JPH03105915A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH03105915A
JPH03105915A JP24407989A JP24407989A JPH03105915A JP H03105915 A JPH03105915 A JP H03105915A JP 24407989 A JP24407989 A JP 24407989A JP 24407989 A JP24407989 A JP 24407989A JP H03105915 A JPH03105915 A JP H03105915A
Authority
JP
Japan
Prior art keywords
substrate
gas
gaas
layer
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24407989A
Other languages
Japanese (ja)
Inventor
Kanetake Takasaki
高崎 金剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP24407989A priority Critical patent/JPH03105915A/en
Publication of JPH03105915A publication Critical patent/JPH03105915A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To form the cross sections of the boundaries of barrier layers such as AlAs and conductive layers such as GaAs, which are formed alternately in a striped shape, linearly by removing a reaction gas in the periphery of a substrate and lowering the heating temperature of the substrate when the reaction gas fed to the surface of the substrate is changed over. CONSTITUTION:An AlAs layer is formed, on one half section, in the depth direction at the stepped surface on the surface of a GaAs substrate 11 by heating the GaAs substrate 11 by a heating lamp 5 while supplying the surface of the GaAs substrate 11 with a TMA gas, the heating lamp 5 is put out while the supply of the TMA gas is stopped, and the growth of a film on the surface of the GaAs substrate 11 is stopped. A GaAs layer is formed in the region of the other half section at the stepped surface by simultaneously conducting the heating of the GaAs substrate by the heating lamp 5 and the supply of a TMG gas, and the putting-out of the heating lamp and the stoppage of the supply of the TMA gas are performed simultaneously and the growth of the film on the surface of the GaAs substrate 1 is stopped. Accordingly, the formation of the AlAs layers and the GaAs layers is repeated plural times, thus shaping the boundaries of the AlAs layers 30 and the GaAs layers 31 approximately linearly.

Description

【発明の詳細な説明】 (概 要] キャリアとなる電子ガスをl次元方向に移動させる半導
体装置の製造方法に関し、 ストライプ状に交互に形成される障壁層と導電層との境
界の断面を直線状に形成することを目的とし、 基板の表面に第一の反応ガスを供給すると同時に、前記
基板の温度を反応温度に上げ、この状態を所望時間保持
することにより、前記基板上に障壁層を形成し、この後
に、前記第一の反応ガスの供給を停止すると同時に、前
記基板の温度を低下させて前記基板表面の膜の戒長を停
止し、ついで第一の反応ガスを除去する第1の工程と、
前記基板の表面に第二の反応ガスを供給すると同時に、
前記基板の温度を反応温度に設定し、この状態を所望時
間保持することにより、前記基板上に導電層を形成し、
この後に、前記第二の反応ガスの供給を停止すると同時
に、前記基板温度を低下させて前記基板表面の膜の成長
を停止し、ついで、第二の反応ガスを除去する第2の工
程とを有するとともに、前記第lの工程と前記第2の工
程とを順に所望回数操り返すことによって障壁層と導電
層とを前記基板上に交互に形成することを含み構或する
[Detailed Description of the Invention] (Summary) Regarding a method for manufacturing a semiconductor device in which electron gas serving as a carrier is moved in the l-dimensional direction, a cross section of a boundary between a barrier layer and a conductive layer that are alternately formed in a stripe shape is formed by straight lines. A barrier layer is formed on the substrate by supplying a first reaction gas to the surface of the substrate, raising the temperature of the substrate to the reaction temperature, and maintaining this state for a desired time. and then, at the same time, stopping the supply of the first reaction gas, lowering the temperature of the substrate to stop the formation of the film on the substrate surface, and then removing the first reaction gas. The process of
At the same time, supplying a second reaction gas to the surface of the substrate,
forming a conductive layer on the substrate by setting the temperature of the substrate to a reaction temperature and maintaining this state for a desired time;
After this, a second step of stopping the supply of the second reaction gas, simultaneously lowering the substrate temperature to stop the growth of the film on the substrate surface, and then removing the second reaction gas. and forming barrier layers and conductive layers alternately on the substrate by repeating the first step and the second step a desired number of times.

[産業上の利用分野〕 本発明は半導体装置の製造方法に関し、より詳しくは、
キャリアとなる電子ガスを1次元方向に移動させる半導
体装置の製造方法に関する。
[Industrial Application Field] The present invention relates to a method for manufacturing a semiconductor device, and more specifically,
The present invention relates to a method for manufacturing a semiconductor device in which electron gas serving as a carrier is moved in a one-dimensional direction.

〔従来の技術〕[Conventional technology]

n型アルミニウム・ガリウム砒素/ガリウム砒素(n−
AIGaAs /GaAs)等のようなヘテロ接合界面
に発生する2次元電子は高移動度を有しており、この性
質を利用した装置として、高移動度トランジスタ(}T
EMT)が提案されている。
n-type aluminum gallium arsenide/gallium arsenide (n-
Two-dimensional electrons generated at heterojunction interfaces such as AIGaAs/GaAs) have high mobility, and high-mobility transistors (}T
EMT) has been proposed.

しかし、2次元電子の移動の際には結晶による弾性散乱
を伴うので、更に高速化を図るために、n−AIGaA
s/GaAsの幅を数+1の細線状に形成し、この中に
電子を閉じ込めて電子の量子効果によって高速化を図る
技術が提案されている。
However, since the movement of two-dimensional electrons involves elastic scattering by crystals, in order to further speed up the movement, n-AIGaA
A technique has been proposed in which the width of s/GaAs is formed into a thin line shape with a width of several +1, and electrons are confined within the line to increase the speed due to the quantum effect of the electrons.

このような装置として、例えば第6図に示すように、G
aAs基板51の上に8nm幅を有するAIAs膜52
及びGaAs膜53をストライプ状に交互に形成すると
ともに、その上にn型のAIGaAs層54を積層し、
さらに、GaAs膜53の長手方向にソース電極55、
ゲート電極56及びドレイン電極57を形成した半導体
装置が提案されており、この装置によれば、細線状のG
aAs膜53に発生する電子ガスをGaAs膜53の長
手方向、即ち1次元方向に移動させることが可能になる
As such a device, for example, as shown in FIG.
AIAs film 52 having a width of 8 nm on an aAs substrate 51
and GaAs films 53 are alternately formed in a stripe pattern, and an n-type AIGaAs layer 54 is laminated thereon.
Further, a source electrode 55 is provided in the longitudinal direction of the GaAs film 53,
A semiconductor device in which a gate electrode 56 and a drain electrode 57 are formed has been proposed, and according to this device, a thin line-shaped G
It becomes possible to move the electron gas generated in the aAs film 53 in the longitudinal direction of the GaAs film 53, that is, in the one-dimensional direction.

この装置を形戒する方法としては、第7図に示すように
、例えばGaps基板5lの上面となる(00f)面か
ら1〜3゜傾けてGaAs基板51を切り出すことによ
りその表面を階段状に形成し、その段差dを原子1個の
大きさにする。
As shown in FIG. 7, a method for shaping this device is to cut out the GaAs substrate 51 at an angle of 1 to 3 degrees from the (00f) plane, which is the upper surface of the Gaps substrate 5l, so that the surface of the GaAs substrate 51 is shaped like a step. The step d is the size of one atom.

そして、このG a A s M仮5lを図示しないM
OCV D (metal organic chem
ical vapor deposition)装置の
反応室に入れ、まず、GaAs基板51を7oO゜Cに
加熱し、その表面にアルシン、水素及びTMA(トリメ
チルアルごニウム)ガスを流し、GaAs基仮51上に
形成された段の垂直面にAIAsを付着し、このAIA
sを段のステップ面Sの奥行きの半分に達する位置まで
或長させる(第7図(a))。
And, this G a A s M tentative 5l is M
OCV D (metal organic chem
First, the GaAs substrate 51 is heated to 70°C, and arsine, hydrogen, and TMA (trimethylalgonium) gases are flowed over the surface of the GaAs substrate 51 to form a GaAs group on the temporary 51. AIAs was attached to the vertical surface of the stepped step, and this AIA
s is lengthened to a certain extent until it reaches half the depth of the step surface S of the step (FIG. 7(a)).

次に、TMAガスをTMG (}リメチルガリウム)ガ
スに切り換え、段のステンブ面S上の残り半分の領域に
GaAsを成長させる(第7V!J(b))。
Next, the TMA gas is switched to TMG (}limethylgallium) gas, and GaAs is grown in the remaining half region on the stent surface S of the stage (7th V!J(b)).

これにより、各段のステンプ面S上に原子1個分の厚さ
を有するAIAs層5 2とGaAs層5 3とが形成
されるために、GaAs基板51の表面には複数のAI
As[52とGaAs層53とが面方向に交互に形成さ
れ、しかも、これらの層52.53によって形成される
面は階段状となる。
As a result, an AIAs layer 52 and a GaAs layer 53 having a thickness of one atom are formed on the stamped surface S of each step, so that a plurality of AIAs layers are formed on the surface of the GaAs substrate 51.
As [52 and GaAs layers 53 are formed alternately in the plane direction, and the plane formed by these layers 52 and 53 has a step-like shape.

したがって、このような膜の戒長を交互に複数回行うこ
とにより、GaAs基板51の表面に膜厚1000人程
度のAIAs層52及びGaAs層53を交互に形成す
ることが可能になる(第7図(C))。
Therefore, by alternately performing such film lengthening a plurality of times, it becomes possible to alternately form the AIAs layer 52 and the GaAs layer 53 with a film thickness of about 1000 layers on the surface of the GaAs substrate 51 (7th Figure (C)).

[発明が解決しようとする課題] ところで、MOCVD法によりA1^S層52及びGa
AsJi 5 3をストライプ状に形成する場合には、
GaAs基板51を入れる反応室を7 0 0 ’Cに
JJn熱しながら行い、その中にTMAガスとT M 
Gガスを一定時間交互に切り換えて流すようにしている
[Problems to be Solved by the Invention] By the way, the A1^S layer 52 and the Ga
When forming AsJi 5 3 in stripes,
The reaction chamber containing the GaAs substrate 51 was heated to 700'C, and TMA gas and TM
The G gas is alternately switched for a certain period of time.

しかし、ガスの切り換えを行った直後においては、TM
AとTMGが混合した状態となるため、段のステップ面
S上に堆積されるAIAs層52とGaAs層53とを
均一の幅に戒長させることが難しくなり、これらの膜5
2.53の境界の断面が第7図(c)及び第8図に示す
ように凹凸になるため、GaAs膜53の長手方向に沿
って一次元的に移動する電子が散乱し易くなり、高移動
度の性質が十分に発揮されないといった問題がある。
However, immediately after switching the gas, TM
Since A and TMG are in a mixed state, it becomes difficult to make the AIAs layer 52 and the GaAs layer 53 deposited on the step surface S of the step uniform in width.
Since the cross section of the boundary at 2.53 is uneven as shown in FIGS. 7(c) and 8, electrons moving one-dimensionally along the longitudinal direction of the GaAs film 53 are easily scattered, resulting in high There is a problem that the property of mobility is not fully exhibited.

本発明は、このような問題に鑑みてなされたものであっ
て、ストライプ状に交互に形成される^IAsのような
障壁層と、GaAsのような導電層との境界の断面を直
線状に形成することができる半導体装置の製造方法を提
供することを目的とする。
The present invention was made in view of these problems, and it is possible to make the cross section of the boundary between barrier layers such as IAs and conductive layers such as GaAs, which are alternately formed in stripes, into a straight line. An object of the present invention is to provide a method for manufacturing a semiconductor device that can be formed.

〔a!題を解決するための手段〕[a! Means to solve the problem]

上記した課題は、基板の表面に第一の反応ガスを{Jt
給すると同時に、前記基板の温度を反応温度に上げ、こ
の状態を所望時間保持することにより、前記基板上に障
壁層を形成し、この後に、前記第一の反応ガスの供給を
停止すると同時に、前記基板の温度を低下させて前記基
板表面の膜の成長を停止し、ついで第一の反応ガスを除
去する第1の工程と、前記基板の表面に第二の反応ガス
を供袷すると同時に、前記基板の温度を反応温度に設定
し、この状態を所望時間保持することにより、前記基板
上に導電層を形戊し、この後に、前記第二の反応ガスの
供給を停止すると同時に、前記基板温度を低下させて前
記基板表筒の膜の成長を停止し、ついで、第二の反応ガ
スを除去する第2の工程とを有するとともに、前記第1
の工程と前記第2の工程とを順に所望回数繰り返すこと
によって障壁層と導電層とを前記基板上に交互に形成す
ることを特徴とする半導体装置の製造方法により解決す
る。
The above-mentioned problem is solved by applying the first reaction gas to the surface of the substrate {Jt
At the same time as supplying the first reaction gas, the temperature of the substrate is raised to the reaction temperature and this state is maintained for a desired time to form a barrier layer on the substrate, and then, at the same time, the supply of the first reaction gas is stopped. A first step of lowering the temperature of the substrate to stop the growth of a film on the surface of the substrate, and then removing the first reaction gas, and simultaneously supplying a second reaction gas to the surface of the substrate, A conductive layer is formed on the substrate by setting the temperature of the substrate to the reaction temperature and maintaining this state for a desired time, and then, at the same time as stopping the supply of the second reaction gas, a second step of lowering the temperature to stop the growth of the film on the substrate surface cylinder, and then removing the second reaction gas;
The present invention is solved by a method for manufacturing a semiconductor device, characterized in that a barrier layer and a conductive layer are alternately formed on the substrate by repeating the step and the second step a desired number of times.

(作 用〕 本発明によれば、基板表面に第一の反応ガスを一定時間
供給するとともに、これに同朋させて反応ガスの反応温
度となるように基板を加熱することにより、基板表面の
一部領域に障壁層を形成し、この後に、加熱ランプを消
すと同時に第一の反応ガスの供給を停止して膜の戒長を
止め、ついで、第一の反応ガスを除去する。
(Function) According to the present invention, the first reaction gas is supplied to the substrate surface for a certain period of time, and the substrate is simultaneously heated to the reaction temperature of the reaction gas, whereby a portion of the substrate surface is heated. After forming a barrier layer in the area, the heat lamp is turned off and at the same time the supply of the first reactant gas is stopped to stop the lengthening of the film, and then the first reactant gas is removed.

さらに、加熱ランプによる基板の加熱と、第二の反応ガ
スの供給とを一定時間同時に行うことにより、障壁層に
隣接する領域に導電層を形成し、この後に、加熱ランプ
の消灯とTMAガスの供給停止とを同時に行って膜の戒
長を止めてから、第二の反応ガスを排気する。
Furthermore, a conductive layer is formed in the region adjacent to the barrier layer by simultaneously heating the substrate with the heating lamp and supplying the second reaction gas for a certain period of time, and then turning off the heating lamp and supplying the TMA gas. After the supply is stopped at the same time and the membrane length is stopped, the second reaction gas is exhausted.

このような障壁層と導電層との形成を複数回繰り返し行
うと、膜厚を増やすことができ、しかも、障壁層と導電
層との境界がほぼ直線状に形成される。
By repeating the formation of the barrier layer and the conductive layer a plurality of times, the film thickness can be increased, and the boundary between the barrier layer and the conductive layer can be formed in a substantially straight line.

なお、基板表面を階段状に形戒すると、第3図(e)及
び第5図に例示するように、各段のステノブ面には障壁
層と導電層が隣接してストライプ状に形成されることに
なる。
Note that when the substrate surface is shaped like steps, a barrier layer and a conductive layer are formed adjacent to each other in stripes on the steno knob surface of each step, as illustrated in FIGS. 3(e) and 5. It turns out.

以上のような方法により形成された障壁層と導電層との
境界は直線状になるため、導電層の長手方向、即ち一次
元方向に移動する電子の散乱は抑制され、高速移動を妨
げる要因を少なくすることができる。
Since the boundary between the barrier layer and the conductive layer formed by the above method is linear, the scattering of electrons moving in the longitudinal direction of the conductive layer, that is, in one dimension, is suppressed, and the factors that impede high-speed movement are suppressed. It can be reduced.

〔実施例〕〔Example〕

そこで、以下に本発明の実施例を図面に基づいて説明す
る。
Therefore, embodiments of the present invention will be described below based on the drawings.

第1図は、本発明の実施に使用するMOCVD装置の一
例を示す構或図であって、図中符号lは石英よりなる反
応室で、その一端にはガス供給口2が設けられ、他端に
はガス排気口3が形成され、また、反応室内1の底部に
は基板載置台4が取付けられ、さらに、反応室1の外部
には、基板載置台4上の基板11表面を加熱する加熱ラ
ンプ5が取付けられており、ガス供給口2から供給され
た反応ガスの性質に応じた膜を基板11の表面に形成す
るように構或されている。
FIG. 1 is a configuration diagram showing an example of an MOCVD apparatus used for carrying out the present invention, in which reference numeral l represents a reaction chamber made of quartz, one end of which is provided with a gas supply port 2, the other end of which is a reaction chamber made of quartz. A gas exhaust port 3 is formed at the end, a substrate mounting table 4 is attached to the bottom of the reaction chamber 1, and a substrate 11 on the substrate mounting table 4 is heated on the outside of the reaction chamber 1. A heating lamp 5 is attached and is configured to form a film on the surface of the substrate 11 according to the properties of the reaction gas supplied from the gas supply port 2.

6は、2つのガス人口6a,6bと2つのガス出口6c
,6dを有する第一の切換弁で、一方のガス人口6aに
はTMA(}リメチルアルミニウム)ガスが一定流量で
供給され、他方のガス人口6bには水素(H2)ガスが
一定流量で供給され、また、一方のガス出口6cには、
反応室1のガス供給口2に接続された第一のガス管7が
取付けられ、他方のガス出口6dにはガス放出用のガス
管15が接続されている。
6 has two gas populations 6a, 6b and two gas outlets 6c.
, 6d, one gas population 6a is supplied with TMA (}remethylaluminum) gas at a constant flow rate, and the other gas population 6b is supplied with hydrogen (H2) gas at a constant flow rate. In addition, one gas outlet 6c has
A first gas pipe 7 connected to the gas supply port 2 of the reaction chamber 1 is attached, and a gas discharge gas pipe 15 is connected to the other gas outlet 6d.

8は、2つのガス人口8a,8bと2つのガス出口8c
,8dを備えた第二の切換弁で、一方のガス人口8aに
はTMG (}リメチルガリウム)ガスが一定流量で供
給され、他方のガス人口8bには水素(Hア)ガスが一
定流量で供給され、また、一方のガス出口8cには、反
応室lのガス供給口2に接続された第二のガス管9が取
付けられ、さらに、他方のガス出口8dにはガス放出用
のガス管16が接続されている。
8 has two gas populations 8a, 8b and two gas outlets 8c.
, 8d, one gas population 8a is supplied with TMG (}limethylgallium) gas at a constant flow rate, and the other gas population 8b is supplied with hydrogen (HA) gas at a constant flow rate. A second gas pipe 9 connected to the gas supply port 2 of the reaction chamber l is attached to one gas outlet 8c, and a gas for gas release is connected to the other gas outlet 8d. A tube 16 is connected.

IOは、反応室1のガス供給口2に接続された第3のガ
ス管で、反応室1に常時供給するキャリアガスや反応ガ
スを一定量で流すように構成されている。
IO is a third gas pipe connected to the gas supply port 2 of the reaction chamber 1, and is configured to flow a constant amount of carrier gas and reaction gas that are constantly supplied to the reaction chamber 1.

11は、ガリウム砒素(GaAs)基板で、このGaA
s基板の上面となる(001)結晶面は、第3図(a)
に示すように階段状に形戊され、その段差dが原子1個
の大きさを有するとともに、その奥行きWが16nmと
なるステップ面Sを有するように構或されている。
11 is a gallium arsenide (GaAs) substrate;
The (001) crystal plane, which is the upper surface of the s-substrate, is shown in Figure 3(a).
As shown in the figure, it is shaped like a step, and has a step surface S in which the step d has the size of one atom and the depth W is 16 nm.

なお、図中符号12は、第一及び第二の切換弁6,8の
切り換え、及び加熱ランプのON,OFFを制御する制
御回路を示している。
Note that the reference numeral 12 in the figure indicates a control circuit that controls switching of the first and second switching valves 6 and 8 and turning on and off the heating lamp.

次に、本発明の一実施例を第1〜3図に基づいて説明す
る。
Next, one embodiment of the present invention will be described based on FIGS. 1 to 3.

まず、第2図(a)に示すように、反応ガスとなるアル
シン(Aslh)と、キャリアガスとなる水素(H2)
ガスを流量1 2 j2/mtnで第3のガス管10を
通して反応室1に供給するとともに、反応室l内部の圧
力を減圧して7 6 Torrにする。
First, as shown in Figure 2(a), arsine (Aslh) becomes a reaction gas and hydrogen (H2) becomes a carrier gas.
Gas is supplied to the reaction chamber 1 through the third gas pipe 10 at a flow rate of 1 2 j2/mtn, and the pressure inside the reaction chamber 1 is reduced to 7 6 Torr.

また、第二の切換弁8を切換えて、その第二の入口8b
に入る水素ガスを第二のガス管9を通して反応室1内に
供給する一方、第一の入口8aを通るTMGガスを外部
に放出する。
Also, the second switching valve 8 is switched to the second inlet 8b.
The entering hydrogen gas is supplied into the reaction chamber 1 through the second gas pipe 9, while the TMG gas passing through the first inlet 8a is discharged to the outside.

この状態において、第一の切換弁6を切換え、第一のガ
ス管7を通してTMAガスを2.5 cc/minの流
量で反応室1に供給するとともに、この切換弁6の入口
6bに入った水素ガスを外方に放出する。
In this state, the first switching valve 6 was switched, and TMA gas was supplied to the reaction chamber 1 at a flow rate of 2.5 cc/min through the first gas pipe 7, and the TMA gas entered the inlet 6b of this switching valve 6. Release hydrogen gas outward.

このTMAガスの供給は3秒行い、この間に、加熱用ラ
ンブ5を点灯させて反応室l内を700“Cに保持する
。これにより、GaAs基板11上に形成された段の垂
直面Hとステップ面Sとの交差領域にAIAsが付着し
て戒長し、奥行きが8nmとなる領域に第一の旧^S層
2oが形成される(第3図(a))。
The TMA gas is supplied for 3 seconds, and during this time the heating lamp 5 is turned on to maintain the inside of the reaction chamber 1 at 700"C. As a result, the vertical surface H of the step formed on the GaAs substrate 11 AIAs adheres and lengthens in the region intersecting with the step surface S, and a first old S layer 2o is formed in a region having a depth of 8 nm (FIG. 3(a)).

次に、この3秒が経過した時点で、第2図(b)に示す
ように加熱用ランプ5を消灯させて反応室1内の温度を
TMAガスの反応温度以下にし、これと同時に第一の切
換弁6を切換えることにより、TMAガスを外部に放出
させるとともにキャリアガス(H2)を反応室l内に供
給する。
Next, when these 3 seconds have elapsed, the heating lamp 5 is turned off to bring the temperature inside the reaction chamber 1 below the reaction temperature of the TMA gas, as shown in FIG. By switching the switching valve 6, the TMA gas is released to the outside and the carrier gas (H2) is supplied into the reaction chamber 1.

したがって、反応室1内のTMAガスは、低温下で水素
ガス等によって排気口3から放出され、約1分後には殆
ど除去されるので、この間、GaAs基板11上には膜
が戒長しないことになる。
Therefore, the TMA gas in the reaction chamber 1 is released from the exhaust port 3 by hydrogen gas or the like at low temperature, and is almost removed after about 1 minute, so that no film is formed on the GaAs substrate 11 during this time. become.

この後に、第2図(c)に示すように、第二の切換弁8
を切り換え、第二のガス管9を通してTMGガスを2.
5cc/IIIinの流量で反応室1に供給するととも
に、この切換弁8を通る水素ガスを外方に放出する。
After this, as shown in FIG. 2(c), the second switching valve 8
2. Switch the TMG gas through the second gas pipe 9.
Hydrogen gas is supplied to the reaction chamber 1 at a flow rate of 5 cc/IIIin, and the hydrogen gas that passes through this switching valve 8 is discharged to the outside.

このTMCガスの供給は3秒行い、これに同期させて加
熱用ランブ5を点灯し、反応室内を700゜Cに保持す
る。これにより、GaAs基仮11上に形成された第一
のAIAs層20の垂直面Hと段のステップ面Sとの交
差領域にGaAsが付着し始め、ステップ面Sの残りの
領域に第一のGaAs層2lが形成されることになる(
第3図(b)).ついで、この3秒経過と同時に加熱用
ランブ5を消灯してTMGガスの化学反応を停止した上
、第二の切換弁8を切換えてTMGガスを外部に放出さ
せるとともに、キャリアガス(H2)を反応室1内に供
給すると、反応室1内のTMGガスLよキャリアガスに
よって排気口3から放出され、約1分後には殆ど除去さ
れるので、GaAs基仮11上には膜がそれ以上戒長し
ないことになる(第2図(b〉)。
This TMC gas is supplied for 3 seconds, and in synchronization with this, the heating lamp 5 is turned on to maintain the inside of the reaction chamber at 700°C. As a result, GaAs begins to adhere to the intersection area between the vertical surface H of the first AIAs layer 20 formed on the GaAs base layer 11 and the step surface S of the step, and the first AIAs layer 20 forms on the remaining region of the step surface S. A GaAs layer 2l will be formed (
Figure 3(b)). Then, at the same time as these 3 seconds have elapsed, the heating lamp 5 is turned off to stop the chemical reaction of the TMG gas, and the second switching valve 8 is switched to release the TMG gas to the outside, and at the same time, the carrier gas (H2) is turned off. When supplied into the reaction chamber 1, the TMG gas L in the reaction chamber 1 is discharged from the exhaust port 3 by the carrier gas, and most of it is removed after about 1 minute, so that no further film is deposited on the GaAs base 11. (Figure 2 (b)).

この工程を終えると、GaAs基板11表面の各ステン
プ面Sには、AIAsli 2 0とGaAsli 2
 1が隣接して形成されることになり、各ステンプ面S
に形成されたこれらの層20.21によって表面に新た
な階段面が形成される。
After completing this step, each stamp surface S on the surface of the GaAs substrate 11 has AIAsli 2 0 and GaAsli 2
1 are formed adjacent to each other, and each stamp surface S
These layers 20,21 formed on the surface form a new step surface on the surface.

次に、加熱ランブ5を点灯させて、反応室1内を3秒間
7 0 0 ’Cにするとともに、これに同期させて第
一の切換弁6を切り換えることにより反応室1内にTM
Aガスを供給し、第一のAIAs層20のステンブ面と
第一のGaAsJ! 2 1の垂直面との交差領域にA
IAsを付着させ、第一のAIAs層20上面と同一奥
行きとなる第二のAIAs層22を長させる(第2図(
a),第3図(C))。
Next, the heating lamp 5 is turned on to bring the temperature inside the reaction chamber 1 to 700'C for 3 seconds, and in synchronization with this, the first switching valve 6 is switched so that the TM inside the reaction chamber 1 is turned on.
A gas is supplied, and the stencil surface of the first AIAs layer 20 and the first GaAsJ! 2 A in the area of intersection with the vertical plane of 1
IAs is deposited and the second AIAs layer 22 is lengthened to have the same depth as the top surface of the first AIAs layer 20 (see Fig. 2).
a), Figure 3 (C)).

この後に、加熱ランプ5の消灯と第一の切換弁の切換え
を同時に行い、GaAs基板l1上の膜の成長を停止さ
せる(第2図(b)). ついで、加熱ランブ5によって反応室ll内を3秒間7
00゜Cに上げると同時に、第二の切換弁8を切り換え
てTMGガスを反応室1に供給し、第一のGaAs層2
1上に第二のGaAs層23を形成する(第2図(C)
.第3図(d))。
After this, the heating lamp 5 is turned off and the first switching valve is switched on at the same time to stop the growth of the film on the GaAs substrate l1 (FIG. 2(b)). Then, the inside of the reaction chamber 11 is heated by heating lamp 5 for 3 seconds.
At the same time, the second switching valve 8 is switched to supply TMG gas to the reaction chamber 1, and the first GaAs layer 2 is heated to 00°C.
A second GaAs layer 23 is formed on 1 (FIG. 2(C)
.. Figure 3(d)).

以上のような加熱ランプ5のON−OFFと切換弁6,
8の切換えとを交互に行う(第4図)。
ON/OFF of the heating lamp 5 and the switching valve 6 as described above,
8 switching is performed alternately (Fig. 4).

即ち、加熱ランブ5によりGaAs基板l1を3秒間7
00゜Cに加熱するとともに、これに同期させてGaA
s基板11表面にTMAガスを供給することにより、G
aAs基+7i11表面の段のステップ面Sの奥行き方
向の半分にAIAs層を形成し、この後に、加熱ランブ
5を消すと同時にTMAガスの供給を停止してGaAs
基板11表面の膜の戒長を止め、ついで、TMAガスを
除去する。
That is, the heating lamp 5 heats the GaAs substrate l1 for 3 seconds.
At the same time as heating to 00°C, GaA
By supplying TMA gas to the surface of the s-substrate 11, G
An AIAs layer is formed on the half of the step surface S of the step surface of the aAs group +7i11 surface in the depth direction, and then the heating lamp 5 is turned off and at the same time the supply of TMA gas is stopped to form a GaAs layer.
The growth of the film on the surface of the substrate 11 is stopped, and then the TMA gas is removed.

さらに、加熱ランブ5によるGaAs基板の700゜C
の加熱と、TMGガスの供給とを3秒間同時に行うこと
により、段のステップ面Sの残り半分の領域にGaAs
層を形成し、この後に、加熱ランプの消灯とTMAガス
の供給停止とを同時に行ってGaAs基板1表面の膜の
成長を止めてから、TMGガスを排気する。
Furthermore, the heating lamp 5 heated the GaAs substrate to 700°C.
By simultaneously heating and supplying TMG gas for 3 seconds, GaAs is deposited on the remaining half region of the step surface S of the step.
After forming a layer, the heating lamp is turned off and the supply of TMA gas is stopped at the same time to stop the growth of the film on the surface of the GaAs substrate 1, and then the TMG gas is exhausted.

このようなAIAs層とGaAs層との形戒を複数回繰
り返し行い、それぞれの膜厚を1000入に形成した結
果、第3図(e)及び第5図に示すように、AIAs層
30とGaAs層31との境界がほぼ直線状に形成され
た。
As a result of repeating the formation of the AIAs layer 30 and the GaAs layer several times and forming each layer to a thickness of 1000, as shown in FIGS. 3(e) and 5, the AIAs layer 30 and the GaAs layer 30 The boundary with layer 31 was formed in a substantially straight line.

以上のような工程を経た後、第6図に示すように、AI
As層30及びGaAsll 3 1め上にシリコンを
混入したAIGaAs層13をエピタキシャル成長し、
その上にソース電極14、ゲート電極15、ドレイン電
極l6の各電極を形成することになる。
After going through the above steps, as shown in Figure 6, the AI
An AIGaAs layer 13 mixed with silicon is epitaxially grown on the As layer 30 and GaAsll 3 1st.
The source electrode 14, the gate electrode 15, and the drain electrode l6 are formed thereon.

この装置において、上記したA]AsJi 3 0は障
壁層となるため、導電層となるGaAs層31に発生す
る電子ガスは、ステップ面Sの奥行き方向への移動を妨
げられるために、ソース電極l4からドレイン電極16
方向、即ち、GaAs層31の長手方向に沿って1次元
方向に移動することになる。
In this device, since the above-mentioned A]AsJi 3 0 serves as a barrier layer, the electron gas generated in the GaAs layer 31, which serves as a conductive layer, is prevented from moving in the depth direction of the step surface S. from the drain electrode 16
In other words, it moves in a one-dimensional direction along the longitudinal direction of the GaAs layer 31.

この場合、GaAsll31とAIAs層30との境界
が直線状に形成されているため、その境界に沿って一次
元方向に進行する電子の散乱が抑制され、高速移動の妨
げる要因を少なくすることができる。
In this case, since the boundary between the GaAsll 31 and the AIAs layer 30 is formed in a straight line, scattering of electrons traveling in a one-dimensional direction along the boundary is suppressed, and factors that hinder high-speed movement can be reduced. .

なお、上記した実施例は、GaA.J!:板11に形成
した段のステップ面SにA1^S層3oとGaAs層3
1とを形成する場合について述べたが、図示しないシリ
コン基板上に段を形成し、そのステップ面に障壁層とな
るシリコン層、導電層となるシリコンゲルマニウム層を
形成する場合にも、基板表面に供給する反応ガスを切り
換える際に、基板周囲の反応ガスの除去と基板加熱温度
の低下という新たな工程を加えることにより、障壁層と
導電層との境界の断面をほぼ直線状に形成することがで
きる.この場合、シリコン層を形成するための反応ガス
としてSiHnを使用し、シリコンゲルマニウム層を形
成するための反応ガスとしてS t H4にGeClt
を加えたガスをイ史用する。
Note that the above-mentioned embodiments are based on GaA. J! :A1^S layer 3o and GaAs layer 3 on the step surface S of the step formed on the plate 11.
1 has been described, however, when forming steps on a silicon substrate (not shown) and forming a silicon layer to serve as a barrier layer and a silicon germanium layer to serve as a conductive layer on the step surface, it is also possible to form steps on the substrate surface. By adding a new process of removing the reactive gas around the substrate and lowering the substrate heating temperature when switching the reactive gas to be supplied, it is possible to form the cross section of the boundary between the barrier layer and the conductive layer into a nearly straight line. can. In this case, SiHn is used as a reactive gas to form a silicon layer, and GeClt is used in S t H4 as a reactive gas to form a silicon germanium layer.
The gas with which is added is then used.

また、ガリウムを含むIn−V層化合物半導体を導電層
となし、これよりもバンドギャ・ンブの大きな材料によ
り障壁層を形成する場合にも、反応ガスの切り換えの際
に、一時的に基板温度を低くするとともに、基板上の反
応ガスを除去する工程を加え、各層の境界面を揃えるこ
ともできる。
Furthermore, when using an In-V layer compound semiconductor containing gallium as a conductive layer and forming a barrier layer using a material with a larger band gap than this, the substrate temperature may be temporarily lowered when switching the reaction gas. In addition to lowering the thickness, it is also possible to add a step of removing the reactive gas on the substrate to align the boundary surfaces of each layer.

[発明の効果] 以上述べたように本発明によれば、基板表面に供給する
反応ガスを切り換える際に、基板周囲の反応ガスの除去
と基板加熱温度の低下という新たな工程を加えたので、
反応ガスの切り換えによってストライプ状に形戒される
障壁層と導電層との境界の断面がほぼ直線状に形成され
ることになり、導電層の長平方向、即ち一次元方向に移
動する電子の散乱は抑制され、高速移動を妨げる要因を
少なくすることが可能になる。
[Effects of the Invention] As described above, according to the present invention, when switching the reactive gas supplied to the substrate surface, a new process of removing the reactive gas around the substrate and lowering the substrate heating temperature is added.
By switching the reactant gas, the cross section of the boundary between the striped barrier layer and the conductive layer is formed into a nearly straight line, and the scattering of electrons moving in the longitudinal direction of the conductive layer, that is, in one dimension. is suppressed, making it possible to reduce factors that hinder high-speed movement.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例に使用する装置の構或図、 第2図は、本発明の一実施例の動作説明図、第3図は、
本発明による膜の形戊過程を示す断面図、 第4図は、本発明に使用するガスの流景と基板温度の一
例を示すタイミングチャート、第5図は、本発明によっ
て形成したAIAs層とGaAs層との境界の位置を示
す分布図、 第6図は、量子細線構造の半導体装置の一例を示す斜視
図、 第7図は、従来方法による膜の形成過程を示す断面図、 第8図は、従来方法によって形成したAIAs層とGa
As層との境界の位置を示す分布図である。 [符号の説明] l・・・反応室、 2・・・ガス供給口、 3・・・ガス排気口、 4・・・基板載置台、 5・・・加熱ランプ、 6・・・第一の切換弁、 8・・・第二の切換弁、 7.9.10・・・ガス管、 11・・・基板、 12・・・制御回路、 2 0.  2 2.  3 0−AlAS層、2 1
,  2 3.  3 1=GaAs層。
FIG. 1 is a diagram showing the configuration of an apparatus used in an embodiment of the present invention, FIG. 2 is an explanatory diagram of the operation of an embodiment of the present invention, and FIG.
FIG. 4 is a cross-sectional view showing the process of forming the film according to the present invention. FIG. 4 is a timing chart showing an example of the gas flow and substrate temperature used in the present invention. FIG. A distribution diagram showing the position of the boundary with the GaAs layer, FIG. 6 is a perspective view showing an example of a semiconductor device with a quantum wire structure, FIG. 7 is a cross-sectional view showing the process of forming a film by a conventional method, and FIG. 8 is an AIAs layer formed by a conventional method and a Ga layer.
FIG. 3 is a distribution diagram showing the position of the boundary with the As layer. [Explanation of symbols] 1...Reaction chamber, 2...Gas supply port, 3...Gas exhaust port, 4...Substrate mounting table, 5...Heating lamp, 6...First Switching valve, 8... Second switching valve, 7.9.10... Gas pipe, 11... Board, 12... Control circuit, 2 0. 2 2. 3 0-AlAS layer, 2 1
, 2 3. 3 1=GaAs layer.

Claims (2)

【特許請求の範囲】[Claims] (1)基板の表面に第一の反応ガスを供給すると同時に
、前記基板の温度を反応温度に上げ、この状態を所望時
間保持することにより、前記基板上に障壁層を形成し、
この後に、前記第一の反応ガスの供給を停止すると同時
に、前記基板の温度を低下させて前記基板表面の膜の成
長を停止し、ついで第一の反応ガスを除去する第1の工
程と、前記基板の表面に第二の反応ガスを供給すると同
時に、前記基板の温度を反応温度に設定し、この状態を
所望時間保持することにより、前記基板上に導電層を形
成し、この後に、前記第二の反応ガスの供給を停止する
と同時に、前記基板温度を低下させて前記基板表面の膜
の成長を停止し、ついで、第二の反応ガスを除去する第
2の工程とを有するとともに、 前記第1の工程と前記第2の工程とを順に所望回数繰り
返すことによって障壁層と導電層とを前記基板上に交互
に形成することを特徴とする半導体装置の製造方法。
(1) Forming a barrier layer on the substrate by simultaneously supplying a first reaction gas to the surface of the substrate, raising the temperature of the substrate to the reaction temperature, and maintaining this state for a desired time;
After this, a first step of stopping the supply of the first reaction gas, simultaneously lowering the temperature of the substrate to stop the growth of the film on the surface of the substrate, and then removing the first reaction gas; At the same time as supplying the second reaction gas to the surface of the substrate, the temperature of the substrate is set to the reaction temperature and this state is maintained for a desired time to form a conductive layer on the substrate. a second step of stopping the supply of the second reaction gas, simultaneously lowering the substrate temperature to stop the growth of the film on the substrate surface, and then removing the second reaction gas; A method for manufacturing a semiconductor device, characterized in that barrier layers and conductive layers are alternately formed on the substrate by repeating the first step and the second step a desired number of times.
(2)前記基板の表面は階段状に形成されており、障壁
層と導電層とがストライプ状に構成された量子細線構造
をもって成長することを特徴とする請求項(1)記載の
半導体装置の製造方法。
(2) The semiconductor device according to claim 1, wherein the surface of the substrate is formed in a stepwise manner, and the barrier layer and the conductive layer are grown to have a quantum wire structure configured in a stripe shape. Production method.
JP24407989A 1989-09-19 1989-09-19 Manufacture of semiconductor device Pending JPH03105915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24407989A JPH03105915A (en) 1989-09-19 1989-09-19 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24407989A JPH03105915A (en) 1989-09-19 1989-09-19 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH03105915A true JPH03105915A (en) 1991-05-02

Family

ID=17113425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24407989A Pending JPH03105915A (en) 1989-09-19 1989-09-19 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH03105915A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05275678A (en) * 1992-03-27 1993-10-22 Daido Hoxan Inc Semiconductor device
JPH05275679A (en) * 1992-03-27 1993-10-22 Daido Hoxan Inc Manufacture of semiconductor device
US5296390A (en) * 1990-04-09 1994-03-22 Fujitsu Limited Method for fabricating a semiconductor device having a vertical channel of carriers

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5296390A (en) * 1990-04-09 1994-03-22 Fujitsu Limited Method for fabricating a semiconductor device having a vertical channel of carriers
JPH05275678A (en) * 1992-03-27 1993-10-22 Daido Hoxan Inc Semiconductor device
JPH05275679A (en) * 1992-03-27 1993-10-22 Daido Hoxan Inc Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
CN102640307A (en) Method for manufacturing a semiconductor substrate and method for manufacturing a light-emitting device
CN101647091B (en) Gallium nitride epitaxial wafer, and method of fabricating gallium nitride semiconductor light emitting device
JPH03105915A (en) Manufacture of semiconductor device
TW201243980A (en) Substrate carrier with multiple emissivity coefficients for thin film processing
CN104603328A (en) Method and apparatus for growing nitride-based compound semiconductor crystals
JPH1174202A (en) Vapor growth device of gallium nitride iii-v compound semiconductor and gallium nitride iii-v compound semiconductor device and its manufacture
JP2002289538A (en) Method for fabricating semiconductor element and semiconductor element
JPH01290221A (en) Semiconductor vapor growth method
US6265329B1 (en) Quantum deposition distribution control
JP3035953B2 (en) (III)-(V) Group Compound Semiconductor Vapor Phase Growth Method
JP2577544B2 (en) Method for manufacturing semiconductor device
Yamamoto et al. Selective area etching of III–V semiconductors using TDMAAs and TDMASb in metalorganic molecular beam epitaxy chamber
JP4308502B2 (en) Method of forming nitride thin film and method of manufacturing quantum well device
KR20030071098A (en) Apparatus for manufacturing GaN substrate
JP2567228B2 (en) Epitaxial growth method for semiconductor crystals
JPH02228025A (en) Selective growing method by thermal decomposition method
JPH01290222A (en) Semiconductor vapor growth method
JPH02166722A (en) Crystal growth of compound semiconductor
JPH05326922A (en) Semiconductor crystal growth
JPH08213328A (en) Organometallic vapor growth device and organometallic vapor growth method using that
JPH0459699A (en) Production of longitudinal semiconductor superlattice
JP2002083778A (en) Method and device for producing semiconductor, and production method for semiconductor device
JPH0383896A (en) Apparatus for vapor epitaxial growth
JPH04139816A (en) Vapor deposition method
JPS6134930A (en) Growing process of selective type crystal