JPH03109129A - Mounting structure of metal halide battery for vehicle - Google Patents

Mounting structure of metal halide battery for vehicle

Info

Publication number
JPH03109129A
JPH03109129A JP1245752A JP24575289A JPH03109129A JP H03109129 A JPH03109129 A JP H03109129A JP 1245752 A JP1245752 A JP 1245752A JP 24575289 A JP24575289 A JP 24575289A JP H03109129 A JPH03109129 A JP H03109129A
Authority
JP
Japan
Prior art keywords
battery
batteries
positive electrode
bromine
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1245752A
Other languages
Japanese (ja)
Inventor
Masayuki Furuya
昌之 古谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP1245752A priority Critical patent/JPH03109129A/en
Publication of JPH03109129A publication Critical patent/JPH03109129A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Hybrid Cells (AREA)

Abstract

PURPOSE:To secure the stable operation by maintaining the liquid level of a complex compound always horizontal by arranging a plurality of metal halide batteries in which complex compound circulates in a positive electrode side reaction chamber in which electrolytic liquid circulates, and arranging the batteries in deflection by a prescribed angle. CONSTITUTION:When the front part of the car body 30 of an electric automobile is arranged in the direction of arrow 200, the front and rear wheels 32 and 34 on the right and left sides in pairs are arranged. In this case, two of unit lamination type (bipolar type) batteries 36 and 38 as zinc bromine batteries are mounted on the car body 30. One battery 36 is arranged on an axle, and the other battery 38 is arranged in the direction perpendicular to the axle, and each angle is deflected by 90 deg. each other. Further, each battery 36, 38 is constituted by arranging a negative electrode liquid storage tank 20 and a positive electrode liquid storage tank 22, having a stuck (reaction tank part) 39 at the center. The liquid level of the bromine complex compound is maintained always horizontal in either of the batteries 36 and 38, and the feed of electric power is stabilized.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は車両用金属ハロゲン電池の搭載構造、特に錯化
合物を循環させる金属ハロゲン電池の搭載構造に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a mounting structure for a metal halogen battery for a vehicle, and particularly to a mounting structure for a metal halogen battery that circulates a complex compound.

[従来の技術] 電気自動車の電源用として、蓄積エネルギの大きい電解
液循環式の金属ハロゲン電池が用いられており、例えば
亜鉛(Zn)−臭素(B「)の電池が周知である。
[Prior Art] As a power source for electric vehicles, metal halogen batteries of an electrolyte circulation type that can store a large amount of energy are used, and for example, zinc (Zn)-bromine (B'') batteries are well known.

第3図には、従来の亜鉛−臭素電池の概要が示されてお
り、反応槽10には負極12a及び正極12bが両端に
配置され、この画電極12の間にはセパレータ14が設
けられ、このセパレータ14により負極反応室16と正
極反応室18が分離形成されている。
FIG. 3 shows an outline of a conventional zinc-bromine battery, in which a negative electrode 12a and a positive electrode 12b are arranged at both ends of a reaction tank 10, and a separator 14 is provided between the picture electrodes 12. A negative electrode reaction chamber 16 and a positive electrode reaction chamber 18 are separated by this separator 14 .

そして、この負極反応室16には負極液貯蔵槽20から
負極電解液がポンプ24により循環され、一方正極反応
室18には正極液貯蔵槽22から正極電解液がポンプ2
6により循環されている。この場合、正極液貯蔵槽22
内には臭素錯化合物(臭素錯体)を貯蔵する錯体貯蔵槽
28が設けられており、この臭素錯体はバルブ30によ
り適当な時期に正極電解液中に混合される。前記正極電
解液には四級アンモニウム塩などの錯化剤が加えられて
おり、この錯化剤は臭素と反応して電解液に不溶でかつ
電解液よりも比重の大きい前記臭素錯体を形成しており
、この臭素錯体により効率のよい電力を供給するように
している。
The negative electrode electrolyte is circulated into the negative electrode reaction chamber 16 from the negative electrode liquid storage tank 20 by the pump 24, while the positive electrode electrolyte is circulated into the positive electrode reaction chamber 18 from the positive electrode liquid storage tank 22 by the pump 24.
It is circulated by 6. In this case, the positive electrode liquid storage tank 22
A complex storage tank 28 for storing a bromine complex is provided therein, and the bromine complex is mixed into the positive electrode electrolyte at an appropriate time by a valve 30. A complexing agent such as a quaternary ammonium salt is added to the positive electrode electrolyte, and this complexing agent reacts with bromine to form the bromine complex that is insoluble in the electrolyte and has a higher specific gravity than the electrolyte. This bromine complex provides efficient power supply.

このような亜鉛−臭素電池によれば、放電時では正極1
2b側において、臭素錯体によって臭素が供給されなが
ら臭素B r 2がB「 イオンに、負極12a側では
Zn  がZn2+になるので、電極から所定の電流を
取り出すことができる。なお、充電時においては前記と
逆の反応が行われ、臭素イオンは臭素錯体となって錯体
貯蔵槽28に貯蔵される。
According to such a zinc-bromine battery, during discharge, the positive electrode 1
On the 2b side, bromine B r 2 becomes B' ions while bromine is supplied by the bromine complex, and on the negative electrode 12a side, Zn becomes Zn2+, so a predetermined current can be taken out from the electrode. A reaction opposite to the above is performed, and the bromine ions become a bromine complex and are stored in the complex storage tank 28.

[発明が解決しようとする課題] しかしながら、従来における充電式の金属ハロゲン電池
では、車両の運動に伴う電解液中の成分の流動状態には
着目されておらず、必ずしも電気エネルギを効率よく取
り出す構造とはなっていない。
[Problems to be Solved by the Invention] However, conventional rechargeable metal halogen batteries do not pay attention to the flow state of components in the electrolyte as the vehicle moves, and do not necessarily have a structure that efficiently extracts electrical energy. It is not.

すなわち、前記正極電解液中の臭素錯体は粒子状で比重
が電解液よりも大きく、電解液と比較すると2〜3倍も
あるため、車両の動きに応じて移動することになる。例
えば、加速時や登板時では電解液中の臭素錯体が正極反
応室18の後側に片寄り、減速時や降板時では臭素錯体
が前側に片寄ることになる。また、カーブなどの旋回時
においても同様であり、右旋回時では正極反応室18の
左側に、左旋回時では正極反応室18の右側に片寄るこ
とになる。従って、電池の搭載方向がある方向に限定さ
れていると効率よく電池エネルギを使うことができず、
電池寿命も短くなるという問題があった。
That is, the bromine complex in the positive electrode electrolyte is in the form of particles and has a specific gravity larger than that of the electrolyte, which is two to three times as large as that of the electrolyte, so that it moves according to the movement of the vehicle. For example, during acceleration or climbing, the bromine complex in the electrolyte is biased toward the rear of the positive electrode reaction chamber 18, and during deceleration or descending, the bromine complex is biased toward the front. The same holds true when turning around a curve, etc. When turning to the right, it will be biased to the left side of the positive electrode reaction chamber 18, and when turning to the left, it will be biased to the right side of the positive electrode reaction chamber 18. Therefore, if the mounting direction of the battery is limited to a certain direction, battery energy cannot be used efficiently.
There was also a problem that the battery life was shortened.

本発明は前記問題点を解決するためになされたものであ
り、その目的は、車両の運動を考慮して効率のよい電池
エネルギを得ることができる車両用金属ハロゲン電池の
搭載構造を提供することにある。
The present invention has been made to solve the above-mentioned problems, and its purpose is to provide a mounting structure for a metal halogen battery for a vehicle that can obtain efficient battery energy by taking into consideration the movement of the vehicle. It is in.

[課題を解決するための手段] 前記目的を達成するために、本発明は、電解液が循環す
る正極側反応室及び負極側反応室を有し、正極側反応室
には錯化合物を循環させる金属ハロゲン電池を2個以上
設け、これら金属ハロゲン電池同士を所定の角度ずらし
て配設するようにした構成となっている。
[Means for Solving the Problems] In order to achieve the above object, the present invention has a positive electrode side reaction chamber and a negative electrode side reaction chamber in which an electrolytic solution circulates, and a complex compound is circulated in the positive electrode side reaction chamber. The structure is such that two or more metal halogen batteries are provided and these metal halogen batteries are shifted from each other by a predetermined angle.

[作用] 前記構成によれば、金属ハロゲン電池同士を例えば90
度ずらし、一方は車両軸に平行に又は軸上に配設し、他
方を車両軸に直角に配設することができる。そうすると
、加速時や登板時あるいは減速時や降板時に、慣性力又
は車両の傾きによって車両軸と直角に設けられた電池の
正極電解液中の錯化合物、例えば臭素錯体が正極と反対
側に片寄ることになった場合でも、もう一方の電池では
臭素錯体の片寄りがないので、電池全体で効率よく電池
反応を行わせることができる。
[Function] According to the above configuration, the metal halogen batteries are connected to each other, for example, at 90°C.
one can be arranged parallel to or on the axis of the vehicle and the other at right angles to the axis of the vehicle. Then, when accelerating, climbing, decelerating, or dismounting, complex compounds, such as bromine complexes, in the positive electrode electrolyte of the battery installed perpendicular to the vehicle axis may shift to the side opposite to the positive electrode due to inertia or the tilt of the vehicle. Even if this occurs, the bromine complex is not distributed in the other battery, so the battery reaction can be carried out efficiently in the entire battery.

また、旋回時においても同様であり、この場合には車両
軸に平行に設けられた電池の臭素錯体の片寄りが生じる
が、もう一方の電池の片寄りはないので、電池全体で効
率よく電池反応が行われる。
The same thing happens when turning. In this case, the bromine complex of the battery installed parallel to the vehicle axis is biased, but the other battery is not biased, so the entire battery is efficiently used. A reaction takes place.

このようにして、電池の負荷を複数の電池に分散させる
ことができるので、急激な負荷による温度の上昇をなく
すことができ、電池の温度特性が向上し、更に負荷が分
散されることによって電池の寿命が伸びることにもつな
がる。
In this way, the load on the battery can be distributed among multiple batteries, which eliminates temperature rises caused by sudden loads, improving the temperature characteristics of the battery, and further distributing the load. It also leads to a longer lifespan.

[実施例] 以下、図面に基づいて本発明の実施例を詳細に説明する
[Example] Hereinafter, an example of the present invention will be described in detail based on the drawings.

第1図には、実施例の車両用金属ハロゲン電池の搭載構
造が示されており、電気自動車の車両本体30を矢示2
00の車両前方方向に置くと、前輪32と後輪34が図
のように配置される。そして、亜鉛臭素電池であるユニ
ット積層型(バイポーラ型)のバッテリ36.38が2
個搭載されており、バッテリ36は車両軸上に、バッテ
リ38は車両軸と直角の方向に、互いに90度ずらせて
配設する。なお、このバッテリ36.38には、図示さ
れていないが、バッテリ直流を交流に変換するPCU 
(パワーコントロールユニット)を介してモータ減速機
が設けられ、また車両、前記PCUの制御や、バッテリ
36.38の電解液循環制御などを行うECU (電子
制御ユニット)が設けられる。
FIG. 1 shows a mounting structure for a metal halogen battery for a vehicle according to an embodiment, and a vehicle main body 30 of an electric vehicle is indicated by an arrow 2.
00, the front wheels 32 and rear wheels 34 are arranged as shown in the figure. Then, 36.38 units of unit stacked type (bipolar type) batteries, which are zinc bromine batteries, are 2
The battery 36 is disposed on the vehicle axis, and the battery 38 is disposed in a direction perpendicular to the vehicle axis, offset by 90 degrees from each other. Although not shown, the batteries 36 and 38 include a PCU that converts battery direct current into alternating current.
A motor speed reducer is provided via a power control unit (power control unit), and an ECU (electronic control unit) is provided which controls the vehicle, the PCU, electrolyte circulation control of the batteries 36, 38, and the like.

前記バッテリ36.38は、スタック(反応槽部分)3
9を中心として負極液貯蔵槽20と正極液貯蔵槽22が
配置される構成となる。
The batteries 36 and 38 are connected to the stack (reaction tank part) 3
The configuration is such that a negative electrode liquid storage tank 20 and a positive electrode liquid storage tank 22 are arranged with 9 at the center.

第2図には、第1図に示されるスタック39の詳細な構
成が示されており、図において、枠内にセパレータ14
を有するセパレータ板40と枠内に電極を有する極板4
2とを交互に積層し、上端を2個のエンドブロック46
で連結する構成となっている。
FIG. 2 shows a detailed configuration of the stack 39 shown in FIG.
a separator plate 40 having a
2 are stacked alternately, and the upper end is covered with two end blocks 46.
The configuration is such that they are connected.

ここで、極板42の電極部の両側面がそれぞれ正極12
b、負極12aを構成する。
Here, both sides of the electrode portion of the electrode plate 42 are connected to the positive electrode 12, respectively.
b, constitutes the negative electrode 12a.

これによれば、臭素錯体を含む正極電解液はセパレータ
板40と極板42の一方側との間を、負極電解液はセパ
レータ板40と極板42の他方側との間を循環すること
になる。
According to this, the positive electrode electrolyte containing the bromine complex circulates between the separator plate 40 and one side of the electrode plate 42, and the negative electrode electrolyte circulates between the separator plate 40 and the other side of the electrode plate 42. Become.

このようなスタック39の構成によれば、正極反応室1
8中に存在する臭素錯体が正極12b側に移動して臭素
錯体の濃度が高くなると、臭素B r 2から臭素イオ
ンB「 への変換がより多く行われバッテリ全体の電流
値が高くなってエネルギ効率がよ(なるが、逆に臭素錯
体が正極12bの反対側に移動して臭素錯体の濃度が低
くなると、電池エネルギの供給能力は低下する。
According to such a configuration of the stack 39, the positive electrode reaction chamber 1
When the bromine complex present in 8 moves to the positive electrode 12b side and the concentration of the bromine complex increases, more bromine B r 2 is converted to bromine ion B' , and the current value of the entire battery increases, increasing energy. Although the efficiency is improved, conversely, when the bromine complex moves to the opposite side of the positive electrode 12b and the concentration of the bromine complex decreases, the battery energy supply capacity decreases.

しかし、本発明では2個以上の電池を設けて他方の電池
能力の低下を補うようにしているので、電池エネルギを
安定して供給できる。すなわち、減速時や降板時に、慣
性力又は車両の傾きによって車両軸と直角に設けられた
バッテリ38の正極電解液中の臭素錯体が正極12bと
反対側に片寄ることになった場合でも、もう一方のバッ
テリ36では臭素錯体の片寄りがないので、電池全体で
効率よく電池反応を行わせることができる。
However, in the present invention, since two or more batteries are provided to compensate for the decrease in the capacity of the other battery, battery energy can be stably supplied. In other words, even if the bromine complex in the positive electrode electrolyte of the battery 38, which is installed perpendicular to the vehicle axis, is biased toward the opposite side of the positive electrode 12b due to inertia or vehicle tilt during deceleration or exit, the other side In the battery 36, since the bromine complex is not unevenly distributed, the battery reaction can be carried out efficiently throughout the battery.

また、旋回時においては、車両軸に平行に設けられたバ
ッテリ36の臭素錯体の片寄りが生じるが、もう一方の
バッテリ38では臭素錯体の片寄りがないので、電池全
体で効率よ(電池反応を行わせることができる。、 前記実施例では、バッテリ同士を90度ずらすようにし
たが、この角度は90度に限らずその他の角度とするこ
とができ、2個のバッテリを配設する場合には60度か
ら90度程度の角度が好適である。
Also, when turning, the bromine complex in the battery 36, which is installed parallel to the vehicle axis, shifts to one side, but in the other battery 38, the bromine complex does not shift to one side, so the efficiency of the entire battery is improved (battery reaction In the above embodiment, the batteries are shifted by 90 degrees, but this angle is not limited to 90 degrees, but can be set to other angles, and when two batteries are arranged, An angle of about 60 degrees to 90 degrees is suitable.

また、実施例では2個のバッテリ36.38について説
明したが、3個以上のバッテリを所定角度ずつずらせて
配設するようにしてもよい。
Further, in the embodiment, two batteries 36 and 38 have been described, but three or more batteries may be arranged offset by a predetermined angle.

更に、前記バッテリ36.38の電気的接続は直列でも
並列でもよく、直列接続の場合は電圧差が補償され、並
列接続の場合は電流差が補償されることになる。
Furthermore, the electrical connection of the batteries 36, 38 may be in series or in parallel, with a series connection compensating for voltage differences and a parallel connection compensating for current differences.

また、前記実施例において、車両軸と直角方向に設ケた
バッテリ38について正極反応室18及び正極液貯蔵槽
22を車両後方に配置することも好適である。
Further, in the embodiment described above, it is also preferable that the positive electrode reaction chamber 18 and the positive electrode liquid storage tank 22 be arranged at the rear of the vehicle with respect to the battery 38 installed perpendicularly to the vehicle axis.

すなわち、加速時や登板時には慣性力により又は車両の
傾きにより、正極反応室18中に存在する臭素錯体が正
極12b側に移動して臭素錯体の濃度が高くなる。従っ
て、臭素B r 2から臭素イオンBr−への変換がよ
り多く行われ、加速時や登板時において、急激に必要と
なる電力を良好に補い、効率よく電池エネルギを供給す
ることが可能となる。一方、回生制動における減速時に
おいては、臭素錯体が慣性力により又は車両の傾きによ
り前側へ移動して正極12bの表面での濃度が低下する
ので、臭素イオンB「 から臭素B r 2の錯体への
変換が効率よく行われることになる。
That is, when accelerating or climbing, the bromine complex present in the positive electrode reaction chamber 18 moves toward the positive electrode 12b due to inertial force or the tilt of the vehicle, increasing the concentration of the bromine complex. Therefore, more conversion of bromine Br2 to bromine ion Br- is carried out, making it possible to adequately compensate for the power that is suddenly required during acceleration or pitching, and to efficiently supply battery energy. . On the other hand, during deceleration during regenerative braking, the bromine complex moves forward due to inertia or the tilt of the vehicle and the concentration on the surface of the positive electrode 12b decreases, so that the bromine ion B' is converted into the bromine B r 2 complex. The conversion will be performed efficiently.

そして、旋回時にはバッテリ36のエネルギ供給能力の
低下をバッテリ38にて補償することができ、全体とし
て効率を上げることが可能となる。
During turning, the battery 38 can compensate for the decrease in the energy supply capacity of the battery 36, making it possible to improve the efficiency as a whole.

[発明の効果] 以上説明したように、本発明によれば、金属ハロゲン電
池を2個以上設け、これら金属ハロゲン電池同士を所定
の角度ずらして配設するようにしたので、車両の運動に
より生じる供給エネルギのアンバランスを良好に補い、
電池全体で効率よく電池エネルギを供給することができ
る。
[Effects of the Invention] As explained above, according to the present invention, two or more metal halogen batteries are provided and these metal halogen batteries are arranged with a predetermined angle shifted from each other. Goodly compensates for the imbalance in supplied energy,
Battery energy can be efficiently supplied by the entire battery.

また、電池の負荷を分散させる役目をすることができ、
急激な負荷による温度の上昇をなくすことができ、電池
の温度特性が向上するという利点があり、更に負荷が分
散されることによって電池の寿命が延びるという効果が
ある。
It can also serve to distribute the load on the battery,
This has the advantage that temperature increases due to sudden loads can be eliminated and the temperature characteristics of the battery are improved, and furthermore, the life of the battery can be extended by distributing the load.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に係る車両用金属ハロゲン電池
の搭載構造を示す構造図、 第2図は第1図の金属ハロゲン電池のスタック構造を示
す構造図、 第3図は金属ハロゲン電池の概要図である。 10 ・・・ 反応槽 12a  ・・・ 負極 12b  ・・・ 正極 14 ・・・ セパレータ 16 ・・・ 負極反応室 18 ・・・ 正極反応室 20 ・・・ 負極液貯蔵槽 22 ・・・ 正極液貯蔵槽 28 ・・・ 錯体貯蔵槽 36.38  ・・・ バッテリ 39 ・・・ スタック 100 ・・・ 臭素錯体
Fig. 1 is a structural diagram showing a mounting structure of a metal halogen battery for a vehicle according to an embodiment of the present invention, Fig. 2 is a structural diagram showing a stack structure of the metal halogen battery of Fig. 1, and Fig. 3 is a structural diagram showing a stack structure of the metal halogen battery of Fig. 1. FIG. 10... Reaction tank 12a... Negative electrode 12b... Positive electrode 14... Separator 16... Negative electrode reaction chamber 18... Positive electrode reaction chamber 20... Negative electrode liquid storage tank 22... Positive electrode liquid storage Tank 28... Complex storage tank 36.38... Battery 39... Stack 100... Bromine complex

Claims (1)

【特許請求の範囲】[Claims] 電解液が循環する正極側反応室及び負極側反応室を有し
、正極側反応室には錯化合物を循環させる金属ハロゲン
電池を複数個設け、これら金属ハロゲン電池同士を所定
の角度ずらして配設するようにした車両用金属ハロゲン
電池の搭載構造。
It has a positive electrode side reaction chamber and a negative electrode side reaction chamber in which an electrolyte circulates, and a plurality of metal halogen batteries in which a complex compound circulates are installed in the positive electrode side reaction chamber, and these metal halogen batteries are arranged at a predetermined angle shifted from each other. A mounting structure for metal halogen batteries for vehicles.
JP1245752A 1989-09-20 1989-09-20 Mounting structure of metal halide battery for vehicle Pending JPH03109129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1245752A JPH03109129A (en) 1989-09-20 1989-09-20 Mounting structure of metal halide battery for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1245752A JPH03109129A (en) 1989-09-20 1989-09-20 Mounting structure of metal halide battery for vehicle

Publications (1)

Publication Number Publication Date
JPH03109129A true JPH03109129A (en) 1991-05-09

Family

ID=17138271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1245752A Pending JPH03109129A (en) 1989-09-20 1989-09-20 Mounting structure of metal halide battery for vehicle

Country Status (1)

Country Link
JP (1) JPH03109129A (en)

Similar Documents

Publication Publication Date Title
US8803471B2 (en) Electric vehicle extended range hybrid battery pack system
CA2220075C (en) High energy density vanadium electrolyte solutions, methods of preparation thereof and all-vanadium redox cells and batteries containing high energy vanadium electrolyte solutions
EP1970237B1 (en) Fuel cell equipped vehicle
JP3007526B2 (en) Battery tray assembly and electrically powered vehicle for sealed lead-acid batteries
US20060102398A1 (en) Fuel cell equipped vehicle
US5304432A (en) Membrane flow cell battery
EP0165000B1 (en) Metal-halogen secondary battery
CN1684852A (en) Car
US4482614A (en) Zinc-bromine battery with long term stability
US11715861B2 (en) Battery cell venting system for electrified vehicle batteries
US4491625A (en) Zinc-bromine batteries with improved electrolyte
US7358001B2 (en) Process for operating a regenerative fuel cell
JPH03109129A (en) Mounting structure of metal halide battery for vehicle
EP0236621B1 (en) Metal halogen cell with solid halogen complexer
US20210384578A1 (en) Battery array mounting and supporting brackets
JPH03109128A (en) Mounting structure for metal halide battery on vehicle
JP2014107991A (en) Electrical power system
CN220652234U (en) Integrated beam structure, battery pack and electric equipment
US11794585B1 (en) Electrical circuit based voltage control of electric vehicle batteries
EP0171285A2 (en) Method of operating zinc bromide electrolyte secondary battery
CN216015544U (en) Bearing structure of columnar battery, battery with bearing structure and power utilization device
USRE31871E (en) Metal halogen batteries and method of operating same
JPS628470A (en) Method for turning over static zinc-bromine cell
AU2002233534B2 (en) Process for operating a regenerative fuel cell
JPS61158673A (en) Zinc-halogen battery with porous electrode