JPH03108797A - Multilayer wiring board and manufacture thereof - Google Patents

Multilayer wiring board and manufacture thereof

Info

Publication number
JPH03108797A
JPH03108797A JP24750089A JP24750089A JPH03108797A JP H03108797 A JPH03108797 A JP H03108797A JP 24750089 A JP24750089 A JP 24750089A JP 24750089 A JP24750089 A JP 24750089A JP H03108797 A JPH03108797 A JP H03108797A
Authority
JP
Japan
Prior art keywords
layer
plating
thin film
multilayer wiring
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24750089A
Other languages
Japanese (ja)
Inventor
Takaharu Imai
今井 隆治
Rokuro Kanbe
六郎 神戸
Toshikatsu Takada
俊克 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP24750089A priority Critical patent/JPH03108797A/en
Publication of JPH03108797A publication Critical patent/JPH03108797A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To acquire a multilayer wiring board whose thickening efficiency of a wiring and pattern accuracy are improved by constituting a thin film layer by two layers of an lower layer of any metal belonging to 4A-group or 6A-group of the periodic table and an upper layer of Cu; and by two plating layers of a lower layer of Cu and an upper layer of Ni, Au, Pd or Cr. CONSTITUTION:A polyimide resin layer 2 is formed on a principal face of a ceramic board 1. A thin film 3 of Cr and a thin film 4 of Cu are formed successively by sputtering on a surface of the polyimide resin layer 2. Then, photoresist 5 is applied onto a thin film 4 of Cu. After pattern exposure is carried out through a photo mask 6, the photoresist 5 is removed from a wiring pattern part alone by development treatment. Cu plating 7 and Ni plating 8 are formed one by one by electrolytic plating.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、セラミック基板の主面上に、ポリイミド樹脂
を絶縁層とする多層配線か施された多層配線基板および
その製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a multilayer wiring board in which multilayer wiring with polyimide resin as an insulating layer is provided on the main surface of a ceramic substrate, and a method for manufacturing the same.

[従来の技術] 基板主面上に多層配線を形成する場合に、その配線パタ
ーンの形成方法としては、絶縁層であるポリイミド樹脂
の表面上にCr、Cu、Crのスパッタリングを順次行
い、そのスパッタ面にフォトレジストを塗布した後、パ
ターン露光、現像、エツチングを順次行うことで、所望
の配線パターンを得るエツチング法が一般的である。
[Prior Art] When forming multilayer wiring on the main surface of a substrate, the wiring pattern is formed by sequentially sputtering Cr, Cu, and Cr on the surface of a polyimide resin that is an insulating layer, and then sputtering Cr, Cu, and Cr. A common etching method is to apply a photoresist to the surface and then sequentially perform pattern exposure, development, and etching to obtain a desired wiring pattern.

[発明が解決しようとする課題] しかるに、上記したエツチング法では、配線パターンと
なる薄膜をスパッタリングで形成するため、スパッタ時
間か長く(例えば5μTTIのスパッタで約2時間)、
コストかかかることから、配線の厚付は効率が悪い。
[Problems to be Solved by the Invention] However, in the above-mentioned etching method, since the thin film that becomes the wiring pattern is formed by sputtering, the sputtering time is long (for example, about 2 hours for 5 μTTI sputtering).
Thick wiring is inefficient because it is costly.

また、エツチング液稈ては、エツチングか垂直方向に進
行するにつれて、基板表面と平行な方向にもエツチング
か進行するためオーバエツチングとなり、配線のパター
ン精度が低下する等の課題を崩していた。
Furthermore, as etching progresses in the perpendicular direction, the etching solution also progresses in a direction parallel to the substrate surface, resulting in over-etching, which causes problems such as a decrease in wiring pattern accuracy.

本発明は上記事情に基ついてなされたもので、その目的
は、配線の厚付は効率、およびパターン精度を向」ニさ
せた多層配線基板およびその製造方法を提供することに
ある。
The present invention has been made based on the above-mentioned circumstances, and an object thereof is to provide a multilayer wiring board and a method for manufacturing the same in which wiring thickness is improved in efficiency and pattern accuracy.

[課題を解決するための手段] 第1の発明である多層配線基板は、上記目的を達成する
ために、セラミック基板の主面上に、ポリイミド樹脂を
絶縁層とする多層配線か施された多層配線基板において
、 前記多層配線の各配線層は、薄膜層と、該薄膜層上にパ
ターンメッキにて形成されたメッキ層とから構成され、
前記薄膜層は、下層に周期表の4A族(Tiおよびその
同族)または6A族(Crおよびその同族)に属するい
ずれかの金属、上層にCuの2層から成り、前記メッキ
層は、下層にC1」、上0層にNi、Au、Pd、また
はCrの2層から成ることを技術的手段とする。
[Means for Solving the Problems] In order to achieve the above object, the first invention, a multilayer wiring board, is a multilayer wiring board in which multilayer wiring is provided on the main surface of a ceramic substrate, using polyimide resin as an insulating layer. In the wiring board, each wiring layer of the multilayer wiring is composed of a thin film layer and a plating layer formed on the thin film layer by pattern plating,
The thin film layer consists of two layers: a lower layer of metal belonging to group 4A (Ti and its congeners) or 6A group (Cr and its congeners) of the periodic table, and an upper layer of Cu; C1'', the technical means is that the upper layer is made of two layers of Ni, Au, Pd, or Cr.

また、第2の発明である多層配線基板の製造方法は、セ
ラミック基板の主面上に、ポリイミド樹脂を絶縁層とす
る多層配線が施された多層配線基板であって、前記多層
配線の各配線層は、前記絶縁層−」−に、周期表の4A
族または6A族に属するいずれかの金属の薄膜および該
薄膜」二にCuの薄膜から成る薄膜層を形成し、該薄膜
上に、パターンメッキにてCuメッキおよび該CI4メ
ッキの」二にNi、Au、Pd、またはC+−メッキか
ら成るメッキ層を形成し、その後、エツチングにより不
要部分の前記薄膜層を除去することて形成されることを
技術的手段とする。
A method for manufacturing a multilayer wiring board according to a second aspect of the present invention is a multilayer wiring board in which multilayer wiring with polyimide resin as an insulating layer is provided on the main surface of a ceramic substrate, wherein each wiring of the multilayer wiring 4A of the periodic table on the insulating layer.
A thin film layer consisting of a thin film of any metal belonging to Group 6A or Group 6A, and a thin film of Cu are formed on the thin film, and Cu plating is performed on the thin film by pattern plating, and Ni is plated on the CI4 plating. The technical means is to form a plating layer made of Au, Pd, or C+- plating, and then remove unnecessary portions of the thin film layer by etching.

なお、パターンメッキは、写真法または印刷法によって
、メッキ用しジス1〜での逆パターンを形成した後、そ
のパターン部にメッキを行う工程を言う。
Note that pattern plating refers to a process in which a reverse pattern of plating resistors 1 to 1 is formed by a photographic method or a printing method, and then the pattern portion is plated.

Lfl−用] 上記構成よりなる本発明は、多層配線の各配線層が、薄
膜層とパターンメッキによって形成されたメッキ層とか
ら構成されている。
For Lfl-] In the present invention having the above configuration, each wiring layer of the multilayer wiring is comprised of a thin film layer and a plating layer formed by pattern plating.

薄膜層は、下層に形成された周期表の4A族または6A
族に属するいずれかの金属の薄膜が、絶縁層となるボリ
イミl−樹脂との密議性を確保し、上層に形成されたC
uの薄膜が、メッキ層のCuメッキとの密議性を確保す
る。
The thin film layer is formed under the group 4A or 6A of the periodic table.
A thin film of one of the metals belonging to the group ensures secrecy with the polyimide resin that serves as the insulating layer, and the C
The thin film of u ensures confidentiality with the Cu plating of the plating layer.

メッキ層は、下層に形成されたCuメッキで各配線層の
厚みを確保し、上層に形成されたNi、A、u、Pd、
またはCrのメッキか、不要部分の薄膜層を除去する際
に、エツチング液からCuメッキを保護する。
The plating layer ensures the thickness of each wiring layer with Cu plating formed on the lower layer, and Ni, A, U, Pd, and
Alternatively, it protects the Cu plating from the etching solution when removing the Cr plating or unnecessary thin film layer.

[発明の効果] 本発明では、−1−記のように各配置117gの厚みを
メッキ層で確保することにより、各配線層の厚みをスパ
ッタリングで確保する従来技術と比較して、オーバエツ
チングの心配がなく、精度の良い配線パターンを形成す
ることができる。また、従来のスパッタ時間と比較して
、メッキに要する時間が短い(例えは5μmのメッキで
約25分)ため、配線の厚付は効率を向上させることか
できる。
[Effects of the Invention] In the present invention, by ensuring a thickness of 117 g in each arrangement with a plating layer as described in -1-, over-etching is reduced compared to the conventional technology in which the thickness of each wiring layer is ensured by sputtering. A highly accurate wiring pattern can be formed without any worries. Furthermore, since the time required for plating is shorter than the conventional sputtering time (for example, about 25 minutes for 5 μm plating), thicker wiring can improve efficiency.

[実施例] 次に、本発明の多層配線基板およびその製造方法を図面
に示ず一実施例に基づき1悦明する。
[Example] Next, a multilayer wiring board and a method for manufacturing the same according to the present invention will be described based on an example, not shown in the drawings.

第1図ないし第8図は、基板主面上への配線パターンの
形成過稈を示す説明図である。
FIGS. 1 to 8 are explanatory diagrams showing over-formation of wiring patterns on the main surface of the substrate.

本実施例の多層配線基板は、セラミック基板1の主面上
に、ボリイミ1〜樹脂を各配線層間の絶縁層とする多層
配線が施されたものである。
The multilayer wiring board of this embodiment has multilayer wiring formed on the main surface of a ceramic substrate 1 using polyimide 1 to resin as insulating layers between the wiring layers.

セラミック基板1は、例えば、アルミナを主原料として
作成された複数のクリーンシーI〜をfi’+上層して
、加湿雰囲気の水素炉中で高温ブ3“L成し゛(/j(
られる多層基板である。
For example, the ceramic substrate 1 is made by layering a plurality of clean sheets I~ made of alumina as the main raw material on fi'+, and forming a high-temperature bubble 3''L in a hydrogen furnace in a humidified atmosphere.
It is a multilayer board that can be used as a multilayer board.

以下に、セラミック基板1の主面上に配線パターンを形
成する過程を説明する。なお、第1図ないし第8図は、
多層配線の最下層の配線パターン(本発明の配線層)を
形成する過程を示すものである。
The process of forming a wiring pattern on the main surface of the ceramic substrate 1 will be described below. In addition, Figures 1 to 8 are as follows:
It shows the process of forming the lowest layer wiring pattern (wiring layer of the present invention) of multilayer wiring.

a)あらかしめ研磨されたセラミック基板1の主面上に
、図示しない回転式塗布機(スピンコータ)により、−
・定精度に調整されたポリイミド樹脂を塗布し、加熱硬
イヒさせて、第1図に示すように、厚さ25μff+の
ポリイミド樹脂層2を形成する。
a) On the main surface of the roughly polished ceramic substrate 1, -
- A polyimide resin adjusted to a certain precision is applied and hardened by heating to form a polyimide resin layer 2 with a thickness of 25 μff+, as shown in FIG.

b)このポリイミド1カ脂層2の表面上に、ポリイミド
樹脂層2との密着性に優れるCrの薄膜(厚さ500A
、周期表の6A族に属する)3と、後述するCuメッキ
(第6図参照)7との密着性を得るためのCuの薄膜(
厚さ5000A)  、4とをスパッタリングにより順
次形成する(第2図参照)。
b) On the surface of this polyimide 1 resin layer 2, a thin Cr film (thickness 500A
, belonging to group 6A of the periodic table) 3 and Cu plating (see Figure 6) 7 described later.
5000A) and 4 are sequentially formed by sputtering (see FIG. 2).

C)次に、第3図に示すように、Cuの薄膜4」二に、
6μmの厚さてフオトレジス1〜5を塗布する。
C) Next, as shown in FIG.
Photoresists 1 to 5 are applied to a thickness of 6 μm.

d)そして、第4図に示すように、フォトマスク6を介
してパターン露光を行った後、現像処理により配線パタ
ーン部分のみフォトレジスト5を除去するく第5図参照
)。
d) As shown in FIG. 4, after pattern exposure is performed through the photomask 6, the photoresist 5 is removed only from the wiring pattern portion by a development process (see FIG. 5).

e)フォトレジス?−5が除去された部分に、電解メッ
キによって、配線の厚みを確保するCuメッキ(厚さ5
μm)  7と、上部配線層との絶縁層として形成され
るポリイミド樹脂く図示しない)との密着性を得るため
のNjメッキ(厚さ1μm)8とを順次形成するく第6
図参照)。
e) Photoregis? The part where -5 was removed is electrolytically plated with Cu plating (thickness 5
(μm) 7 and Nj plating (1 μm thick) 8 to obtain adhesion to the polyimide resin (not shown) formed as an insulating layer with the upper wiring layer.
(see figure).

従って、本実施例の配線層は、Crの薄膜3とCuの薄
膜4の2層からなるNM層と、Cuメッキ7とNiメッ
キ8の2層からなるメッキ層とから構成されている。
Therefore, the wiring layer of this embodiment is composed of an NM layer consisting of two layers, Cr thin film 3 and Cu thin film 4, and a plating layer consisting of two layers, Cu plating 7 and Ni plating 8.

f)その後、第7図に示すように、残りのフォトレジス
ト5を除去し、さらに、エツチング処理によって不要部
分の薄膜層3.4を除去することて、所望の配線パター
ン9か形成される(第8図参照)。
f) Thereafter, as shown in FIG. 7, the remaining photoresist 5 is removed, and the unnecessary portions of the thin film layer 3.4 are removed by etching to form a desired wiring pattern 9 ( (See Figure 8).

以後、」1下の配線層を導通させる導体柱(図示しない
)をパターンメッキにより形成するとともに、−に上層
配線層との絶縁層であるポリイミド樹脂層(図示しない
)を形成した後、上記b)以降の工程を繰り返すことに
より多層配線か形成される。
Thereafter, conductor pillars (not shown) that conduct the wiring layer below ``1'' are formed by pattern plating, and a polyimide resin layer (not shown) that is an insulating layer from the upper wiring layer is formed on ``1''. ) A multilayer wiring is formed by repeating the following steps.

このように、各配線層を、従来のようなエツチング法に
J:らず、パターンメッキ法によって形成したことによ
り、オーバエッチンクのおそれがなく、微細な配線パタ
ーンを精度良く形成することができる。また、メッキ層
を形成する際のメッキ時間(約25分)が、従来のスパ
ッタ時間(約2時間)より短いため、配線の厚イ」け効
率を白土させることができる。
In this way, each wiring layer is formed by pattern plating instead of the conventional etching method, so there is no risk of over-etching and fine wiring patterns can be formed with high precision. . Furthermore, since the plating time (approximately 25 minutes) for forming the plating layer is shorter than the conventional sputtering time (approximately 2 hours), the efficiency of wiring thickness can be improved.

さらには、エツチングで不要部分の薄膜層3.4を除去
する際に、CI4メッキ7の」1部にN〕メッキ8を形
成したため、エツチング液からCLIメッキ7を保護す
ることがてき、配線の細りゃ配線強度の低下を防止する
ことかできる。
Furthermore, when removing unnecessary portions of the thin film layer 3.4 by etching, N] plating 8 was formed on the first part of the CI4 plating 7, so the CLI plating 7 could be protected from the etching solution, and the wiring could be protected. If the wire is made thinner, a decrease in wiring strength can be prevented.

なお、上記実施例では、ポリイミド樹脂J@ 2の上に
Crの薄j摸3とCuの薄)模4の2層からなる薄膜層
を形成したが、Crの薄膜3の代わりに、周期表の4A
族または6A族に属するいずれかの金属を使用しても良
い。
In the above example, a thin film layer consisting of two layers, Cr thin film 3 and Cu thin film 4, was formed on the polyimide resin J@2, but instead of the Cr thin film 3, the periodic table 4A of
Any metal belonging to Group 6A or Group 6A may be used.

また、Cuメッキ7の」二部にNiメッキ8を形成した
が、Niメッキ8以外に、AuメッキまたはPdメッキ
でも良い。なお、ポリイミド樹脂層2Fに形成する薄膜
層に、上記したCrの薄膜3以外の金属を使用した場合
には、N1メッキ8の代わりにCrメッキを形成しても
良い。
Furthermore, although the Ni plating 8 is formed on the second part of the Cu plating 7, in place of the Ni plating 8, Au plating or Pd plating may be used. Note that if a metal other than the above-mentioned Cr thin film 3 is used for the thin film layer formed on the polyimide resin layer 2F, Cr plating may be formed instead of the N1 plating 8.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第8図は本発明の一実施例を示すものて、
基板]−画面上の配線パターンの形成過程を示す説明図
である。 図中 1・・セラミック基板 2・・ポリイミド樹脂層 3・・ Crの薄j摸 (薄JI9E層)4・・・Cu
の薄膜(薄膜M) 7・・・Cuメッキ(メッキ層) 8・・Niメッキ(メッキ層) 代 理 人 石 黒 健 1 へ −短 回 11+1.   コ  −  :l  づ  ・−ヤ 
易 oooz (N、− く C) N丁 Cコ
1 to 8 show an embodiment of the present invention,
[Substrate] - An explanatory diagram showing a process of forming a wiring pattern on a screen. In the figure 1... Ceramic substrate 2... Polyimide resin layer 3... Thin Cr (JI9E layer) 4... Cu
Thin film (thin film M) 7...Cu plating (plating layer) 8...Ni plating (plating layer) To proxy Ken Ishiguro 1 - Short times 11+1. ko - :l zu ・-ya
Easy oooz (N, - く C) Ncho C co

Claims (1)

【特許請求の範囲】 1)セラミック基板の主面上に、ポリイミド樹脂を絶縁
層とする多層配線が施された多層配線基板において、 前記多層配線の各配線層は、薄膜層と、該薄膜層上にパ
ターンメッキにて形成されたメッキ層とから構成され、 前記薄膜層は、下層に周期表の4A族(Tiおよびその
同族)または6A族(Crおよびその同族)に属するい
ずれかの金属、上層にCuの2層から成り、 前記メッキ層は、下層にCu、上層にNi、Au、Pd
、またはCrの2層から成ることを特徴とする多層配線
基板。 2)セラミック基板の主面上に、ポリイミド樹脂を絶縁
層とする多層配線が施された多層配線基板であって、 前記多層配線の各配線層は、 (a)前記絶縁層上に、周期表の4A族または6A族に
属するいずれかの金属の薄膜および該薄膜上にCuの薄
膜から成る薄膜層を形成し、 (b)該薄膜上に、パターンメッキにてCuメッキおよ
び該Cuメッキの上にNi、Au、Pd、またはCrメ
ッキから成るメッキ層を形成し、(c)その後、エッチ
ングにより不要部分の前記薄膜層を除去することで形成
されることを特徴とする多層配線基板の製造方法。
[Scope of Claims] 1) A multilayer wiring board in which multilayer wiring with polyimide resin as an insulating layer is provided on the main surface of a ceramic substrate, wherein each wiring layer of the multilayer wiring includes a thin film layer and a thin film layer. and a plating layer formed by pattern plating on top, and the thin film layer has a lower layer containing any metal belonging to group 4A (Ti and its congeners) or group 6A (Cr and its congeners) of the periodic table, The plating layer consists of two layers of Cu on the upper layer, Cu on the lower layer and Ni, Au, and Pd on the upper layer.
A multilayer wiring board comprising two layers of , or Cr. 2) A multilayer wiring board in which multilayer wiring with polyimide resin as an insulating layer is provided on the main surface of a ceramic substrate, wherein each wiring layer of the multilayer wiring includes: (a) a periodic table on the insulating layer; (b) forming a thin film layer consisting of a thin film of any metal belonging to group 4A or group 6A on the thin film; A method for producing a multilayer wiring board, characterized by forming a plating layer made of Ni, Au, Pd, or Cr plating on the substrate, and (c) thereafter removing unnecessary portions of the thin film layer by etching. .
JP24750089A 1989-09-22 1989-09-22 Multilayer wiring board and manufacture thereof Pending JPH03108797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24750089A JPH03108797A (en) 1989-09-22 1989-09-22 Multilayer wiring board and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24750089A JPH03108797A (en) 1989-09-22 1989-09-22 Multilayer wiring board and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH03108797A true JPH03108797A (en) 1991-05-08

Family

ID=17164393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24750089A Pending JPH03108797A (en) 1989-09-22 1989-09-22 Multilayer wiring board and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH03108797A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5378310A (en) * 1991-11-06 1995-01-03 Fujitsu Limited Method of producing conductive pattern layer structure
WO2008133369A1 (en) * 2007-04-30 2008-11-06 Top Engineering Co., Ltd The manufacturing method of the thin film ceramic multi layer substrate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51101864A (en) * 1974-12-10 1976-09-08 Western Electric Co Hakumaku oyobi haiburitsudoshusekikaironotameno dodenshisutemu
JPS59151490A (en) * 1983-02-18 1984-08-29 日本電気株式会社 Wiring conductor of circuit board
JPS63143848A (en) * 1986-12-08 1988-06-16 Mitsubishi Electric Corp Manufacture of microwave ic substrate
JPH01120094A (en) * 1987-11-02 1989-05-12 Ngk Spark Plug Co Ltd Manufacture of high-strength thin-film wiring board

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51101864A (en) * 1974-12-10 1976-09-08 Western Electric Co Hakumaku oyobi haiburitsudoshusekikaironotameno dodenshisutemu
JPS59151490A (en) * 1983-02-18 1984-08-29 日本電気株式会社 Wiring conductor of circuit board
JPS63143848A (en) * 1986-12-08 1988-06-16 Mitsubishi Electric Corp Manufacture of microwave ic substrate
JPH01120094A (en) * 1987-11-02 1989-05-12 Ngk Spark Plug Co Ltd Manufacture of high-strength thin-film wiring board

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5378310A (en) * 1991-11-06 1995-01-03 Fujitsu Limited Method of producing conductive pattern layer structure
US5415920A (en) * 1991-11-06 1995-05-16 Fujitsu Limited Patterned chromium barrier layer with flange-like structure
WO2008133369A1 (en) * 2007-04-30 2008-11-06 Top Engineering Co., Ltd The manufacturing method of the thin film ceramic multi layer substrate

Similar Documents

Publication Publication Date Title
US6240621B1 (en) Method of manufacturing a plurality of electronic components
JPS6129195A (en) Method of producing multilayer circuit board
JPS63318799A (en) Manufacture of multilayer conductor pattern
JPH03108797A (en) Multilayer wiring board and manufacture thereof
JPH0585077A (en) Screen printing plate and production thereof
JPS63132452A (en) Pattern forming method
JPS60141887A (en) Manufacture of electroformed precision parts
JPH0374803B2 (en)
JPS59147430A (en) Formation of fine pattern
SU1688113A1 (en) A method of manufacturing jet-type recording heads
JPS63140530A (en) X-ray mask
JP2000243644A (en) Manufacture of laminated capacitor
JPH0428132B2 (en)
JPS6142192A (en) Method of producing ceramic substrate
JPS612156A (en) Manufacture of mask for photofabrication
JPH03154214A (en) Formation of photoresist pattern
JPH07130568A (en) Manufacture of thin film coil
JPH03203393A (en) Manufacture of wiring board
TWI294758B (en) Method for manufacturing flexible printed circuits
JP2516440B2 (en) Method for manufacturing electrical connection member
JPS62117342A (en) Formation of multilayer interconnection structure
JPH11198336A (en) Manufacture of screen plate and wiring board
JPH0563366A (en) Manufacture of ceramic multilayer wiring board
JPH01122120A (en) Manufacture of x-ray exposure mask
JPS62239592A (en) Formation of conductor pattern