process, including the following methods. (a) Method of immersing in 0.5-5% aqueous solution of mineral acid such as hydrochloric acid, sulfuric acid, hydrofluoric acid, etc. for 0.5-5 minutes at 10-40℃ (b) Method of attaching catalyst metal for electroless plating For example, immersion method in activator liquid, sensitizer → activator method, catalyst →
This can be done by a commonly known method such as the accelerator method. (c) A method in which palladium or a silver compound is immersed in a solution or dispersed in an organic solvent and then heated. In this case, silver compounds include silver chloride, silver nitrate, silver acetate, etc., and palladium compounds include palladium chloride, acetic acid, etc. Examples of the solvent include alcohol solvents such as methanol and ethanol, ketone solvents such as acetone and methyl ethyl ketone, and ester solvents such as ethyl acetate and butyl acetoacetate. The heating conditions are preferably 80 to 250°C for 5 to 20 minutes. In addition, since the method (c) above dissolves the alloy powder very little, it is very useful as a method for activating alloy powders that are easily dissolved by strong acids and strong alkalis. Next, electroless copper plating or electroless nickel plating is performed. The electroless copper plating solution is not particularly limited as long as it is an autocatalytic plating solution that uses a reducing agent, and formaldehyde, sodium borohydride, dimethylamine borane, etc.
mol/, copper sulfate, copper chloride, basic copper carbonate, etc. as a copper salt, 0.01 to 0.1 mol/, as a complexing agent
EDTA, tartaric acid, nitrilotriacetic acid, citric acid,
Generally, an aqueous solution containing 0.01 to 0.5 mole of ethylenediaminetriethanolamine, cordol, etc. and adjusted to pH 9 to 13 by adding ammonia, sodium hydroxide, potassium hydroxide, etc. as an alkali can be used. Also, as a stabilizer in the above liquid.
Cyanides such as NaCN and yellow blood salt, sulfur compounds such as thiourea, sodium diethyldithiosulfamate, and potassium xanthate may be added in an amount of 0.01 to 20 ppm. The liquid temperature during plating is usually 15 to 60℃.
That's about it. The electroless nickel plating solution is not particularly limited as long as it is an autocatalytic plating solution using a reducing agent, but sodium hypophosphite, dimethylamine borane, etc. may be used as a reducing agent at 0.1 to 1 mole/ Nickel salts include nickel sulfate, nickel chloride, etc.
0.02-0.2 mol/, as complexing agents citric acid, tartaric acid, malic acid, EDTA, nitrilotriacetic acid,
Triethanolamine, glycine, etc. 0.01-0.5
Sulfuric acid, hydrochloric acid, etc. as an acid in an aqueous solution containing mol/
Ammonia, sodium hydroxide, as alkali
An aqueous solution adjusted to have a pH in the range of 4 to 10 using potassium hydroxide or the like can be used. Furthermore, about 0.01 to 10 ppm of lead compounds such as lead nitrate and EDTA-lead, and sulfur compounds such as diethylthiourea and 2-mercaptobenzothiazole may be added as stabilizers to the aqueous solution. The liquid temperature during plating is 25 to 95℃.
In general, the lower the pH, the higher the temperature required for plating. Next, as a plating method, both electroless copper plating and electroless nickel plating can be performed using the same method. Pre-treated hydrogen storage alloy powder may be added to the soaking solution. In addition, when plating a large amount of powder at once, if a large amount of hydrogen gas is generated during plating, reducing workability, add copper or nickel salt, complexing agent, or stabilizer to the aqueous solution in advance. It is also effective to add the alloy powder, then add the reducing agent little by little, and then plating. Electroless plating methods include plating copper or nickel alone, electroless copper plating and then electroless nickel plating.
Alternatively, a form in which electroless copper plating is applied on top of electroless nickel plating is included. The total thickness of electroless plating in each of the above cases is about 0.2 to 5 μm, preferably about 0.5 to 2 μm. If the film thickness is less than 0.2 μm, the encapsulation effect will be insufficient, and if it is more than 5 μm, it will be uneconomical. Not only that, but the pores of the plating film become filled, resulting in a decrease in the hydrogen absorption rate. After electroless plating, it is thoroughly washed with water and, if necessary, with an organic solvent such as alcohol or acetone, and then dried at 100°C or less. If there is a possibility that the organic chemicals used may still remain, heat treatment at 200 to 300°C for about 15 minutes in a hydrogen stream will yield a product that will not discolor even when left in the air. The powdered hydrogen storage alloy material thus obtained has excellent properties as described above, but another feature is that it also has excellent properties when used as a molded article. As for the molding method, compression molding is extremely easy under a low load of about 1 ton/cm 2 and it is possible to create a molded product, but in order to prevent the molded product from collapsing due to repeated use, 3 steps must be taken. A load pressure of ton/cm2 or higher is desirable. When molding, copper-plated synthetic powder and nickel-plated alloy powder may be mixed and molded, and if necessary, powder of one or more metals from copper, aluminum, and nickel may be used. Alternatively, it can be formed in the form of flakes after being mixed with the plated alloy. The shape of the molded article of the present invention is not particularly limited and may be appropriately determined depending on various uses. For example, the shape can be a pellet shape, a cylinder shape, a sheet shape, a square shape, etc. There is no particular limit to its mechanical strength as long as it has a practical strength suitable for the purpose.
Further, the density may be appropriately selected from a wide range. Note that when this molded article absorbs hydrogen, the alloy particles expand, and the molded article itself also expands by several percent. However, once expanded, the molded product will not shrink even if hydrogen is released, so when actually using it as a molded product, it is sufficient to take into account this expansion rate when molding. Furthermore, if Al powder or the like is mixed during this compression molding, the expansion coefficient of the molded product can be reduced, albeit slightly. In addition, like Ti-based alloys, the hydrogen dissociation pressure is low,
If the hydride does not release hydrogen at room temperature even if it is taken out into the air, it is possible to create a molded product that does not expand by compression molding the plated alloy powder in a hydrogenated state beforehand. Furthermore, even in the case of alloys that release hydrogen under normal pressure, compression molding in pressurized hydrogen gas may be considered. The hydrogen-absorbing alloy powder electrolessly plated in this way can be used as it is or in molded form for hydrogen storage, transportation, purification, heat pumps, heating and cooling systems, etc.
Used for energy conversion such as stored heat. Next, a more detailed explanation will be given with reference to examples. Example 1 Under hydrogen pressure of 20Kg/cm 2 in advance, 20 to 100℃
10g of powder MmNi 4.5 Mn 0.5 , which was pulverized to an average particle size of approximately 15μm by repeating hydrogen absorption and release 20 times in the range of
Degrease by immersing in 50 ml of acetone at 25°C for 5 minutes and then washing with water. Next, 20g of stannous chloride, 15g of hydrochloric acid
ml of water and 40 ml of water (referred to as sensitizer solution), immersed in it for 5 minutes at 25°C, and then washed with water. Next, palladium chloride 0.2 g, hydrochloric acid 5 ml, water 25
ml of the solution (referred to as activator solution) for 3 minutes at 25°C, and then washed with water. Next, electroless plating solution using formaldehyde as a reducing agent
TMP chemical copper #500 (manufactured by Okuno Pharmaceutical Industries KK) liquid 1
Plated for 40 minutes at 30℃ while stirring in
A copper plating film of m pressure was formed. The total amount of copper plated at this time was 2.8 g. Next, wash with water and acetone, then heat at 50°C.
Heat and dry for 60 minutes. Plated powder 500mg
was formed into a beret with a diameter of 13 mm under a load of 5 tons/cm 2 . Next, as comparative examples, copper coating was performed using a vacuum evaporation method (Comparative Example 1), a pyrolysis method (Comparative Example 2), a wet displacement electroless plating method (Comparative Example 3), and an electroplating method (Comparative Example 4). Alloy powder was prepared and molded in the same manner as in the example. Comparative Example 1 1 g of MmNi 4.5 Mn 0.5 pulverized powder based on Example 1 was coated with copper using a resistance heating vacuum evaporation apparatus. At this time, the powder sample placed in the container was spread thinly, vibrated manually during vapor deposition, and taken out and stirred several times to ensure as uniform a coating as possible. The amount of copper coated was 0.28 g for 1 g of the alloy, which is almost the same as in Example 1. Comparative Example 2 10 g of powder MmNi 4.5 Mn 0.5 ground based on Example 1 was mixed into a paste containing copper formate (30 g of copper formate and 20 g of butyl carbitol acetate).
g) and then heated at 450°C for 60 minutes in nitrogen gas. Comparative Example 3 10 g of powder MmNi 4.5 Mn 0.5 pulverized based on Example 1 was mixed with a sulfuric acid acid type substitutional copper plating solution Substar Cu (manufactured by Okuno Pharmaceutical Industries KK).
Plating was carried out in Solution 1 at 30°C for 30 minutes. Next, it was washed with water and dried in the same manner as in Example 1. Comparative Example 4 10 g of MmNi 4.5 Mn 0.5 powder pulverized according to Example 1 was placed in an iron container and electroplated with copper while stirring. Plating was carried out using an electrolytic copper plating solution at 20° C. and 3 A/dm 2 in an ordinary copper sulfate bath until the amount of copper adhering to the powder surface was about 2.8 g. After washing with water, it was dried in the same manner as in Example 1. Table 1 shows the present invention (Example 1) and comparative examples 1 to 4.
The coating state of the Cu-coated MmNi 4.5 Mn 0.5 powder and its molded product prepared by
This is a comparison of hydrogen storage properties, durability, etc. The coating prepared according to the present invention was more uniformly coated than any of Comparative Examples 1 to 4,
Moreover, the hydrogen storage properties of the alloy are not impaired at all. In Comparative Examples 1 to 4, the hydrogen storage properties are all reduced due to deterioration or composition change on the surface of the alloy particles. Furthermore, the thermal conductivity of the molded article according to the present invention was improved, and no disintegration of the pellet was observed even after 1000 hydrogen absorption and desorption cycles. In other words, it is shown that according to the present invention, it is possible to create a molded article that has high conductivity and does not disintegrate even after repeated use for a long period of time. The expansion rate of the pellets remained constant (approximately 8% in the diametrical direction) after 20 hydrogen absorption and desorption cycles.

【表】 注(1)(2)はSEMにより観察。 (3) 高圧DTAを使用して測定、真空排気後室温
で20Kg/cm2の水素を導入するだけで1時間内に
水素吸蔵による発熱ピークが現われるものは活
性化不要とし、150℃までの加熱冷却のくり返
しが必要なものはその回数で示した。 (4) 活性化処理の試料について高圧TGを使用し
て測定。水素吸蔵量(原子比)=H/(Mm+
Ni+Mn)理論値はMmNi4.5Mn0.5H6として1.2
である。 (5) ベレツトを耐圧容器中に入れて30Kg/cm2の水
素加圧下、35〜200℃で水素の吸蔵放出をくり
返した。そして50回ごとにいつたん取り出して
形状変化を調べた。 (6) 別途5トン/cm2の荷重下に直径9mm、厚さ2
mmのペレツトを作成し、レーザー光照射型熱伝
導度測定装置を用いて40℃で測定。 実施例 2 機械的に粉砕した平均粒径25μmの粉末 TiCo0.5Fe0.510gをメタノール50ml中に20℃、10
分間浸漬して脱脂し水洗した。次に塩酸5ml、硫
酸2.5ml、フツ化水素酸1mlを水100mlに溶解した
液中で20℃、5分間浸漬し水洗した。次に次亜リ
ン酸ナトリウムを還元剤とする無電解ニツケルめ
つき液、トツプニコロンN−47(奥野製薬工業K.
K製)液1.2中で撹拌しながら90℃、50分間め
つきして約1.3μmのニツケルめつき皮膜を形成し
た。次に水洗してから100℃、60分間乾燥した。 このニツケルめつきしたTiCo0.5F0.5は30Kg/cm2
の水素加圧下、50〜250℃で10回程度加熱冷却を
くり返すことによつてその活性化が行え、従来の
450℃以上という高温は必要とされなかつた。ま
た合金の水素吸蔵量もTiCo0.5Fe0.5H1.2の理論値
に等しかつた。 次に、このニツケルめつきした粉末500mgを活
性化処理後、水素を吸蔵させた状態で取り出し、
10トン/cm2の荷重下に直径13mmのペレツトに形成
した。このペレツトについて、30Kg/cm2の水素加
圧下50〜250℃で500回の水素吸蔵、放出をくり返
したところペレツトの膨張、ひび割れとも認めら
れなかつた。 実施例 3 あらかじめ200Kg/cm2の水素加圧下、20〜100℃
の範囲で水素の吸収と放出を30回くり返して平均
粒径10μmにした粉末LaNi510gをアルカリ性脱
脂剤アルクリーン120(奥野製薬工業K.K製)の5
%水溶液100ml中で、50℃5分間浸漬して脱脂し
て水洗した。次にアクチベーター液中に30℃、7
分間浸漬して水洗した。次にホルムアルデヒドを
還元剤とする無電解めつき液CPCカツパー(奥
野製薬工業K.K製)1中で撹拌しながら55℃、
60分間めつきして約0.7μmの銅めつき皮膜を形成
した。次に水洗した後、硫酸5mlと水45mlを混合
した液中に25℃、1.5分間浸漬して水洗する。次
にジメチルアミンボランを還元剤とする無電解ニ
ツケルめつき液、ナイクラツド741(奥野製薬工業
K.K製)液500ml中で撹拌しながら65℃、20分間
めつきして約0.7μmのニツケル皮膜を形成した。
水洗した後アセトンで洗浄してから50℃、30分間
加熱して乾燥した。 該銅−ニツケルの二重めつきした試料を10ト
ン/cm2の荷重下に直径13mmのベレツトとした。こ
のものは耐圧容器中でいつたん真空排気後30Kg/
cm2の水素を導入するだけで水素の吸蔵が進行し、
35〜200℃で数回水素の吸蔵、放出をくり返すと、
合金の水素吸蔵量もLaNi5H6の理論値に一致し
た。また1000回のくり返し試験後のペレツトの直
径方向の膨張率は実施例1と同じ約8%であつた
が、肉眼で識別できるひび割れ崩壊は全く認めら
れなかつた。 実施例 4 あらかじめ30Kg/cm2の水素加圧下、20〜100℃
の範囲で水素の吸収と放出を50回くり返して平均
粒径5μmに粉砕した粉末MmNi4.5Al0.510gをエ
チルアルコール50ml中に25℃、10分間浸漬して脱
脂し水洗した。次に粉末5gを酢酸銀0.1gをメ
タノール30mlに溶解乃至分散した液中に20℃、20
分間浸漬した。次に約150℃、30分間加熱室温ま
で冷却してジメチルアミンボランを還元剤とする
無電解銅めつき液カツパーLP(奥野製薬工業K.K
製)液1中で50℃、45分間めつきして約1.5μm
の銅めつき皮膜を作製した。上記脱脂→水洗後の
粉末5gを酢酸バラジウム0.1gをアセトン30ml
に溶解した液中に20℃、15分間浸漬した。次に約
180℃、20分間加熱後室温まで冷却して次亜リン
酸ナトリウムを還元剤とする無電解ニツケルめつ
き液トツプニコロンEL−70(奥野製薬工業K.K
製)液0.5中で85℃、30分間めつきして約1.5μ
mのニツケル皮膜を作製した。 上記銅めつきまたはニツケルめつきした粉末は
めつき後水洗してアセトンで洗浄した後40℃、60
分間加熱して乾燥した。 該銅めつきした粉末200mgと該ニツケルめつき
した粉末200mgおよび平均粒径70μmのAl粉末100
mgを混合し5トン/cm2の荷重下に直径13mmのペレ
ツトに圧縮成形した。これを30Kg/cm2の水素加圧
下に35〜200℃で1000回水素吸蔵放出をくり返し
たところ肉眼で識別できるひび割れ、崩壊は全く
認められなかつた。また直径方向の膨張率は実施
例1および3の場合よりも若干小さい7%であつ
た。
[Table] Notes (1) and (2) were observed using SEM. (3) Measured using high-pressure DTA. If an exothermic peak due to hydrogen absorption appears within 1 hour by simply introducing 20 kg/cm 2 of hydrogen at room temperature after evacuation, activation is not required and heating up to 150°C is required. Items that require repeated cooling are indicated by the number of times. (4) Measurement using high-pressure TG for activated samples. Hydrogen storage capacity (atomic ratio) = H/(Mm+
Ni + Mn) Theoretical value is 1.2 as MmNi 4.5 Mn 0.5 H 6
It is. (5) The beret was placed in a pressure-resistant container, and hydrogen was repeatedly absorbed and released at 35 to 200°C under a hydrogen pressure of 30 kg/cm 2 . Then, every 50 times, they were removed and examined for changes in shape. (6) Separately, under a load of 5 tons/cm 2, the diameter is 9 mm and the thickness is 2.
mm pellets were made and measured at 40°C using a laser beam irradiation type thermal conductivity measuring device. Example 2 10 g of mechanically crushed TiCo 0.5 Fe 0.5 powder with an average particle size of 25 μm was added to 50 ml of methanol at 20°C for 10 min.
It was soaked for a minute, degreased, and washed with water. Next, it was immersed in a solution prepared by dissolving 5 ml of hydrochloric acid, 2.5 ml of sulfuric acid, and 1 ml of hydrofluoric acid in 100 ml of water at 20°C for 5 minutes, and then washed with water. Next, we used an electroless nickel plating solution using sodium hypophosphite as a reducing agent, Topnicolon N-47 (Okuno Pharmaceutical Co., Ltd.).
A nickel plating film of about 1.3 μm was formed by plating in Liquid 1.2 (manufactured by K) at 90°C for 50 minutes while stirring. Next, it was washed with water and dried at 100°C for 60 minutes. This nickel-plated TiCo 0.5 F 0.5 weighs 30Kg/cm 2
It can be activated by repeating heating and cooling about 10 times at 50 to 250℃ under hydrogen pressure.
High temperatures above 450°C were not required. The hydrogen storage capacity of the alloy was also equal to the theoretical value of TiCo 0.5 Fe 0.5 H 1.2 . Next, after activating 500 mg of this nickel-plated powder, it was taken out in a state where it had absorbed hydrogen.
It was formed into pellets with a diameter of 13 mm under a load of 10 tons/cm 2 . When this pellet was subjected to hydrogen absorption and desorption 500 times at 50 to 250°C under a hydrogen pressure of 30 kg/cm 2 , neither expansion nor cracking of the pellet was observed. Example 3 Under hydrogen pressure of 200 Kg/cm 2 in advance, 20 to 100°C
10g of powdered LaNi 5 , which has been subjected to absorption and release of hydrogen 30 times in the range of
% aqueous solution for 5 minutes at 50°C, degreased, and washed with water. Next, in the activator solution at 30℃,
Soaked for a minute and washed with water. Next, the plate was heated at 55°C while stirring in an electroless plating solution CPC Katsupar (manufactured by Okuno Pharmaceutical Industries KK) using formaldehyde as a reducing agent.
Plating was performed for 60 minutes to form a copper plating film of approximately 0.7 μm. Next, after washing with water, it is immersed in a mixture of 5 ml of sulfuric acid and 45 ml of water at 25°C for 1.5 minutes, and then washed with water. Next, an electroless nickel plating solution using dimethylamine borane as a reducing agent, Nyclad 741 (Okuno Pharmaceutical Co., Ltd.)
A nickel film of about 0.7 μm was formed by plating in 500 ml of KK solution at 65° C. for 20 minutes with stirring.
After washing with water and acetone, it was dried by heating at 50°C for 30 minutes. The copper-nickel double plated sample was made into a beret with a diameter of 13 mm under a load of 10 tons/cm 2 . This product weighs 30 kg/kg after being evacuated in a pressure-resistant container.
Just by introducing cm 2 of hydrogen, hydrogen storage progresses,
When hydrogen is absorbed and released several times at 35 to 200℃,
The hydrogen storage capacity of the alloy also matched the theoretical value of LaNi 5 H 6 . The diametrical expansion rate of the pellet after 1000 repeated tests was about 8%, the same as in Example 1, but no visible cracks or collapse were observed. Example 4 Under hydrogen pressure of 30 Kg/cm 2 in advance, 20 to 100°C
10 g of MmNi 4.5 Al 0.5 powder, which was pulverized to an average particle size of 5 μm by repeating absorption and release of hydrogen 50 times in the range of 50 times, was immersed in 50 ml of ethyl alcohol at 25° C. for 10 minutes to degrease it, and then washed with water. Next, 5 g of powder was added to a solution of 0.1 g of silver acetate dissolved or dispersed in 30 ml of methanol at 20°C.
Soaked for minutes. Next, heat at approximately 150℃ for 30 minutes, cool to room temperature, and use electroless copper plating solution Katsupar LP (Okuno Pharmaceutical Industries KK) using dimethylamine borane as a reducing agent.
Approximately 1.5μm after plating for 45 minutes at 50℃ in solution 1
A copper plating film was prepared. Degrease the above → Add 5g of powder after washing with water, add 0.1g of palladium acetate, and add 30ml of acetone.
20°C for 15 minutes. Then about
After heating at 180℃ for 20 minutes and cooling to room temperature, apply electroless nickel plating liquid Topnicolon EL-70 (Okuno Pharmaceutical Industries KK) using sodium hypophosphite as the reducing agent.
Approximately 1.5μ after plating for 30 minutes at 85℃ in solution 0.5
A nickel film of m was prepared. After plating the above copper-plated or nickel-plated powder, wash with water and acetone, then 40℃, 60℃.
It was dried by heating for a minute. 200 mg of the copper-plated powder, 200 mg of the nickel-plated powder, and 100 mg of the Al powder with an average particle size of 70 μm.
mg were mixed and compression molded into pellets with a diameter of 13 mm under a load of 5 tons/cm 2 . When this hydrogen storage and release was repeated 1000 times at 35 to 200°C under a hydrogen pressure of 30 kg/cm 2 , no cracks or collapse that could be discerned with the naked eye were observed. Further, the expansion coefficient in the diametrical direction was 7%, which was slightly smaller than in Examples 1 and 3.

Claims (1)

【特許請求の範囲】 1 水素吸蔵合金粉末の表面に還元剤を用いる自
己触媒型の湿式無電解めつき方法により銅およ
び/またはニツケル金属を被覆することを特徴と
する水素吸蔵合金材料の製造方法。 2 水素吸蔵合金粉末の表面に還元剤を用いる自
己触媒型の湿式無電解めつき方法により銅およ
び/またはニツケル金属を被覆し、次いで成形す
ることを特徴とする水素吸蔵合金材料の製造方
法。
[Claims] 1. A method for producing a hydrogen storage alloy material, which comprises coating the surface of a hydrogen storage alloy powder with copper and/or nickel metal by an autocatalytic wet electroless plating method using a reducing agent. . 2. A method for producing a hydrogen storage alloy material, which comprises coating the surface of a hydrogen storage alloy powder with copper and/or nickel metal by an autocatalytic wet electroless plating method using a reducing agent, and then molding the powder.
JP59046161A 1984-03-09 1984-03-09 Production of hydrogen occluding alloy material Granted JPS60190570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59046161A JPS60190570A (en) 1984-03-09 1984-03-09 Production of hydrogen occluding alloy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59046161A JPS60190570A (en) 1984-03-09 1984-03-09 Production of hydrogen occluding alloy material

Publications (2)

Publication Number Publication Date
JPS60190570A JPS60190570A (en) 1985-09-28
JPH0312121B2 true JPH0312121B2 (en) 1991-02-19

Family

ID=12739282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59046161A Granted JPS60190570A (en) 1984-03-09 1984-03-09 Production of hydrogen occluding alloy material

Country Status (1)

Country Link
JP (1) JPS60190570A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62143801A (en) * 1985-12-18 1987-06-27 Agency Of Ind Science & Technol Purification of hydrogen gas with hydrogen occlusion alloy
JPS6317367A (en) * 1986-07-10 1988-01-25 矢崎総業株式会社 Hydrogen removing device for absorption refrigerator
JPH0753561B2 (en) * 1986-09-19 1995-06-07 松下電器産業株式会社 Method of operating compact using hydrogen storage alloy
JPS63310936A (en) * 1987-06-13 1988-12-19 Nippon Sanso Kk Hydrogen storage alloy material and its production
US5393617A (en) * 1993-10-08 1995-02-28 Electro Energy, Inc. Bipolar electrochmeical battery of stacked wafer cells
JP3377650B2 (en) * 1995-05-10 2003-02-17 住友金属鉱山株式会社 Method for producing metal-coated rare earth element-containing powder
JP3542501B2 (en) * 1998-06-05 2004-07-14 日本電池株式会社 Hydrogen storage electrode
US6576367B1 (en) 1998-06-26 2003-06-10 Sanyo Electric Co., Ltd. Hydrogen storage alloy for use in alkaline storage batteries and method for production thereof
JP2002033113A (en) * 1999-11-18 2002-01-31 Toyota Motor Corp Fuel gas generating device for fuel cell and composite material for hydrogen separation
US6503658B1 (en) 2001-07-11 2003-01-07 Electro Energy, Inc. Bipolar electrochemical battery of stacked wafer cells
JP6675626B1 (en) * 2019-07-12 2020-04-01 奥野製薬工業株式会社 Composition for pretreatment of electroless plating

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5045707A (en) * 1973-08-28 1975-04-24
JPS581032A (en) * 1981-06-27 1983-01-06 Nippon Steel Corp Production of hydrogen absorbing metallic material
JPS5893803A (en) * 1981-11-12 1983-06-03 テイツセン・イングウストリ−・アクチエンゲゼルシヤフト Production of press article by press-forming fregile granular alloy powder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5045707A (en) * 1973-08-28 1975-04-24
JPS581032A (en) * 1981-06-27 1983-01-06 Nippon Steel Corp Production of hydrogen absorbing metallic material
JPS5893803A (en) * 1981-11-12 1983-06-03 テイツセン・イングウストリ−・アクチエンゲゼルシヤフト Production of press article by press-forming fregile granular alloy powder

Also Published As

Publication number Publication date
JPS60190570A (en) 1985-09-28

Similar Documents

Publication Publication Date Title
KR0180769B1 (en) Diamond sintered body having strength and high wear-resistance and manufacturing method thereof
JPH0312121B2 (en)
Ishikawa et al. Preparation and properties of hydrogen storage alloy-copper microcapsules
DE60013228T3 (en) SORPTIONABLE COMPOSITE MATERIALS WHICH ARE INDEPENDENT OF ACTIVATION TREATMENTS AND MANUFACTURING METHODS
Pugh et al. Complex ions and stress-corrosion cracking in α-brass
US4473410A (en) Nuclear fuel element having a composite coating
CN101781757B (en) Method for chemically plating nano nickel particles on surface of multi-wall carbon nano tube without using palladium
JPH0350801B2 (en)
JPH0617524B2 (en) Magnesium-titanium sintered alloy and method for producing the same
CN110699676A (en) High-strength high-conductivity metal glass composite material and preparation method thereof
JP3337189B2 (en) Surface treatment method for hydrogen storage alloy material, activation method for hydrogen storage alloy electrode, activation solution, and hydrogen storage alloy electrode with excellent initial activity
Azarniya et al. High-temperature mechanisms of hydrogen evolution in Ni–P coated titanium hydride (TiH2) powder
WO2012097037A2 (en) Electroless plating bath composition and method of plating particulate matter
US20120244065A1 (en) Magnetic catalyst and method for manufacturing the same
US4621417A (en) Hydrogen-stored electrode for use in battery and manufacturing method
JPS6159241B2 (en)
JPH0443386B2 (en)
US3248787A (en) Process for the production of a gas-diffusion electrode
JPH0435874B2 (en)
JP2784231B2 (en) Pyrophoric metal foil and method for producing the same
JPH0524843B2 (en)
JPH01119501A (en) Hydrogen storage body
CN115141949B (en) Preparation method of network structure magnesium-zinc alloy
JPH0784636B2 (en) Hydrogen storage alloy
JP2000239703A (en) Manufacture of hydrogen storage alloy powder excellent in oxidation resistance

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees