JPH03109718A - Manufacture of single crystalline semiconductor thin film - Google Patents

Manufacture of single crystalline semiconductor thin film

Info

Publication number
JPH03109718A
JPH03109718A JP24846789A JP24846789A JPH03109718A JP H03109718 A JPH03109718 A JP H03109718A JP 24846789 A JP24846789 A JP 24846789A JP 24846789 A JP24846789 A JP 24846789A JP H03109718 A JPH03109718 A JP H03109718A
Authority
JP
Japan
Prior art keywords
film
silicon
amorphous
single crystal
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24846789A
Other languages
Japanese (ja)
Inventor
Noritoshi Yamaguchi
文紀 山口
Yoshiteru Nitta
新田 佳照
Kiyonari Tanaka
聖也 田中
Kenji Tomita
賢時 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP24846789A priority Critical patent/JPH03109718A/en
Publication of JPH03109718A publication Critical patent/JPH03109718A/en
Pending legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To prevent mixture of impurity for imparting adverse influence of oxygen or the other from a passivation film within a single crystallized semiconductor thin film by forming the protective film made of silicon carbide on an amorphous or polycrystalline silicon film, and emitting it with a laser light. CONSTITUTION:A base layer 2 formed on an insulating board 1 is provided to prevent contamination of a film to be single crystallized from the board 1 in the case of emitting it with a laser and to alleviate a thermal impact. Then, an amorphous silicon film 3 is formed on the layer 2 by a plasma CVD method, and a passivation film 4 made of silicon carbide is formed thereon. The film 4 is provided so as to prevent mixture of impurity from gas state with the film 3 in the case of melting and solidifying the film 3 to be single crystallized and to maintain flatness on the surface of the film 3. Thus, when the amorphous silicon film is single crystallized by emitting it with a laser light, the component of the protective film is not mixed with the surface side of the silicon film to prevent mixture of the impurity.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は単結晶半導体薄膜の製造方法に関し、特にアモ
ルファスまたは多結晶のシリコン膜にレーザ光を照射し
て単結晶化する単結晶半導体薄膜の製造方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for manufacturing a single crystal semiconductor thin film, and in particular to a method for manufacturing a single crystal semiconductor thin film in which an amorphous or polycrystalline silicon film is irradiated with a laser beam to become a single crystal. Regarding the manufacturing method.

(従来の技術) 従来から、絶縁基板上に形成したアモルファスまたは多
結晶のシリコン膜にレーザ光を照射してアモルファスま
たは多結晶のシリコン膜を溶融して固化させて単結晶化
するレーザビーム結晶化法があり、結晶欠陥や不純物の
ない良質な単結晶薄膜を作るために種々の試みが為され
ている。
(Prior art) Laser beam crystallization has conventionally been used to irradiate an amorphous or polycrystalline silicon film formed on an insulating substrate with laser light to melt and solidify the amorphous or polycrystalline silicon film to form a single crystal. Various attempts have been made to produce high quality single crystal thin films free of crystal defects and impurities.

例えば特公昭61−16758号公報には、半導体薄膜
より融点の高い材料、例えば窒化シリコンM(Si3N
4)や酸化シリコン膜(Sin2)などから成る保護膜
で覆うことにより、エネルギー線の照射中に気相中から
半導体薄膜へ不純物が混入することを防いで、良質の単
結晶薄膜を得ることが開示されている。
For example, Japanese Patent Publication No. 61-16758 describes materials with a higher melting point than semiconductor thin films, such as silicon nitride M (Si3N).
4) or a silicon oxide film (Sin2), it is possible to prevent impurities from entering the semiconductor thin film from the gas phase during energy ray irradiation and to obtain a high-quality single crystal thin film. Disclosed.

(発明が解決しようとする問題点) ところが、この従来の単結晶薄膜の製造方法では、気相
中からの不純物の混入は防ぐことができるものの、保護
膜自体が半導体膜へ混入することについては防ぐことが
できなかった。
(Problems to be Solved by the Invention) However, although this conventional single crystal thin film manufacturing method can prevent impurities from entering the gas phase, it does not prevent the protective film itself from entering the semiconductor film. Couldn't prevent it.

即ち、結晶化のためレーザビームを保護膜を通して半導
体薄膜に照射すると、レーザビームは薄膜表面で主に吸
収されるため半導体薄膜の表面近くの温度が非常に高く
なる。酸化シリコン(Si02)の融点は1610℃で
あるが、単結晶化膜の裏面側まで完全に溶融する温度ま
で加熱すると、表面側は容易に1600℃以上の温度に
達してしまう、この時半導体薄膜と酸化シリコン(Si
O2)とが反応しあい半導体膜中への酸素元素の混入が
起こる。
That is, when a semiconductor thin film is irradiated with a laser beam for crystallization through a protective film, the temperature near the surface of the semiconductor thin film becomes extremely high because the laser beam is mainly absorbed at the surface of the thin film. The melting point of silicon oxide (Si02) is 1610°C, but when heated to a temperature that completely melts the back side of a single crystallized film, the front side easily reaches a temperature of 1600°C or more. and silicon oxide (Si
O2) reacts with each other, resulting in the mixing of oxygen elements into the semiconductor film.

第1図に、アモルファスシリコン股上に保護膜として膜
厚が500人の酸化けい素(SiO2)膜を形成してレ
ーザ光を照射することにより、アモルファスシリコン膜
を単結晶化した場合のシリコン単結晶薄膜の厚さ方向の
酸素元素の濃度分布をxps <X線光電子分光)で調
べた結果を示す。
Figure 1 shows the formation of a silicon single crystal by forming a silicon oxide (SiO2) film with a thickness of 500 nm on the amorphous silicon as a protective film and irradiating the amorphous silicon film with laser light. The results of examining the concentration distribution of oxygen element in the thickness direction of the thin film using xps (X-ray photoelectron spectroscopy) are shown.

尚、試料は87059基板上に、厚さ0.5μmの酸化
シリコン膜、厚さ0.5μmのアモルファスシリコン膜
、及び厚さ0.05μmの酸化シリコンからなる保護膜
を形成したものである。
In the sample, a 0.5 μm thick silicon oxide film, a 0.5 μm thick amorphous silicon film, and a 0.05 μm thick silicon oxide protective film were formed on an 87059 substrate.

第1図で明らかなように、表面から1900人の深さに
わたって多量の酸素元素の混入が確認される。一方、基
板側からの酸素元素の混入はない。
As is clear from FIG. 1, a large amount of oxygen element is found mixed in from the surface to a depth of 1,900 people. On the other hand, there is no mixing of oxygen element from the substrate side.

これは基板側のシリコン膜は、レーザ光によって直接は
加熱されないため酸化シリコン(Sin、、)膜の融点
以上には上がりにくいためである。このような酸素元素
の混入した半導体結晶化膜に薄膜トランジスタを形成し
てキャリアの移動度を調べると、酸素元素の混入したシ
リコン半導体膜では9cm2/Vsecとなり、酸素元
素の混入しないシリコン半導体膜で形成した場合の40
 c m2/ V s e cに比べて極めて遅い。こ
のことにより酸素元素の混入が半導体膜の特性に多大な
る悪影響を与えることがわかる。
This is because the silicon film on the substrate side is not directly heated by the laser beam, so it is difficult to heat the silicon film above the melting point of the silicon oxide (Sin, . . .) film. When a thin film transistor is formed in such a semiconductor crystallized film mixed with oxygen element and the carrier mobility is investigated, it is 9 cm2/Vsec in the silicon semiconductor film mixed with oxygen element, and it is found that it is 9 cm2/Vsec in the silicon semiconductor film mixed with oxygen element, and it is found that it is 9 cm2/Vsec in the silicon semiconductor film mixed with oxygen element. 40 in case
It is extremely slow compared to cm2/Vsec. This shows that the mixing of oxygen element has a great negative effect on the characteristics of the semiconductor film.

また、窒化シリコン(s li Na )は、融点は高
いもののシリコンとの濡れ性がよく(溶融シリコンと溶
融窒化シリコンの接触角は27度)、シリコン膜が加熱
された際に、窒素元素がシリコン膜中に拡散しやすいと
いう問題がある。
In addition, although silicon nitride (sliNa) has a high melting point, it has good wettability with silicon (the contact angle between molten silicon and molten silicon nitride is 27 degrees), and when the silicon film is heated, nitrogen elements are mixed with silicon. There is a problem that it easily diffuses into the film.

(発明の目的) 本発明は、このような問題点に鑑みて案出されたもので
あり、単結晶化した半導体薄膜中に酸素やその他の悪影
響を与える不純物が保護膜から混入することのない単結
晶薄膜の製造方法を提供することを目的とするものであ
る。
(Purpose of the Invention) The present invention was devised in view of the above-mentioned problems, and is an object of the present invention to prevent oxygen and other impurities that have an adverse effect from entering a single crystal semiconductor thin film from a protective film. The object of the present invention is to provide a method for manufacturing a single crystal thin film.

(問題点を解決するための手段) 本発明によれば、透明絶縁基板上に形成したアモルファ
スまたは多結晶のシリコン膜にレーザ光を照射して溶融
して固化させることにより単結晶化する単結晶半導体薄
膜の製造方法において、前記アモルファスまたは多結晶
のシリコン股上に、炭化シリコンからなる保護膜を形成
してレーザ光を照射することを特徴とする単結晶半導体
薄膜の製造方法が提供される。
(Means for Solving the Problems) According to the present invention, a single crystal is formed by irradiating an amorphous or polycrystalline silicon film formed on a transparent insulating substrate with laser light to melt and solidify it. A method for manufacturing a single crystal semiconductor thin film is provided, which comprises forming a protective film made of silicon carbide on the amorphous or polycrystalline silicon layer and irradiating it with laser light.

(作用) 上述のように構成することによって、レーザ光が照射さ
れても、アモルファスシリコン股上に形成された保護膜
の成分がアモルファスシリコン膜に混入することがない
(Function) By configuring as described above, even when laser light is irradiated, the components of the protective film formed on the amorphous silicon film will not be mixed into the amorphous silicon film.

(実施例) 以下、本発明を添付図面に基づき詳細に説明する。(Example) Hereinafter, the present invention will be explained in detail based on the accompanying drawings.

第2図(掲〜(ハ)は本発明に係る単結晶半導体薄膜の
製造方法を示す工程図である。
FIGS. 2A to 2C are process diagrams showing a method for manufacturing a single crystal semiconductor thin film according to the present invention.

まず、絶縁基板1を用意する(第2図(a>)、絶縁基
板1としては、#7059ガラス、石英基板等が好適に
用いられる。上述の絶縁基板1を化学的に洗浄する。
First, an insulating substrate 1 is prepared (FIG. 2(a)). As the insulating substrate 1, #7059 glass, a quartz substrate, etc. are suitably used. The above-mentioned insulating substrate 1 is chemically cleaned.

次に、前記絶縁基板1上に下地層2を形成する(第2図
((へ))、この下地層2は、レーザを照射した際に、
後述する被単結晶化膜が絶縁基板1がら汚染されるのを
防止したり、熱衝撃を緩和するために設けられる。こよ
うな下地層2としては、例えば炭化シリコン(SiC)
膜、窒化シリコン(Si3N4)膜、酸化シリコン(S
i02)膜、酸化アルミニウム(Al2O2)膜等があ
る。この下地層2を炭化シリコン(SiC)膜、窒化シ
リコン(Si3N4)膜、酸化シリコン(SiO2)膜
で形成する場合は、例えばプラズマCVD法で厚み1μ
m程度に形成され、酸化シリコン膜で形成する場合は、
スパッタリング法で厚み1μm程度に形成される。
Next, a base layer 2 is formed on the insulating substrate 1 (see FIG. 2), and when irradiated with a laser, this base layer 2
It is provided to prevent a film to be single-crystallized, which will be described later, from being contaminated by the insulating substrate 1 and to alleviate thermal shock. Such a base layer 2 is made of silicon carbide (SiC), for example.
film, silicon nitride (Si3N4) film, silicon oxide (S
i02) film, aluminum oxide (Al2O2) film, etc. When forming the base layer 2 with a silicon carbide (SiC) film, a silicon nitride (Si3N4) film, or a silicon oxide (SiO2) film, for example, a thickness of 1 μm is formed using a plasma CVD method.
When formed with a silicon oxide film,
It is formed to a thickness of about 1 μm using a sputtering method.

前記下地層2上に、アモルファスシリコン膜3をプラズ
マCVD法にて0.05〜2μmの厚さに形成する(第
2図〈C))。
An amorphous silicon film 3 is formed on the base layer 2 by plasma CVD to a thickness of 0.05 to 2 μm (FIG. 2 (C)).

このアモルファスシリコン膜3上に、保護膜4を形成す
る(第2図(c))。
A protective film 4 is formed on this amorphous silicon film 3 (FIG. 2(c)).

この保護膜4は、アモルファスシリコン膜3を溶融・固
化させて単結晶化する際に、気相中からシリコン膜3に
不純物が混入するのを防止したり、シリコン膜3の表面
が平坦度を維持できるようにするために設ける。
This protective film 4 prevents impurities from entering the silicon film 3 from the gas phase when the amorphous silicon film 3 is melted and solidified to become a single crystal, and prevents the surface of the silicon film 3 from flattening. Established to enable maintenance.

この炭化シリコン膜を例えばプラズマCVD法で形成す
る場合は、基板温度を150〜600℃、好適には50
0℃近傍に維持して、シランガス(SiH4)を2〜l
O105c程度、またメンタンガス(CH4)を100
〜500secm程度流すことによって形成する。尚、
シランガスとメタンガスの流量比(CH4/ S i 
Ha )は、5〜50程度とすることが望ましい、また
、プラズマCVD装置の放電用電源は50〜300W程
度が望ましい、また、緻密質の炭化シリコン膜を得るた
めには、厚みを10μm以下にすることが望ましい。
When forming this silicon carbide film by, for example, plasma CVD, the substrate temperature is 150 to 600°C, preferably 50°C.
Maintaining the temperature near 0℃, add 2 to 1 liters of silane gas (SiH4).
About 105c of O, and 100% of menthane gas (CH4)
It is formed by flowing for about 500 seconds. still,
Flow rate ratio of silane gas and methane gas (CH4/Si
Ha ) is desirably about 5 to 50, and the discharge power source of the plasma CVD device is desirably about 50 to 300 W. In addition, in order to obtain a dense silicon carbide film, the thickness should be 10 μm or less. It is desirable to do so.

次ぎに、レーザで溶融・固化させる際にアモルファスシ
リコン膜が剥離したりするのを防止するために、600
℃程度の温度で2時間程度維持して脱水素処理を行う(
第2図(イ))。
Next, in order to prevent the amorphous silicon film from peeling off when melting and solidifying with a laser, 600
Dehydrogenation treatment is carried out by maintaining the temperature at about ℃ for about 2 hours (
Figure 2 (a)).

このようにして用意した試料に透明絶縁基板1側から0
.1〜20Wの出力の連続波アルゴンレーザを走査速度
0−5〜20cm/secで照射してアモルファスシリ
コン膜3を溶融・固化させて単結晶化する(第2図(Q
)、尚、レーザは、絶縁基板1側から照射してもよく、
また保護膜4側から照射してもよい、レーザを絶縁基板
1側から照射する場合は、絶縁基板1と下地層2はレー
ザ光を透過するものでなければならない。
From the transparent insulating substrate 1 side to the sample prepared in this way,
.. A continuous wave argon laser with an output of 1 to 20 W is irradiated at a scanning speed of 0 to 5 to 20 cm/sec to melt and solidify the amorphous silicon film 3 to form a single crystal (see Fig. 2 (Q).
), the laser may be irradiated from the insulating substrate 1 side,
Further, the laser beam may be irradiated from the protective film 4 side. When the laser beam is irradiated from the insulating substrate 1 side, the insulating substrate 1 and the base layer 2 must be able to transmit the laser beam.

この場合、保護膜2が、高融点の炭化シリコン膜で構成
されることから、保護膜2自体が軟化したり、保all
!2の成分がアモルファスシリコン膜3に混入すること
はない。
In this case, since the protective film 2 is composed of a silicon carbide film with a high melting point, the protective film 2 itself may become soft or
! The component No. 2 does not mix into the amorphous silicon film 3.

第3図は、#7059基板に厚み15000人の酸化シ
リコン膜、厚み5000人のアモルファスシリコン膜、
及び厚み500人の炭化シリコン膜を順次積層してCW
アルゴンレーザを照射して単結晶化した後、単結晶化膜
の酸素元素の混入状態をXPSで調べたものである。第
3図で明らかなように、表面側の500人程度まで若干
酸素元素の混入が認められるもののその他の部分では酸
素元素は全く認められず、良好な単結晶であることがわ
かる。
Figure 3 shows a #7059 substrate with a 15,000-thick silicon oxide film, a 5,000-thick amorphous silicon film,
CW by sequentially stacking silicon carbide films with a thickness of 500 mm.
After single crystallization by irradiation with argon laser, the mixed state of oxygen element in the single crystallized film was examined by XPS. As is clear from FIG. 3, although some oxygen element is observed up to about 500 layers on the surface side, no oxygen element is observed in other parts, indicating that the crystal is a good single crystal.

また、このようにして形成された単結晶シリコン薄膜3
°に例えばトランジスタ等を形成する場合、第2図(0
に示すように、炭化シリコンからなる保護膜4と単結晶
化した半導体膜3′の表面部分をプラズマエツチングし
て、単結晶化した半導体膜3′の表面部分にトランジス
タを形成すればよい、すなわち、アモルファスシリコン
膜3内に予め一導電型不純物を混入させて単結晶化して
、表面部に逆導電型不純物を含有する半導体膜を堆積し
て半導体接合部を形成すれば良い。
Moreover, the single crystal silicon thin film 3 formed in this way
For example, when forming a transistor etc. at
As shown in FIG. 3, a transistor may be formed on the surface of the single-crystal semiconductor film 3' by plasma etching the protective film 4 made of silicon carbide and the surface of the single-crystal semiconductor film 3'. , an impurity of one conductivity type may be mixed into the amorphous silicon film 3 in advance to form a single crystal, and a semiconductor film containing an impurity of the opposite conductivity type may be deposited on the surface portion to form a semiconductor junction.

尚、上記実施例では、アモルファスシリコン膜3を単結
晶化させることについて説明したが、多結晶シリコン膜
であっても全く同様に単結晶化させることができる。
In the above embodiment, the amorphous silicon film 3 is made into a single crystal, but even a polycrystalline silicon film can be made into a single crystal in exactly the same way.

(発明の効果) 以上のように、本発明に係る単結晶薄膜の製造方法によ
れば、アモルファスまたは多結晶のシリコン股上に炭化
シリコン膜からなる保護膜を形成してレーザ光を照射す
ることから、アモルファス又は多結晶のシリコン膜を単
結晶化する際に、保護膜の成分がシリコン膜の表面側に
も混入することがなく、不純物をほとんど含有しない良
質の単結晶半導体薄膜を形成でき、キャリアの移動度が
速い高特性の薄膜トランジスタを形成ることができる。
(Effects of the Invention) As described above, according to the method for producing a single crystal thin film according to the present invention, a protective film made of a silicon carbide film is formed on an amorphous or polycrystalline silicon crotch, and laser light is irradiated. When converting an amorphous or polycrystalline silicon film into a single crystal, the components of the protective film do not mix into the surface side of the silicon film, making it possible to form a high-quality single-crystal semiconductor thin film containing almost no impurities. A thin film transistor with high characteristics and high mobility can be formed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の方法により単結晶化したシリコン膜中の
厚み方向の酸素元素分布を示す図、第2図(a)〜(0
はそれぞれ本発明に係る単結晶薄膜の製造方法を説明す
るための工程図、第3図は本発明に係る方法により単結
晶化したシリコン膜中の厚み方向の酸素元素の分布を示
す図である。 1、透明絶縁基板 3、 アモルファス又は多結晶のシリコン膜 4、保設膜
Figure 1 is a diagram showing the oxygen element distribution in the thickness direction in a silicon film made into a single crystal by the conventional method, and Figure 2 (a) to (0
3 are process diagrams for explaining the method for producing a single crystal thin film according to the present invention, and FIG. 3 is a diagram showing the distribution of oxygen elements in the thickness direction in a silicon film single crystallized by the method according to the present invention. . 1. Transparent insulating substrate 3. Amorphous or polycrystalline silicon film 4. Storage film

Claims (1)

【特許請求の範囲】[Claims] (1)透明絶縁基板上に形成したアモルファスまたは多
結晶のシリコン膜にレーザ光を照射して溶融・固化させ
ることにより単結晶化する単結晶半導体薄膜の製造方法
において、 前記アモルファスまたは多結晶のシリコン膜上に、炭化
シリコンからなる保護膜を形成してレーザ光を照射する
ことを特徴とする単結晶半導体薄膜の製造方法。
(1) A method for producing a single crystal semiconductor thin film in which an amorphous or polycrystalline silicon film formed on a transparent insulating substrate is made into a single crystal by irradiating laser light to melt and solidify the amorphous or polycrystalline silicon film, wherein the amorphous or polycrystalline silicon film is made into a single crystal. A method for producing a single crystal semiconductor thin film, which comprises forming a protective film made of silicon carbide on the film and irradiating it with laser light.
JP24846789A 1989-09-25 1989-09-25 Manufacture of single crystalline semiconductor thin film Pending JPH03109718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24846789A JPH03109718A (en) 1989-09-25 1989-09-25 Manufacture of single crystalline semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24846789A JPH03109718A (en) 1989-09-25 1989-09-25 Manufacture of single crystalline semiconductor thin film

Publications (1)

Publication Number Publication Date
JPH03109718A true JPH03109718A (en) 1991-05-09

Family

ID=17178577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24846789A Pending JPH03109718A (en) 1989-09-25 1989-09-25 Manufacture of single crystalline semiconductor thin film

Country Status (1)

Country Link
JP (1) JPH03109718A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001061734A1 (en) * 2000-02-15 2001-08-23 Matsushita Electric Industrial Co., Ltd. Non-single crystal film, substrate with non-single crystal film, method and apparatus for producing the same, method and apparatus for inspecting the same, thin film transistor, thin film transistor array and image display using it
CN103978746A (en) * 2014-05-06 2014-08-13 上海天马有机发光显示技术有限公司 Film and preparation method thereof, display panel and display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001061734A1 (en) * 2000-02-15 2001-08-23 Matsushita Electric Industrial Co., Ltd. Non-single crystal film, substrate with non-single crystal film, method and apparatus for producing the same, method and apparatus for inspecting the same, thin film transistor, thin film transistor array and image display using it
CN103978746A (en) * 2014-05-06 2014-08-13 上海天马有机发光显示技术有限公司 Film and preparation method thereof, display panel and display device

Similar Documents

Publication Publication Date Title
CA1259426A (en) Method of producing soi devices
JPH0343769B2 (en)
JPH03109718A (en) Manufacture of single crystalline semiconductor thin film
JPH0411722A (en) Forming method of semiconductor crystallized film
JPS63299322A (en) Formation of single crystal silicon film
JPH0388323A (en) Manufacture of single crystal semiconductor thin film
JPH02295111A (en) Manufacture of semiconductor device having thin film crystal layer
JP2799888B2 (en) Method for manufacturing semiconductor device
US5275843A (en) Manufacture of β-BaB2 O4 film by a sol-gel method
JPH03116923A (en) Manufacture of semiconductor thin film
US6794274B2 (en) Method for fabricating a polycrystalline silicon film
JP2779033B2 (en) Method for growing polycrystalline Si thin film
JPH07106246A (en) Formation of polycrystalline silicon thin film
JP2550998B2 (en) Method for forming single crystal silicon film
JPS6038809A (en) Manufacture of semiconductor device
JPH03116924A (en) Manufacture of single crystal semiconductor thin film
Leamy et al. Nucleation‐controlled overgrowth of silicon on silica
JPS5919312A (en) Manufacture of semiconductor device
JPS6351370B2 (en)
JPH0485923A (en) Forming method of semiconductor thin film
JPH0335551A (en) Semiconductor film and its formation
JPH0324736A (en) Forming method of semiconductor thin film
JPS63142810A (en) Manufacture of semiconductor device
JPS5919311A (en) Manufacture of semiconductor device
JPH05315362A (en) Manufacture of semiconductor device and liquid crystal display device