JPH03107569A - Two-cycle internal combustion engine - Google Patents

Two-cycle internal combustion engine

Info

Publication number
JPH03107569A
JPH03107569A JP24183189A JP24183189A JPH03107569A JP H03107569 A JPH03107569 A JP H03107569A JP 24183189 A JP24183189 A JP 24183189A JP 24183189 A JP24183189 A JP 24183189A JP H03107569 A JPH03107569 A JP H03107569A
Authority
JP
Japan
Prior art keywords
fuel
pressure
valve
fuel injection
wall surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24183189A
Other languages
Japanese (ja)
Other versions
JP2684788B2 (en
Inventor
Norihiko Nakamura
徳彦 中村
Masanobu Kanamaru
昌宣 金丸
Toshio Tanahashi
敏雄 棚橋
Yoshio Kido
木戸 良男
Toshio Ito
敏雄 伊藤
Katsuhiko Hirose
雄彦 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP1241831A priority Critical patent/JP2684788B2/en
Priority to US07/575,660 priority patent/US5063886A/en
Priority to DE4029572A priority patent/DE4029572C2/en
Publication of JPH03107569A publication Critical patent/JPH03107569A/en
Application granted granted Critical
Publication of JP2684788B2 publication Critical patent/JP2684788B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

PURPOSE:To control the injected fuel quantity accurately by leading scavenging air pressure into a pressure regulator for regulating fuel pressure increasing the fuel pressure according to the increase of the scavenging air pressure, and injecting fuel into a cylinder from a fuel injection valve at the specified time. CONSTITUTION:A pair of air supply valves 6 are disposed facing a recessed groove 5 formed at the inner wall surface 3a of a cylinder head 3, as well as a pair of exhaust valves 7 are disposed on the approximately plane inner wall surface 3c excluding the recessed groove 5, and a fuel injection valve 18 is disposed at the peripheral part of the inner wall surface 3b below the air supply valve 6. This fuel injection valve 18 is supplied with fuel delivered from a fuel supply pump 23 and regulated in pressure by a pressure regulator 24. In this case, pressure in a surge tank 17 is led into a spring chamber 26 partitioned by the diaphragm 25 of the pressure regulator 24, through a conduit 29. Fuel injection is performed within the period between the time when the air supply valve 6 is opened and the time when the pressure in the spring chamber 26 becomes approximately equal to that in a combustion chamber 4 after the air supply valve 6 is closed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は2サイクル内燃機関に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a two-stroke internal combustion engine.

〔従来の技術〕[Conventional technology]

特開昭58−217730号公報には、燃料噴射量側(
1) 御を燃料噴射の圧力を制御することにより行なうディー
ゼル機関の燃料噴射制御装置において、燃料噴射時にお
けるシリンダ内の圧力を圧力センサによって検出し、こ
の検出されたシリンダ内圧に応じて制御すべき燃料噴射
の圧力を補正することによりシリンダ内圧の変動によっ
て燃料噴射量が変動することを防止するようにしたディ
ーゼル機関の燃料噴射制御方法が開示されている。
Japanese Unexamined Patent Publication No. 58-217730 describes the fuel injection amount side (
1) In a fuel injection control device for a diesel engine, which controls the pressure of fuel injection, the pressure inside the cylinder at the time of fuel injection should be detected by a pressure sensor, and the control should be performed according to the detected internal pressure of the cylinder. A fuel injection control method for a diesel engine is disclosed in which the fuel injection amount is prevented from fluctuating due to fluctuations in cylinder internal pressure by correcting the fuel injection pressure.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、燃料の圧力によってシリンダ内に燃料を噴出
せしめると共に噴射時間によって噴射燃料量を制御する
ようにした燃料噴射弁を採用した場合、燃料圧とシリン
ダ内圧力との差圧が変動すると、噴射燃料量を正確に制
御することができないという問題がある。
By the way, when using a fuel injection valve that injects fuel into the cylinder based on the fuel pressure and controls the amount of injected fuel depending on the injection time, when the differential pressure between the fuel pressure and the cylinder pressure changes, the injected fuel There is a problem that the amount cannot be precisely controlled.

この問題は、特開昭58−217730号公報に開示さ
れた燃料噴射制御方法を採用することによって解決する
ことは可能であるが、圧力センサ等を要し装置が複雑化
するという問題がある。
Although this problem can be solved by adopting the fuel injection control method disclosed in Japanese Patent Application Laid-Open No. 58-217730, there is a problem in that it requires a pressure sensor and the like, making the device complicated.

(2) 〔課題を解決するための手段〕 上記問題点を解決するため本発明によれば、シリンダヘ
ッド内壁面上に給気弁および排気弁を配置すると共にシ
リンダ内に臨んで燃料噴射弁を配置し、この燃料噴射弁
に供給される燃料の圧力を調整するための圧力調整器に
掃気圧を導き掃気圧の増大に応じて燃料の圧力を増大せ
しめ、給気弁開弁時期から、給気弁閉弁後播気圧がシリ
ンダ内の圧力にほぼ等しい時期までの期間内において燃
料噴射弁からシリンダ内に燃料を噴射せしめるようにし
ている。
(2) [Means for Solving the Problems] In order to solve the above problems, according to the present invention, an intake valve and an exhaust valve are arranged on the inner wall surface of the cylinder head, and a fuel injection valve is arranged facing into the cylinder. The scavenging pressure is guided to the pressure regulator for regulating the pressure of the fuel supplied to the fuel injection valve, and the fuel pressure is increased in accordance with the increase in the scavenging pressure. Fuel is injected into the cylinder from the fuel injection valve within a period after the air valve closes until the time when the dissemination pressure is approximately equal to the pressure inside the cylinder.

〔作 用〕[For production]

給気弁開弁時期から給気弁閉弁後所定時期までの期間内
においては掃気圧はシリンダ内の圧力とほぼ等しいため
、燃料の圧力をシリンダ内の圧力の増大に応じて増大せ
しめることができ、シリンダ内圧力が変動してもほぼ一
定の圧力差で燃料を噴射することができる。
Since the scavenging pressure is almost equal to the pressure in the cylinder during the period from the intake valve opening time to the predetermined time after the intake valve closes, the fuel pressure can be increased in accordance with the increase in the cylinder pressure. This allows fuel to be injected with a substantially constant pressure difference even if the cylinder pressure fluctuates.

(3) 〔実施例〕 第1図から第4図を参照すると、1はシリンダブロック
、2はシリンダブロック1内で往復動するピストン、3
はシリンダブロック1上に固定されたシリンダヘッド、
4はシリンダヘッド3の内壁面3aとピストン2の頂面
間に形成された燃焼室を夫々示す。シリンダヘッド内壁
面3a上には凹溝5が形成され、この凹溝5の底壁面を
なすシリンダヘッド内壁面部分3b上に一対の給気弁6
が配置される。一方、凹溝5を除くシリンダへ・ンド内
壁面部分3Cはほぼ平坦をなし、このシリンダヘッド内
壁面部分3C上に一対の排気弁7が配置される。シリン
ダヘッド内壁面部分3bとシリンダヘッド内壁面部分3
Cは凹溝5の周壁8を介して互いに接続されている。こ
の凹溝周壁8は給気弁6の周縁部に沿って円弧状に延び
る一対のマスク壁8aと、給気弁6間に位置する新気ガ
イド壁8bと、シリンダヘッド内壁面3aの周縁部と給
気弁6間に位置する一対の新気ガイド壁8Cとにより構
成される。各マスク壁8aは第1図にお(4) いて破線で示す最大リフト位置にある給気弁6よりも下
方まで燃焼室4に向けて延びており、従って排気弁7側
に位置する給気弁6周縁部と弁座9間の開口は給気弁6
の開弁期間全体に亙ってマスク壁8aにより閉鎖される
ことになる。また、−対の新気ガイド壁8Cはほぼ同一
平面内に位置しており、更に新気ガイド壁3b、3cは
両給気弁6の中心を結ぶ線に対してほぼ平行に延びてい
る。
(3) [Example] Referring to FIGS. 1 to 4, 1 is a cylinder block, 2 is a piston that reciprocates within the cylinder block 1, and 3 is a cylinder block.
is the cylinder head fixed on the cylinder block 1,
4 indicates a combustion chamber formed between the inner wall surface 3a of the cylinder head 3 and the top surface of the piston 2, respectively. A groove 5 is formed on the inner wall surface 3a of the cylinder head, and a pair of intake valves 6 are formed on the inner wall surface portion 3b of the cylinder head forming the bottom wall surface of the groove 5.
is placed. On the other hand, the cylinder head inner wall surface portion 3C excluding the groove 5 is substantially flat, and a pair of exhaust valves 7 are arranged on this cylinder head inner wall surface portion 3C. Cylinder head inner wall surface portion 3b and cylinder head inner wall surface portion 3
C are connected to each other via the peripheral wall 8 of the groove 5. This concave groove peripheral wall 8 includes a pair of mask walls 8a extending in an arc shape along the peripheral edge of the air supply valve 6, a fresh air guide wall 8b located between the air supply valves 6, and a peripheral edge of the cylinder head inner wall surface 3a. and a pair of fresh air guide walls 8C located between the air supply valves 6. Each mask wall 8a extends toward the combustion chamber 4 to a point below the intake valve 6 which is at the maximum lift position shown by the broken line in (4) in FIG. The opening between the peripheral edge of the valve 6 and the valve seat 9 is the air supply valve 6.
is closed by the mask wall 8a throughout the valve opening period. Furthermore, the pair of fresh air guide walls 8C are located in substantially the same plane, and the fresh air guide walls 3b and 3c extend substantially parallel to the line connecting the centers of both air supply valves 6.

また、第1図から第4図に示す実施例では一対の新気ガ
イド”18 Cがシリンダヘッド内壁面3aの底壁面ま
で延びている。即ち、シリンダヘッド内壁面3aの底壁
面は燃焼室4内に向けてU字状に突出する一対の底壁面
部分3dを有し、各新気ガイド壁8Cはシリンダヘッド
内壁面部分3bからこの底壁面部分3dまで延びている
。従って新気ガイド壁8Cの高さはマスク壁8aの高さ
よりも高くなっている。一方、新気ガイド壁8C側に位
置するマスク壁8aは底壁面部分3dまで延びる延長部
8dを有し、この延長部8dも新気ガイド壁を形成する
。第3図かられかるようにこの新気(5) ガイド壁8dは湾曲しつつ新気ガイド壁8Cまで延びて
おり、新気ガイド壁8dの高さは新気ガイド壁8Cに近
づくに従って高くなる。一方、第1図および第2図に示
されるように新気ガイド壁8Cと反対側には既燃ガスガ
イド壁8eが形成される。この既燃ガスガイド壁8eは
シリンダヘッド内壁面部分3cから底壁面部分3dまで
延びる湾曲面からなる。
Further, in the embodiment shown in FIGS. 1 to 4, the pair of fresh air guides 18C extend to the bottom wall surface of the cylinder head inner wall surface 3a. That is, the bottom wall surface of the cylinder head inner wall surface 3a is connected to the combustion chamber 4. It has a pair of bottom wall portions 3d that protrude inward in a U-shape, and each fresh air guide wall 8C extends from the cylinder head inner wall portion 3b to this bottom wall portion 3d.Therefore, the fresh air guide wall 8C The height of the mask wall 8a is higher than that of the mask wall 8a.On the other hand, the mask wall 8a located on the fresh air guide wall 8C side has an extension part 8d extending to the bottom wall surface part 3d, and this extension part 8d is also new. As shown in Figure 3, this fresh air guide wall 8d extends to the fresh air guide wall 8C while being curved, and the height of the fresh air guide wall 8d is equal to that of the fresh air guide. The height increases as it approaches the wall 8C.On the other hand, as shown in FIGS. 1 and 2, a burnt gas guide wall 8e is formed on the opposite side of the fresh air guide wall 8C.This burnt gas guide wall 8e consists of a curved surface extending from the cylinder head inner wall surface portion 3c to the bottom wall surface portion 3d.

第2図に示されるように点火栓10はシリンダヘッド内
壁面3aの中心に位置するようにシリンダヘッド内壁面
3c上に配置されている。また、排気弁7に対しては排
気弁7と弁座11間の開口を覆うマスク壁が設けられて
おらず、従って排気弁7が開弁すると排気弁7と弁座1
1間に形成される開口はその全体が燃焼室4内に開口す
ることになる。
As shown in FIG. 2, the ignition plug 10 is arranged on the cylinder head inner wall surface 3c so as to be located at the center of the cylinder head inner wall surface 3a. Further, the exhaust valve 7 is not provided with a mask wall that covers the opening between the exhaust valve 7 and the valve seat 11, and therefore, when the exhaust valve 7 opens, the exhaust valve 7 and the valve seat 1
The entire opening formed between 1 and 1 opens into the combustion chamber 4.

第1図を参照するとシリンダヘッド3内には給気弁6に
対して給気ボート12が形成され、排気弁7に対して排
気ポート13が形成される。給気ポート12には給気管
14が接続され、給気管14には上流側から順に、エア
フローメータ35、スロットル弁(6) 15、機械式過給機16、およびサージタンク17が配
設される。過給機16は燃焼室4内に給気を送り込むた
めエアフロメータ35を介して流入する空気を加圧して
圧送している。従って過給機16より下流の給気管14
および給気ボート内には過給機16によって、いわゆる
掃気圧が供給されることとなり、この掃気圧によって給
気が燃焼室4内に流入することとなる。また、一対の給
気弁6下方のシリンダヘッド内壁面部分3bの周辺部に
は燃料噴射弁18が配置される。燃料噴射弁18はその
先端にノズル口19が形成され、このノズル口19が燃
焼室4内に臨んで配置されると共に、燃料噴射弁18の
後端は燃料デリバリパイプ20に接続される。燃料デリ
バリパイプ20は燃料供給管21を介して燃料タンク2
2に接続され、燃料供給管21の途中には燃料供給ポン
プ23が配設される。また、燃料デリバリパイプ20に
は圧力調整器24が取付けられる。この圧力調整器24
はダイヤフラム25により隔成されたばね室26と、燃
料室27とを具備し、ばね室26内にはダイヤフラム押
圧用圧縮ばね28が設けられる。また、(7) ばね室26は圧力導管29を介してサージタンク17に
接続され、ばね室26内にはサージタンク17内の圧力
が導かれる。一方、燃料室27は連通管33を介してデ
リバリパイプ20に接続され、燃料室27内にはデリバ
リパイプ20内の燃料が導かれる。ダイヤフラム25の
中央には燃料室27内に延びる弁体30が設けられ、燃
料室27と燃料タンク22とを接続する燃料返戻導管3
1は燃料室27内に突出する。燃料室27内への燃料返
戻導管31の開口32は弁体30により開閉され、燃料
室27内の燃料圧がばね室26内に導入される圧力より
予め定められた圧力だけ高くなると開口32は開弁され
、燃料室27内の燃料は燃料返戻導管31を介して燃料
タンク22に返戻される。これにより、燃料デリバリパ
イプ20内の燃料圧は、サージタンク17内の圧力より
予砧定められた一定圧力だけ高い圧力に調整される。燃
料噴射弁18は、エアフローメータ35およびクランク
角センサ36の出力信号に基づいて電子制御ユニット4
0によって制御され、ノズル口19が開弁せしめられる
と、ノズル口19から燃焼室4内に燃料が噴出せしめら
れ(8) る。燃料噴射弁18の燃料噴射量は電子制御ユニット4
0によって算出される燃料噴射時間、すなわちノズル口
20の開弁時間によって制御される。
Referring to FIG. 1, an air supply boat 12 is formed in the cylinder head 3 for the air intake valve 6, and an exhaust port 13 is formed for the exhaust valve 7. An air supply pipe 14 is connected to the air supply port 12, and an air flow meter 35, a throttle valve (6) 15, a mechanical supercharger 16, and a surge tank 17 are arranged in the air supply pipe 14 in this order from the upstream side. . In order to feed air into the combustion chamber 4, the supercharger 16 pressurizes the air that flows in through the air flow meter 35 and sends the air under pressure. Therefore, the air supply pipe 14 downstream from the supercharger 16
A so-called scavenging pressure is supplied into the intake boat by the supercharger 16, and the scavenging pressure causes the intake air to flow into the combustion chamber 4. Furthermore, a fuel injection valve 18 is arranged around the cylinder head inner wall surface portion 3b below the pair of intake valves 6. The fuel injection valve 18 has a nozzle port 19 formed at its tip, and is disposed facing into the combustion chamber 4, and the rear end of the fuel injection valve 18 is connected to a fuel delivery pipe 20. The fuel delivery pipe 20 is connected to the fuel tank 2 via the fuel supply pipe 21.
2, and a fuel supply pump 23 is disposed in the middle of the fuel supply pipe 21. Further, a pressure regulator 24 is attached to the fuel delivery pipe 20. This pressure regulator 24
includes a spring chamber 26 separated by a diaphragm 25 and a fuel chamber 27, and a compression spring 28 for pressing the diaphragm is provided in the spring chamber 26. (7) The spring chamber 26 is connected to the surge tank 17 via a pressure conduit 29, and the pressure inside the surge tank 17 is introduced into the spring chamber 26. On the other hand, the fuel chamber 27 is connected to the delivery pipe 20 via the communication pipe 33, and the fuel in the delivery pipe 20 is guided into the fuel chamber 27. A valve body 30 extending into the fuel chamber 27 is provided in the center of the diaphragm 25, and a fuel return conduit 3 connects the fuel chamber 27 and the fuel tank 22.
1 protrudes into the fuel chamber 27. The opening 32 of the fuel return conduit 31 into the fuel chamber 27 is opened and closed by the valve body 30, and when the fuel pressure in the fuel chamber 27 is higher than the pressure introduced into the spring chamber 26 by a predetermined pressure, the opening 32 is opened. The valve is opened and the fuel in the fuel chamber 27 is returned to the fuel tank 22 via the fuel return conduit 31. Thereby, the fuel pressure in the fuel delivery pipe 20 is adjusted to a pressure higher than the pressure in the surge tank 17 by a predetermined constant pressure. The fuel injection valve 18 is controlled by the electronic control unit 4 based on the output signals of the air flow meter 35 and the crank angle sensor 36.
When the nozzle port 19 is opened under the control of 0, fuel is injected from the nozzle port 19 into the combustion chamber 4 (8). The fuel injection amount of the fuel injection valve 18 is controlled by the electronic control unit 4.
It is controlled by the fuel injection time calculated by 0, that is, the valve opening time of the nozzle port 20.

第2図を参照すると、燃料噴射弁18は、マスク壁8a
に対して互いに反対側に配置された給気弁6と排気弁7
の各中心01と02を通る垂直な平面Pと平行な噴射軸
線Kに沿って燃料を噴射するように配設される。この噴
射軸線には一対の給気弁6の間の真中および点火栓10
を通る。また、第1図に示されるようにこの噴射軸線に
はシリンダヘッド3の底面3eに対して約30度をなす
Referring to FIG. 2, the fuel injection valve 18 has a mask wall 8a.
An air supply valve 6 and an exhaust valve 7 arranged on opposite sides of the
are arranged to inject fuel along an injection axis K that is parallel to a perpendicular plane P that passes through centers 01 and 02 of . This injection axis includes the center between the pair of intake valves 6 and the ignition plug 10.
pass through. Further, as shown in FIG. 1, this injection axis makes an angle of about 30 degrees with respect to the bottom surface 3e of the cylinder head 3.

第5図は給気弁6および排気弁7の開弁期間および燃料
噴射弁18の開弁期間を示している。第5図に示すよう
に下死点前において給気弁6よりも排気弁7が先に開弁
し、下死点後において給気弁6よりも排気弁7が先に閉
弁する。また、燃料噴射弁18は排気弁7が閉弁する少
し前に開弁せし必られて燃料噴射が開始され、給気弁6
が閉弁する前に閉弁せしめられて燃料噴射が停止される
FIG. 5 shows the opening periods of the intake valve 6 and the exhaust valve 7, and the opening period of the fuel injection valve 18. As shown in FIG. 5, the exhaust valve 7 opens before the intake valve 6 before the bottom dead center, and the exhaust valve 7 closes before the intake valve 6 after the bottom dead center. Further, the fuel injection valve 18 must be opened a little before the exhaust valve 7 closes to start fuel injection, and the intake valve 6
The valve is closed before the valve closes, and fuel injection is stopped.

ピストン2が下降して排気弁7が開弁すると燃(9) 焼室4内の高圧既燃ガスが排気ボート13内に急激に流
出し、燃焼室4内の圧力は急激に低下する。
When the piston 2 descends and the exhaust valve 7 opens, the high-pressure burnt gas in the combustion chamber 4 rapidly flows out into the exhaust boat 13, and the pressure in the combustion chamber 4 drops rapidly.

次いで第6図に示すように給気弁6が開弁すると給気ボ
ート12から燃焼室4内に新気が流入するが給気弁6の
開口に対してマスク壁8aが設けられているためにほぼ
全新気がマスク壁8aと反対側の給気弁6の開口部から
矢印Nで示すように燃焼室4内に流入する。次いでこの
新気は矢印Sで示すように給気弁6下方のシリンダ内壁
面に沿って下降し、次いでピストン2の頂面に沿ってピ
ストン2の頂面を横切り、次いで排気弁7下方のシリン
ダ内壁面に沿って上昇する。この間、この新気流Sによ
って燃焼室4内の既燃ガスが徐々に追い出される。下死
点を過ぎて排気弁7のリフト量が小さくなると排気弁7
下流のシリンダ内壁面に沿って上昇する新気流は排気弁
7が配置されているシリンダヘッド内壁面部分3cに沿
って給気弁6の方向に向かう。従って燃焼室4内にはシ
リンダ軸線に対し直角をなす軸線周りの新気による旋回
流が発生し、この旋回する新気流の中央部、即ちく10
) 燃焼室4内の中央部に高温の既燃ガスが集まる。
Next, as shown in FIG. 6, when the air supply valve 6 opens, fresh air flows into the combustion chamber 4 from the air supply boat 12, but since a mask wall 8a is provided against the opening of the air supply valve 6. Almost all of the fresh air flows into the combustion chamber 4 from the opening of the intake valve 6 on the side opposite to the mask wall 8a as shown by arrow N. Next, this fresh air descends along the inner wall surface of the cylinder below the intake valve 6 as shown by arrow S, then crosses the top surface of the piston 2 along the top surface of the piston 2, and then flows into the cylinder below the exhaust valve 7. It rises along the inner wall surface. During this time, the burnt gas in the combustion chamber 4 is gradually expelled by the fresh air flow S. When the lift amount of the exhaust valve 7 decreases after the bottom dead center, the exhaust valve 7
The fresh air flow rising along the inner wall surface of the downstream cylinder heads toward the air supply valve 6 along the inner wall surface portion 3c of the cylinder head where the exhaust valve 7 is disposed. Therefore, a swirling flow of fresh air is generated in the combustion chamber 4 around an axis perpendicular to the cylinder axis, and the central part of this swirling fresh air flow is
) High-temperature burnt gas gathers in the center of the combustion chamber 4.

次いで燃料噴射弁18のノズル口19から燃料が噴射さ
れる。
Next, fuel is injected from the nozzle port 19 of the fuel injection valve 18.

ところで第6図に示すように燃料噴射弁18のノズル口
19はノズル口19の噴射軸線Kが燃焼室4上部空間を
指向して下向きに配置され、このノズル口19からは噴
射軸線Kに沿って成る広がり角を有して燃料が噴出せし
められる。この噴射燃料に対して、給気弁6の開口部か
ら燃焼室4内に流入する新気流Nはほぼ直角に流入する
ため、噴射燃料は新気流Nによってせん断され、微粒化
が促進される。この微粒化された燃料Fは新気流Nによ
って燃焼室4底部に向かうように偏向せしめられる。
By the way, as shown in FIG. 6, the nozzle port 19 of the fuel injection valve 18 is arranged so that the injection axis K of the nozzle port 19 is directed downward toward the upper space of the combustion chamber 4, and from this nozzle port 19, the injection axis K is directed downward. The fuel is ejected with a spread angle of . Since the fresh air flow N flowing into the combustion chamber 4 from the opening of the intake valve 6 flows in at a substantially right angle to the injected fuel, the injected fuel is sheared by the fresh air flow N, and atomization is promoted. This atomized fuel F is deflected toward the bottom of the combustion chamber 4 by the fresh air flow N.

さらに、この噴射燃料は新気流Sによって燃焼室4内に
拡散され、高温の既燃ガスと十分に混合して燃料の気化
が向上せしめられる。次いで排気弁7が閉弁するが、給
気弁6の開口部からは依然として新気が流入し、従って
強力な旋回流も依然として発生しているため、前述と同
様に噴射燃料は微粒化されて燃焼室4内に拡散され、気
化が向上(11) せしめられる。また、排気弁7が配置されているシリン
ダヘッド内壁面部分3Cに沿って給気弁6の方向に向か
う新気流によっても噴射燃料は燃焼室4底部に向けて偏
向せしめられる。
Furthermore, this injected fuel is diffused into the combustion chamber 4 by the fresh air flow S, and is sufficiently mixed with the high-temperature burnt gas, thereby improving the vaporization of the fuel. Next, the exhaust valve 7 closes, but fresh air still flows in from the opening of the air supply valve 6, and therefore a strong swirling flow still occurs, so the injected fuel is atomized as described above. It is diffused into the combustion chamber 4 and vaporization is improved (11). Furthermore, the injected fuel is also deflected toward the bottom of the combustion chamber 4 by the fresh air flowing toward the intake valve 6 along the cylinder head inner wall surface portion 3C where the exhaust valve 7 is disposed.

次いで燃料噴射時間が経過すると燃料噴射弁18が閉弁
せしめられ、ノズル口19から燃焼室4内への燃料噴射
が停止せしめられ、その後給気弁6が閉弁せしめられる
Next, when the fuel injection time has elapsed, the fuel injection valve 18 is closed, fuel injection from the nozzle port 19 into the combustion chamber 4 is stopped, and then the air supply valve 6 is closed.

給気弁6が開弁じている期間においてはザージタンク1
7は燃焼室4内に連通せしめられるため、サージタンク
17内の圧力、すなわち掃気圧は燃焼室4内の圧力とほ
ぼ等しくなる。また給気弁6閉弁直後しばらくの期間に
おいてもサージタンク17内の圧力は燃焼室4内の圧力
とほぼ等しい。燃料噴射は下死点近傍で実行されるため
、燃焼室4内の圧力変動が小さく、サージタンク17内
の圧力は実質的に燃焼室4内の圧力とほぼ等しくなる。
During the period when the air supply valve 6 is open, the serge tank 1
7 is communicated with the inside of the combustion chamber 4, so the pressure inside the surge tank 17, that is, the scavenging pressure, becomes almost equal to the pressure inside the combustion chamber 4. Further, the pressure in the surge tank 17 is approximately equal to the pressure in the combustion chamber 4 even for a while immediately after the intake valve 6 is closed. Since the fuel injection is performed near the bottom dead center, pressure fluctuations within the combustion chamber 4 are small, and the pressure within the surge tank 17 is substantially equal to the pressure within the combustion chamber 4.

ところで前述のように、圧力調整器24は燃料噴射弁1
8に供給される燃料の圧力をサージタンク17内の圧力
より予め定められた一定圧力だけ高い圧力と(12) なるように制御している。従って、燃料噴射弁18から
燃料を噴射する際には、燃料圧は燃焼室4内の圧力より
予め定められた一定圧力だけ高い圧力となるように調整
され、このため、負荷および機関回転数に基づいて算出
される燃料噴射時間の間燃料噴射弁18から燃料を噴射
せしめることによって、燃焼室4内の圧力変動に関わら
ず燃料噴射量を正確に制御することができる。本実施例
では、燃焼室4内の圧力を圧力調整器24内のばね室2
6内に直接導入していないため既燃ガスによりばね室2
6内が汚損されるおそれがない。また燃焼行程において
は給気弁6が閉弁しているため、燃焼室4内の燃焼圧が
ばね室26内に導かれるおそれもない。
By the way, as mentioned above, the pressure regulator 24 is connected to the fuel injection valve 1.
The pressure of the fuel supplied to the surge tank 8 is controlled to be higher than the pressure in the surge tank 17 by a predetermined constant pressure (12). Therefore, when fuel is injected from the fuel injection valve 18, the fuel pressure is adjusted to be higher than the pressure in the combustion chamber 4 by a predetermined constant pressure, and therefore the load and engine speed are By injecting fuel from the fuel injection valve 18 during the fuel injection time calculated based on this, the fuel injection amount can be accurately controlled regardless of pressure fluctuations within the combustion chamber 4. In this embodiment, the pressure inside the combustion chamber 4 is controlled by the spring chamber 2 inside the pressure regulator 24.
Since the gas is not introduced directly into the spring chamber 2, the burnt gas may cause damage to the spring chamber 2.
There is no risk that the inside of 6 will be contaminated. Furthermore, since the intake valve 6 is closed during the combustion stroke, there is no fear that the combustion pressure in the combustion chamber 4 will be introduced into the spring chamber 26.

従って簡単な構成によって燃料噴射時における燃料圧が
燃焼室4内の圧力より予め定められた一定圧力だけ高い
圧力となるように調整することができる。
Therefore, with a simple configuration, the fuel pressure at the time of fuel injection can be adjusted to be higher than the pressure in the combustion chamber 4 by a predetermined constant pressure.

以上のように本実施例によれば、給気弁6が開弁してい
るときに燃料噴射弁18から燃焼室4内に燃料を噴出せ
しめるようにしたので、噴射燃料は(13) 給気弁6の開口部から流入する新気流によって微粒化が
促進せしめられると共に燃焼室4底部に向かって偏向せ
しめられる。このため噴射燃料は新気流Sによって燃焼
室4内に拡散され、高温の既燃ガスと接触混合せしめら
れ、高温の既燃ガスによって燃料の気化が促進される。
As described above, according to this embodiment, since the fuel is injected from the fuel injection valve 18 into the combustion chamber 4 when the intake valve 6 is open, the injected fuel is (13) The fresh air flowing in from the opening of the valve 6 promotes atomization and is deflected toward the bottom of the combustion chamber 4. For this reason, the injected fuel is diffused into the combustion chamber 4 by the fresh air flow S and mixed with the high-temperature burnt gas, and vaporization of the fuel is promoted by the high-temperature burnt gas.

その結果、燃料が容易に着火せしめられ、着火後に良好
な燃焼が行なわれる。また、このように新気流Sによっ
て燃料噴霧Fが下方へ曲げられるた必にエアブラスト弁
14の開弁開始時期を排気弁7が閉弁する前に早めても
燃料が排気ポート13内に吹き抜けることがない。
As a result, the fuel is easily ignited, and good combustion occurs after ignition. Furthermore, since the fuel spray F is bent downward by the fresh air flow S, the fuel will still blow into the exhaust port 13 even if the opening timing of the air blast valve 14 is advanced before the exhaust valve 7 closes. Never.

なお、燃料噴射弁18の開弁時期は、排気ポート13内
に燃料が吹き抜けない範囲において進めてもよく、例え
ば第5図に一点鎖線で示すように、下死点直後に燃料噴
射弁18を閉弁せしめるようにしてもよい。
Note that the opening timing of the fuel injection valve 18 may be advanced within a range in which the fuel does not blow into the exhaust port 13. For example, as shown by the dashed line in FIG. The valve may be closed.

また、燃料噴射弁18の開弁時期は排気弁7が閉弁した
後としてもよい。
Further, the timing for opening the fuel injection valve 18 may be after the exhaust valve 7 is closed.

また、前述のように給気弁6閉弁直後のしばら(14) くの期間においてもサージタンク17内の圧力は燃焼室
4内の圧力とほぼ等しいため、燃料噴射弁18の閉弁時
期を給気弁6閉弁後として、給気弁6が閉弁後サージタ
ンク17内の圧力が燃焼室4内の圧力とほぼ等しい期間
内において燃料噴射弁18から燃料を噴射するようにし
てもよい。
In addition, as mentioned above, the pressure in the surge tank 17 is almost equal to the pressure in the combustion chamber 4 for a period of time (14) immediately after the intake valve 6 is closed, so the closing timing of the fuel injection valve 18 is adjusted. After the intake valve 6 is closed, fuel may be injected from the fuel injection valve 18 within a period when the pressure in the surge tank 17 is approximately equal to the pressure in the combustion chamber 4 after the intake valve 6 is closed. .

また、燃料噴射弁18の開弁時期を固定してもよいが、
機関運転状態、例えば機関回転数、機関負荷に応じて変
動せしめてもよい。
Furthermore, the opening timing of the fuel injection valve 18 may be fixed, but
It may be varied depending on the engine operating state, for example, the engine speed and the engine load.

〔発明の効果〕〔Effect of the invention〕

燃料噴射時における燃料圧をシリンダ内圧力の増大に応
じて増大せしめることが簡単な構成でできるため、噴射
燃料量を正確に制御することができる。
Since the fuel pressure during fuel injection can be increased in accordance with the increase in cylinder pressure with a simple configuration, the amount of injected fuel can be accurately controlled.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は2サイクル内燃機関の側面断面図、第2図は第
1図のシリンダヘッド内壁面を示す図、第3図は第1図
の矢印■に沿ってみた図解的に示す斜視図、第4図は第
1図の矢印■に沿ってみた(15) 図解的に示す斜視図、第5図は給排気弁および燃料噴射
弁の開弁期間等を示す線図、第6図は燃料噴射時を示す
2サイクル内燃機関の側面断面図である。 3a・・・シリンダヘッド内壁面、 4・・・燃焼室、      6・・・給気弁、7・・
・排気弁、      8a・・・マスク壁、12・・
・給気ポート、   14・・・給気管、18・・・燃
料噴射弁、   24・・・圧力調整器。
FIG. 1 is a side sectional view of a two-stroke internal combustion engine, FIG. 2 is a diagram showing the inner wall surface of the cylinder head in FIG. 1, and FIG. 3 is a schematic perspective view taken along the arrow ■ in FIG. Figure 4 is a schematic perspective view taken along the arrow ■ in Figure 1 (15), Figure 5 is a line diagram showing the opening periods of the supply and exhaust valves and fuel injection valves, and Figure 6 is a diagram showing the fuel injection valve. FIG. 2 is a side sectional view of the two-stroke internal combustion engine during injection. 3a... Cylinder head inner wall surface, 4... Combustion chamber, 6... Air supply valve, 7...
・Exhaust valve, 8a...mask wall, 12...
- Air supply port, 14...Air supply pipe, 18...Fuel injection valve, 24...Pressure regulator.

Claims (1)

【特許請求の範囲】[Claims] シリンダヘッド内壁面上に給気弁および排気弁を配置す
ると共にシリンダ内に臨んで燃料噴射弁を配置し、該燃
料噴射弁に供給される燃料の圧力を調整するための圧力
調整器に掃気圧を導き該掃気圧の増大に応じて前記燃料
の圧力を増大せしめ、前記給気弁開弁時期から、前記給
気弁閉弁後前記掃気圧が前記シリンダ内の圧力にほぼ等
しい時期までの期間内において前記燃料噴射弁から前記
シリンダ内に燃料を噴射せしめるようにした2サイクル
内燃機関。
An intake valve and an exhaust valve are arranged on the inner wall surface of the cylinder head, and a fuel injection valve is arranged facing into the cylinder. and increasing the pressure of the fuel in accordance with the increase in the scavenging pressure, and the period from the time when the intake valve is opened to the time when the scavenging pressure is approximately equal to the pressure in the cylinder after the intake valve is closed. A two-stroke internal combustion engine in which fuel is injected from the fuel injection valve into the cylinder.
JP1241831A 1989-09-18 1989-09-20 Two-cycle internal combustion engine Expired - Lifetime JP2684788B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP1241831A JP2684788B2 (en) 1989-09-20 1989-09-20 Two-cycle internal combustion engine
US07/575,660 US5063886A (en) 1989-09-18 1990-08-31 Two-stroke engine
DE4029572A DE4029572C2 (en) 1989-09-18 1990-09-18 Two-stroke engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1241831A JP2684788B2 (en) 1989-09-20 1989-09-20 Two-cycle internal combustion engine

Publications (2)

Publication Number Publication Date
JPH03107569A true JPH03107569A (en) 1991-05-07
JP2684788B2 JP2684788B2 (en) 1997-12-03

Family

ID=17080148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1241831A Expired - Lifetime JP2684788B2 (en) 1989-09-18 1989-09-20 Two-cycle internal combustion engine

Country Status (1)

Country Link
JP (1) JP2684788B2 (en)

Also Published As

Publication number Publication date
JP2684788B2 (en) 1997-12-03

Similar Documents

Publication Publication Date Title
US5063886A (en) Two-stroke engine
US6637406B2 (en) In-cylinder injection engine with supercharger
US4807572A (en) Timing of fuel injected engines
US5062395A (en) Two-stroke internal combustion engine
CN102016274B (en) Direct injection spark ignition internal combustion engine, and fuel injection control method therefor
US2803230A (en) Cylinder for a four-cycle internal combustion engine
US5622155A (en) Fuel injected internal combustion engine
JPH04276182A (en) Fuel injector for 2-cycle engine
GB2182096A (en) I.C. engine fuel injection control
JPH10288038A (en) Direct injection type diesel engine
JPH03107569A (en) Two-cycle internal combustion engine
JP2761422B2 (en) Fuel injection engine
JPH03100318A (en) Two-stroke internal combustion engine
JP2748322B2 (en) Engine fuel injection device
JP3055629B2 (en) Air fuel injection device for in-cylinder injection engine
JPS5828407B2 (en) gasoline engine
JP2501710Y2 (en) Fuel injection device for internal combustion engine
JPH09250349A (en) Fuel injection-type internal combustion engine
JPH09228928A (en) Fuel injection type internal combustion engine
AU682507B2 (en) Fuel injected internal combustion engine
JPH0752374Y2 (en) 2-cycle gasoline engine
JPH03105059A (en) Two-cycle internal combustion engine
JP2629757B2 (en) Engine intake system
JPH04252866A (en) Air-fuel injection engine
JPH0868331A (en) Combustion device of two-cycle engine