JP4308502B2 - Method of forming nitride thin film and method of manufacturing quantum well device - Google Patents

Method of forming nitride thin film and method of manufacturing quantum well device Download PDF

Info

Publication number
JP4308502B2
JP4308502B2 JP2002332454A JP2002332454A JP4308502B2 JP 4308502 B2 JP4308502 B2 JP 4308502B2 JP 2002332454 A JP2002332454 A JP 2002332454A JP 2002332454 A JP2002332454 A JP 2002332454A JP 4308502 B2 JP4308502 B2 JP 4308502B2
Authority
JP
Japan
Prior art keywords
thin film
substrate
gas
nitride thin
source gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002332454A
Other languages
Japanese (ja)
Other versions
JP2004165571A (en
Inventor
明広 石田
洋 藤安
正志 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2002332454A priority Critical patent/JP4308502B2/en
Publication of JP2004165571A publication Critical patent/JP2004165571A/en
Application granted granted Critical
Publication of JP4308502B2 publication Critical patent/JP4308502B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、窒化物薄膜の形成方法及び量子井戸デバイスの製造方法に関する。
【0002】
【従来技術】
InAlGaN系半導体は、可視・紫外域の発光素子や高出力・高耐圧電子デバイスへの応用上大変重要な材料である。また、AlGaN/GaN系量子井戸や超格子は、伝導帯に形成されるサブバンド間の電子遷移を使うことにより、中赤外域での発光素子や光通信用波長域での変調素子への応用も研究されてきている。高性能な量子井戸デバイスの作製においては、ポテンシャル井戸の幅に単原子層の厚さの不均一が生じると、それに応じて発光特性に変化が生じる。このため、量子井戸や超格子の各層の膜厚を正確に制御する必要があり、原子層レベルで厚さを制御することが好ましい。
【0003】
このような量子井戸デバイスの作製には、InAlGaN系半導体薄膜成長で通常用いられる有機金属化学気相成長(MOCVD)法、高真空(10−7Pa以下)中でアンモニアとGaやAl等の金属元素を供給する分子線エピタキシー(MBE)法やホットウオールエピタキシー(HWE)法が知られている。
【0004】
【発明が解決しようとする課題】
しかしながら、前述したMOCVD法では、薄膜成長が大気圧付近で行われるため、膜厚を原子層レベルで制御することは難しい。
【0005】
またMBE法やHWE法では、アンモニアと金属元素の交互供給による原子層レベルで膜厚の制御は可能であるものの、高品位の薄膜・量子井戸を高速に原子層成長することは困難である。すなわちGaNやInN等の窒化物半導体は、窒素の平衡蒸気圧が高く、窒素が蒸発しやすいため、高真空下でアンモニアと金属元素を交互に供給することにより原子層を成長させる方法では、高品質な薄膜を得ることは難しい。また原子層成長を行う場合には、1原子層の薄膜を形成するために原料ガスを複数回供給する必要があるため、成長速度が遅くなり、多くの量子井戸構造を持つデバイスの作製には長い時間がかかる。
【0006】
本発明は、上記事情に鑑みてなされたものであり、高品位の原子層を短時間で成長させることができる窒化物薄膜の形成方法及び量子井戸デバイスの製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者らは、上記課題を解決するため鋭意検討した。その結果、基板周囲のアンモニアの圧力を適切な範囲に設定することにより、上記課題を解決し得ることを見出し、本発明を完成するに至った。
【0008】
すなわち本発明は、1×10−3〜1Paのアンモニア雰囲気中で、有機金属ガスを含む原料ガスを、加熱した基板側に吹き付けて、前記基板の表面を覆うアンモニアを追い出し、基板上に有機金属ガス中の金属元素からなる金属元素層を形成する工程と、原料ガスの吹き付けを停止することにより、再び前記基板の表面をアンモニアで覆い、このアンモニアにより前記金属元素層を窒化させ、基板上に金属元素層の窒化物である窒化物薄膜を形成する工程とを含み、原料ガスを加熱した基板側に吹き付ける際に、基板に対して設けられた原料ガス吹付け管を用い、原料ガス吹付け管を通して原料ガスを基板に吹き付けるとともに、原料ガス吹付け管の先端開口が基板よりも大きくなっていることを特徴とする窒化物薄膜の形成方法である。
【0009】
この発明によれば、アンモニア雰囲気中で有機金属ガスを含む原料ガスを基板側に吹き付けると、吹き付けられた原料ガスは、真空中で膨張し、基板表面のアンモニアガスを追い出す。そして、原料ガス中に含まれる有機金属ガスが、基板表面に1原子層の金属元素層を形成する。この金属元素層は、有機金属ガス中の金属元素からなる。原料ガスの吹き付けを停止すると、アンモニアガスが再び基板表面を覆い表面の金属元素層を窒化するため原料ガスの1回の吹き付けにより、1原子層の窒化物薄膜が高速で成長する。また窒化物薄膜が成長した後は、窒化物薄膜の表面がアンモニアガスで覆われるため、窒素の蒸発が十分に防止される。従って、高品位な窒化物薄膜が得られる。
【0010】
また本発明は、基板上に窒化物薄膜を含む量子井戸デバイスの製造方法において、窒化物薄膜を、上記窒化物薄膜の形成方法により形成することを特徴とするものである。
【0011】
この場合、量子井戸デバイスに含まれる窒化物薄膜が原子層レベルで良好に制御されるため、良好な光特性を発揮する量子井戸デバイスを得ることができる。また窒化物薄膜を短時間で形成できるため、量子井戸デバイスの作製に要する時間が短縮され、量子井戸デバイスの生産性を向上させることができる。
【0012】
【発明の実施の形態】
以下、本発明の実施形態について詳細に説明する。
【0013】
まず窒化物薄膜の形成方法に先立って、窒化物薄膜の形成方法を実施する窒化物薄膜形成装置について説明する。
【0014】
図1は、本発明の窒化物薄膜の形成方法を実施する窒化物薄膜形成装置の一例を示す概略図である。
【0015】
図1に示すように、窒化物薄膜形成装置10は真空槽1を有し、真空槽1内には、基板2を加熱するヒータ3が設けられている。真空槽1は、アンモニア導入管4を介してアンモニアガス源5に接続され、アンモニア導入管4にはバルブ6が設置されている。また真空槽1には、排気ライン7が接続され、排気ライン7にはバルブ8、ポンプ9が設置されている。更に真空槽1には、真空槽1内の圧力を測定する圧力計11が設けられている。
【0016】
また窒化物薄膜形成装置10は、原料ガスを基板2に吹き付ける原料ガス吹付け管12を備えている。原料ガス吹付け管12の先端はヒータ3に接近しており、先端開口12aは基板2よりも大きくなっている。これにより、原料ガスの吹付け時におけるアンモニアガスの巻き込みを防止でき、また基板2全体にわたって原料ガスを均一に吹き付けることができる。
【0017】
原料ガス吹付け管12は、その上流側で2つの原料ガス供給管12a,12bに分岐しており、原料ガス供給管13aにはバルブ14aが設置され、原料ガス供給管13bにはバルブ14bが設置されている。原料ガス供給管13aでは、トリメチルガリウム(TMG)ガス(有機金属ガス)及びNガス(キャリヤガス)を含む原料ガスが供給されるようになっており、原料ガス供給管13bでは、トリメチルアルミニウム(TMA)ガス(有機金属ガス)及びNガス(キャリヤガス)を含む原料ガスが供給されるようになっている。
【0018】
次に、上記窒化物薄膜形成装置10を用いた窒化物薄膜の形成方法について説明する。ここでは、基板2上にAlN膜を形成する方法を例にして説明する。
【0019】
まず基板2を真空槽1内に導入し、ヒータ3に基板2を固定する。次に、バルブ8を開き、ポンプ9を作動して真空槽1を1×10-4Pa以下に減圧し、基板2を加熱する。基板2の加熱温度は例えば1000℃である。1000℃とするのは、基板2の温度が900℃程度まで低くなると、原子層の結晶性が低下し、1000℃より高くなる過ぎても、原子層の再蒸発が生じるからである。
【0020】
続いて、バルブ6を開き、アンモニアガス源5からアンモニア導入管4を経てアンモニアガスを真空槽1内にアンモニアを導入する。アンモニアガスの導入量は、真空槽1内のアンモニアの圧力が1×10−3〜1Paとなる量とする。アンモニアガスの導入に際しては、圧力計11で測定される圧力をモニタしながらバルブ6の開度を調整するとよい。
【0021】
ここで、アンモニアガスを用いるのは、アンモニア雰囲気でAlNの原子層成長を行うと、TMAがスやAlは速やかにアンモニアと化合してAlNとなるからである。またアンモニアガスの圧力を上記範囲内としたのは、アンモニアガスの圧力が1×10−3Pa未満では、高品位の薄膜を高速に原子層成長することが困難となり、1Paを超えると、原子層レベルで膜厚を制御することが困難となるからである。
【0022】
次にバルブ14bを開く。これにより、Nガス及びTMAガスを含む原料ガスを原料ガス供給管13b及び原料ガス吹付け管12を経て基板2側に原料ガスを吹き付ける。これにより、原料ガスの体積が膨張し、基板2付近のアンモニアガスを追い出す(図2(a)参照)。更に原料ガス中に含まれるTMAガスは、基板2表面で分解され、1原子層のアルミニウム15が基板2に付着する(図2(b)参照)。このとき、基板2が高い温度に加熱されているため、2原子層のアルミニウムは形成されない。
【0023】
原料ガスの吹き付けを停止すると、基板2と原料ガス吹付け管12との間からアンモニアガスが入り込み(図3(a)参照)、基板2の表面は再びアンモニアガスで覆われ、基板2の表面上のAlが窒化される(図3(b)参照)。図3(b)中、符号16は窒素原子を表す。このため、原料ガスの1回の吹き付けにより、1原子層のAlN膜17が高速で成長する。またAlN膜17が形成された後は、AlN膜17の表面がアンモニアガスで覆われているため、窒素の蒸発が十分に防止される。従って、AlN膜17は高品位なものとなる。
【0024】
なお、AlN膜17は1層でもよいが、複数層積層する場合は、原料ガスの吹付けを繰り返すことにより、繰り返した回数と同じ数だけAlNの原子層が形成される。このとき、原料ガスの吹き付けの間隔を短くすれば、より高速に原子層を成長させることができる。
【0025】
以上、AlN膜を形成する方法について説明したが、GaN膜の形成も、基本的にはAl膜の形成と同様にして行うことができる。すなわち上記と同様にして真空槽1内のアンモニアガスの圧力を上記範囲内の値とした後、バルブ14aを開く。このとき、バルブ14bは閉じておく。これにより、Nガス及びTMGガスを含む原料ガスを原料ガス供給管13a及び原料ガス吹付け管12を経て基板2側に原料ガスを吹き付ける。これにより、原料ガスの体積が膨張し、基板2付近のアンモニアガスを追い出す。更に原料ガス中に含まれるTMGガスは、基板2表面で分解され、1原子層のガリウムが基板2に付着する。このとき、基板2が高い温度に加熱されているため、2原子層のガリウムは形成されない。
【0026】
原料ガスの吹き付けを停止すると基板2の表面は再びアンモニアガスで覆われ、基板2の表面上のGaが窒化されるため、原料ガスの1回の吹き付けにより、1原子層のGaN膜が高速で成長する。またGaN膜が形成された後は、GaN膜の表面がアンモニアガスで覆われているため、窒素の蒸発が十分に防止される。従って、高品位なGaN膜が得られる。GaNは、窒素が抜け易いため、本方法は、GaN膜の形成に特に有効である。
【0027】
なお、GaN膜を複数層積層する場合、上記AlN膜の形成の場合と同様に、原料ガスの吹き付けを繰り返すことにより、繰り返した回数と同じ数だけGaNの原子層を形成できる。
【0028】
更に、基板2上にAlGaNの混晶薄膜を形成する場合は、バルブ14a、14bを同時に開き、TMAガス(第1有機金属ガス)、TMGガス(第2有機金属ガス)及びNガスからなる原料ガスを基板2に吹き付ければよい。
【0029】
また有機金属ガスは、上記TMAガス、TMGガスに制限されるものではない。例えばGaN膜を作製する場合、トリエチルガリウム(TEG)ガスを用いることもできる。更にキャリヤガスは、有機金属ガスを搬送しうるガスであれば如何なるものであってもよく、キャリヤガスとしては、例えばNのほか、H、He、Ar等のガス又はこれらの混合ガスを用いることもできる。
【0030】
以上、窒化物薄膜の形成方法について説明したが、この窒化物薄膜の形成方法を利用することにより、窒化物薄膜を含む量子井戸デバイス、例えば量子カスケードレーザや光通信用波長域での光変調素子、可視・紫外域の発光素子などを製造することもできる。この場合、量子井戸デバイスにおいて窒化物薄膜が必要となるが、この窒化物薄膜を、上述した形成方法により形成するとよい。これにより、窒化物薄膜の厚さが原子層レベルで良好に制御されるため、良好な光特性が得られる。また窒化物薄膜を高速に形成できるため、量子井戸デバイスの生産性が向上する。
【0031】
また上記窒化物薄膜の形成方法を利用して、組成の異なる窒化物薄膜を交互に形成することにより超格子構造物を得ることもできる。例えば上記製造装置においてバルブ14a,14bを交互に開閉すればAlN膜とGaN膜とを交互に積層した超格子構造物を得ることができる。
【0032】
以下、実施例を用いて、本発明の内容をより具体的に説明するが、本発明は、以下の実施例に限定されるものではない。
【0033】
【実施例】
(実施例1)
まず図1に示す窒化物薄膜形成装置を用いて基板2上にAlN膜を形成した。
【0034】
まずAl(0001)基板2を用意し、この基板2を真空槽1に入れ、ヒータ3にセットした。次に、バルブ8を開いて真空槽1をポンプ9により十分に排気した後、ヒータ3により基板2を1000℃程度に加熱した。続いて、バルブ6を開き、真空槽1内にアンモニアガスを導入した。アンモニア流量100sccm程度に調整し、この際、真空槽1内のアンモニアガス圧力は1×10−2Pa程度となった。
【0035】
この状態で、バルブ14bを開き、TMAガス及び窒素ガスを体積比で1:100含む原料ガスを0.5cm(0℃、標準状態)だけ基板2側に吹き付けた。こうして基板2上にAlN膜を作製した。
【0036】
次に、HWE装置を用いてGaとアンモニアを同時供給し、AlN層の表面上にGaN層を形成し、基板2上に短周期超格子構造物を得た。
【0037】
そして、この短周期超格子構造物についてX線回折を行い、X線回折強度の角度依存性を測定した。結果を図4に示す。図4において、実線は測定値を示し、破線は理論値を示す。
【0038】
図4に示すように、X線回折による回折ピークの理論値と測定値がよく一致しており、原子層成長が良好に制御されていることが分かった。
(実施例2)
Al(0001)基板2上に[(AlN)(GaN) 5]/(AlN)2の量子カスケード構造を製造した。このとき、AlN膜及びGaN膜については、実施例1と同様にして形成した。
【0039】
そして、この量子カスケード構造について実施例1と同様にしてX線回折を行った。結果を図5に示す。図5において、実線は測定値を示し、破線は理論値を示す。また、この試料の透過電子顕微鏡像を図6に示す。
【0040】
図5に示すように、X線回折による回折ピークの理論値と測定値がよく一致しており、原子層成長が良好に制御されていることが分かった。また、透過電子顕微鏡写真にも明確な周期構造が確認できる。
【0041】
【発明の効果】
以上説明したように本発明の窒化物薄膜の形成方法によれば、原料ガスの1回の吹き付けにより、1原子層の窒化物薄膜が高速で成長する。また窒化物薄膜が成長した後は、窒化物薄膜の表面がアンモニアガスで覆われるため、窒素の蒸発が十分に防止され、高品位な窒化物薄膜が得られる。すなわち高品位の窒化物薄膜を短時間で形成することができる。
【0042】
また本発明の量子井戸デバイスの製造方法によれば、量子井戸デバイスに含まれる窒化物薄膜を原子層レベルで良好に制御できるため、良好な光特性を発揮する量子井戸デバイスを得ることができる。また窒化物薄膜を短時間で形成できるため、量子井戸デバイスの生産性を向上させることができる。
【図面の簡単な説明】
【図1】本発明の窒化物薄膜の形成方法を適用する窒化物薄膜の製造装置の一例を示す概略図である。
【図2】本発明による窒化物薄膜の形成方法の一工程を示す図であり、(a)は、原料ガスを吹き付けた状態を示し、(b)は、原料ガス吹付けによるアルミニウムの原子層の形成状態を示す。
【図3】本発明による窒化物薄膜の形成方法の他の工程を示す図であり、(a)は、原料ガスの吹付け停止後の状態を示し、(b)は、原料ガス吹付け停止による窒化アルミニウムの原子層が形成状態を示す。
【図4】実施例1に係るX線回折の結果を示すグラフである。
【図5】実施例2に係るX線回折の結果を示すグラフである。
【図6】実施例2に係る透過電子顕微鏡撮影の結果を示す。
【符号の説明】
2…基板、15…アルミニウム層(金属元素層)、17…AlN層(窒化物薄膜)。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for forming a nitride thin film and a method for manufacturing a quantum well device.
[0002]
[Prior art]
InAlGaN-based semiconductors are very important materials for application to light-emitting elements in the visible / ultraviolet region and high-power / high-voltage electronic devices. In addition, AlGaN / GaN quantum wells and superlattices can be applied to light emitting devices in the mid-infrared region and modulation devices in the wavelength region for optical communication by using electronic transition between subbands formed in the conduction band. Has also been studied. In the production of a high-performance quantum well device, if the thickness of the monoatomic layer is nonuniform in the width of the potential well, the light emission characteristics change accordingly. For this reason, it is necessary to accurately control the film thickness of each layer of the quantum well and the superlattice, and it is preferable to control the thickness at the atomic layer level.
[0003]
For the production of such quantum well devices, ammonia and metals such as Ga and Al are used in metalorganic chemical vapor deposition (MOCVD), which is usually used for InAlGaN-based semiconductor thin film growth, in a high vacuum (10 −7 Pa or less). A molecular beam epitaxy (MBE) method and a hot wall epitaxy (HWE) method for supplying elements are known.
[0004]
[Problems to be solved by the invention]
However, in the MOCVD method described above, since the thin film growth is performed near atmospheric pressure, it is difficult to control the film thickness at the atomic layer level.
[0005]
In the MBE method and the HWE method, the film thickness can be controlled at the atomic layer level by alternately supplying ammonia and metal elements, but it is difficult to grow the high-quality thin film / quantum well at high speed. In other words, nitride semiconductors such as GaN and InN have high equilibrium vapor pressure of nitrogen, and nitrogen easily evaporates. Therefore, in the method of growing atomic layers by alternately supplying ammonia and metal elements under high vacuum, It is difficult to obtain a quality thin film. In addition, when performing atomic layer growth, it is necessary to supply the source gas multiple times to form a single atomic layer thin film, which slows the growth rate and makes it possible to fabricate devices with many quantum well structures. It takes a long time.
[0006]
The present invention has been made in view of the above circumstances, and an object thereof is to provide a method for forming a nitride thin film and a method for manufacturing a quantum well device that can grow a high-quality atomic layer in a short time. .
[0007]
[Means for Solving the Problems]
The present inventors diligently studied to solve the above problems. As a result, it has been found that the above problem can be solved by setting the ammonia pressure around the substrate in an appropriate range, and the present invention has been completed.
[0008]
That is, in the present invention, in an ammonia atmosphere of 1 × 10 −3 to 1 Pa, a source gas containing an organometallic gas is blown to the heated substrate side to drive off the ammonia covering the surface of the substrate, and the organometallic is deposited on the substrate. The step of forming a metal element layer made of a metal element in the gas and the spraying of the source gas are stopped, so that the surface of the substrate is again covered with ammonia, and the metal element layer is nitrided with this ammonia, Forming a nitride thin film that is a nitride of the metal element layer, and using a source gas spray tube provided on the substrate when spraying the source gas to the heated substrate side, A method of forming a nitride thin film characterized in that source gas is sprayed onto a substrate through a tube, and a tip opening of the source gas spray tube is larger than the substrate .
[0009]
According to the present invention, when a source gas containing an organometallic gas is sprayed on the substrate side in an ammonia atmosphere, the sprayed source gas expands in a vacuum and drives off the ammonia gas on the substrate surface. The organometallic gas contained in the source gas forms a single atomic metal element layer on the substrate surface. This metal element layer is made of a metal element in an organometallic gas. When the spraying of the source gas is stopped, the ammonia gas covers the substrate surface again and nitrides the metal element layer on the surface, so that a single atomic layer of nitride thin film grows at a high speed by spraying the source gas once. Further, after the nitride thin film is grown, the surface of the nitride thin film is covered with ammonia gas, so that evaporation of nitrogen is sufficiently prevented. Therefore, a high-quality nitride thin film can be obtained.
[0010]
The present invention is also directed to a method for manufacturing a quantum well device including a nitride thin film on a substrate, wherein the nitride thin film is formed by the method for forming a nitride thin film.
[0011]
In this case, since the nitride thin film contained in the quantum well device is well controlled at the atomic layer level, a quantum well device that exhibits good optical characteristics can be obtained. Further, since the nitride thin film can be formed in a short time, the time required for manufacturing the quantum well device is shortened, and the productivity of the quantum well device can be improved.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0013]
First, prior to the nitride thin film forming method, a nitride thin film forming apparatus that performs the nitride thin film forming method will be described.
[0014]
FIG. 1 is a schematic view showing an example of a nitride thin film forming apparatus for carrying out the method for forming a nitride thin film of the present invention.
[0015]
As shown in FIG. 1, the nitride thin film forming apparatus 10 has a vacuum chamber 1, and a heater 3 for heating the substrate 2 is provided in the vacuum chamber 1. The vacuum chamber 1 is connected to an ammonia gas source 5 through an ammonia introduction pipe 4, and a valve 6 is installed in the ammonia introduction pipe 4. An exhaust line 7 is connected to the vacuum chamber 1, and a valve 8 and a pump 9 are installed in the exhaust line 7. Further, the vacuum chamber 1 is provided with a pressure gauge 11 for measuring the pressure in the vacuum chamber 1.
[0016]
The nitride thin film forming apparatus 10 includes a source gas spray tube 12 that sprays source gas onto the substrate 2. The tip of the source gas spray tube 12 is close to the heater 3, and the tip opening 12 a is larger than the substrate 2. Thereby, it is possible to prevent the ammonia gas from being involved when the raw material gas is sprayed, and to uniformly spray the raw material gas over the entire substrate 2.
[0017]
The source gas blowing pipe 12 is branched into two source gas supply pipes 12a and 12b on the upstream side thereof, the source gas supply pipe 13a is provided with a valve 14a, and the source gas supply pipe 13b is provided with a valve 14b. is set up. The source gas supply pipe 13a is supplied with a source gas containing trimethylgallium (TMG) gas (organometallic gas) and N 2 gas (carrier gas), and the source gas supply pipe 13b is supplied with trimethylaluminum ( A source gas containing TMA) gas (organometallic gas) and N 2 gas (carrier gas) is supplied.
[0018]
Next, a method for forming a nitride thin film using the nitride thin film forming apparatus 10 will be described. Here, a method of forming an AlN film on the substrate 2 will be described as an example.
[0019]
First, the substrate 2 is introduced into the vacuum chamber 1, and the substrate 2 is fixed to the heater 3. Next, the valve 8 is opened, the pump 9 is operated, the vacuum chamber 1 is depressurized to 1 × 10 −4 Pa or less, and the substrate 2 is heated. The heating temperature of the substrate 2 is 1000 ° C., for example. The reason why the temperature is set to 1000 ° C. is that when the temperature of the substrate 2 is lowered to about 900 ° C., the crystallinity of the atomic layer is lowered, and even if the temperature is higher than 1000 ° C., the reevaporation of the atomic layer occurs.
[0020]
Subsequently, the valve 6 is opened, and ammonia gas is introduced into the vacuum chamber 1 from the ammonia gas source 5 through the ammonia introduction pipe 4. The amount of ammonia gas introduced is such that the ammonia pressure in the vacuum chamber 1 is 1 × 10 −3 to 1 Pa. When introducing the ammonia gas, the opening of the valve 6 may be adjusted while monitoring the pressure measured by the pressure gauge 11.
[0021]
Here, the reason why ammonia gas is used is that when atomic layer growth of AlN is carried out in an ammonia atmosphere, TMA and Al quickly combine with ammonia to become AlN. Also, the ammonia gas pressure is within the above range because if the ammonia gas pressure is less than 1 × 10 −3 Pa, it is difficult to grow a high-quality thin film at high speed, and if it exceeds 1 Pa, This is because it becomes difficult to control the film thickness at the layer level.
[0022]
Next, the valve 14b is opened. Thereby, the source gas containing N 2 gas and TMA gas is sprayed on the substrate 2 side through the source gas supply pipe 13b and the source gas blowing pipe 12. As a result, the volume of the source gas expands, and the ammonia gas in the vicinity of the substrate 2 is expelled (see FIG. 2A). Further, the TMA gas contained in the raw material gas is decomposed on the surface of the substrate 2, and a single atomic layer of aluminum 15 adheres to the substrate 2 (see FIG. 2B). At this time, since the substrate 2 is heated to a high temperature, aluminum of a diatomic layer is not formed.
[0023]
When the source gas spraying is stopped, ammonia gas enters between the substrate 2 and the source gas spray tube 12 (see FIG. 3A), and the surface of the substrate 2 is again covered with the ammonia gas. The upper Al is nitrided (see FIG. 3B). In FIG. 3B, reference numeral 16 represents a nitrogen atom. For this reason, a single atomic layer of AlN film 17 grows at a high speed by spraying the source gas once. Further, after the AlN film 17 is formed, the surface of the AlN film 17 is covered with ammonia gas, so that the evaporation of nitrogen is sufficiently prevented. Therefore, the AlN film 17 is of high quality.
[0024]
The AlN film 17 may be a single layer, but when a plurality of layers are stacked, AlN atomic layers are formed as many times as the number of repetitions by repeatedly spraying the source gas. At this time, the atomic layer can be grown at a higher speed if the interval between the spraying of the source gases is shortened.
[0025]
Although the method of forming the AlN film has been described above, the GaN film can be formed basically in the same manner as the formation of the Al film. That is, the valve 14a is opened after the ammonia gas pressure in the vacuum chamber 1 is set to a value within the above range in the same manner as described above. At this time, the valve 14b is closed. Thereby, the source gas containing N 2 gas and TMG gas is sprayed on the substrate 2 side through the source gas supply pipe 13a and the source gas blowing pipe 12. As a result, the volume of the source gas expands, and the ammonia gas in the vicinity of the substrate 2 is expelled. Further, the TMG gas contained in the source gas is decomposed on the surface of the substrate 2, and one atomic layer of gallium adheres to the substrate 2. At this time, since the substrate 2 is heated to a high temperature, gallium of a diatomic layer is not formed.
[0026]
When the spraying of the source gas is stopped, the surface of the substrate 2 is again covered with the ammonia gas, and Ga on the surface of the substrate 2 is nitrided. grow up. Further, after the GaN film is formed, the surface of the GaN film is covered with ammonia gas, so that the evaporation of nitrogen is sufficiently prevented. Therefore, a high quality GaN film can be obtained. Since GaN tends to release nitrogen, this method is particularly effective for forming a GaN film.
[0027]
When a plurality of GaN films are stacked, as in the case of forming the AlN film, it is possible to form atomic layers of GaN as many times as the number of repetitions by repeatedly spraying the source gas.
[0028]
Further, when an AlGaN mixed crystal thin film is formed on the substrate 2, the valves 14a and 14b are simultaneously opened, and are composed of TMA gas (first organometallic gas), TMG gas (second organometallic gas), and N 2 gas. A source gas may be sprayed onto the substrate 2.
[0029]
The organometallic gas is not limited to the above TMA gas and TMG gas. For example, when producing a GaN film, triethylgallium (TEG) gas can also be used. Further, the carrier gas may be any gas as long as it can transport the organometallic gas. Examples of the carrier gas include N 2 , H 2 , He, Ar, or a mixed gas thereof. It can also be used.
[0030]
The nitride thin film formation method has been described above. By using this nitride thin film formation method, a quantum well device including the nitride thin film, such as a quantum cascade laser or an optical modulation element in the wavelength region for optical communication, is used. In addition, light-emitting elements in the visible / ultraviolet region can be manufactured. In this case, a nitride thin film is required in the quantum well device, and this nitride thin film may be formed by the above-described forming method. Thereby, since the thickness of the nitride thin film is well controlled at the atomic layer level, good optical characteristics can be obtained. Further, since the nitride thin film can be formed at high speed, the productivity of the quantum well device is improved.
[0031]
In addition, a superlattice structure can be obtained by alternately forming nitride thin films having different compositions using the method for forming a nitride thin film. For example, a superlattice structure in which AlN films and GaN films are alternately stacked can be obtained by alternately opening and closing the valves 14a and 14b in the manufacturing apparatus.
[0032]
Hereinafter, the content of the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.
[0033]
【Example】
Example 1
First, an AlN film was formed on the substrate 2 using the nitride thin film forming apparatus shown in FIG.
[0034]
First, an Al 2 O 3 (0001) substrate 2 was prepared, and this substrate 2 was put in the vacuum chamber 1 and set in the heater 3. Next, after the valve 8 was opened and the vacuum chamber 1 was sufficiently evacuated by the pump 9, the substrate 2 was heated to about 1000 ° C. by the heater 3. Subsequently, the valve 6 was opened, and ammonia gas was introduced into the vacuum chamber 1. The ammonia flow rate was adjusted to about 100 sccm. At this time, the ammonia gas pressure in the vacuum chamber 1 was about 1 × 10 −2 Pa.
[0035]
In this state, the valve 14b was opened, and a source gas containing TMA gas and nitrogen gas at a volume ratio of 1: 100 was sprayed to the substrate 2 side by 0.5 cm 3 (0 ° C., standard state). Thus, an AlN film was produced on the substrate 2.
[0036]
Next, using a HWE apparatus, Ga and ammonia were simultaneously supplied, a GaN layer was formed on the surface of the AlN layer, and a short-period superlattice structure was obtained on the substrate 2.
[0037]
And X-ray diffraction was performed about this short period superlattice structure, and the angle dependence of X-ray diffraction intensity was measured. The results are shown in FIG. In FIG. 4, a solid line shows a measured value and a broken line shows a theoretical value.
[0038]
As shown in FIG. 4, the theoretical value and the measured value of the diffraction peak by X-ray diffraction were in good agreement, and it was found that the atomic layer growth was well controlled.
(Example 2)
A quantum cascade structure of [(AlN) 1 (GaN) 1 5 ] 5 / (AlN) 2 was fabricated on an Al 2 O 3 (0001) substrate 2. At this time, the AlN film and the GaN film were formed in the same manner as in Example 1.
[0039]
The quantum cascade structure was subjected to X-ray diffraction in the same manner as in Example 1. The results are shown in FIG. In FIG. 5, a solid line shows a measured value and a broken line shows a theoretical value. Further, a transmission electron microscope image of this sample is shown in FIG.
[0040]
As shown in FIG. 5, the theoretical value and the measured value of the diffraction peak by X-ray diffraction were in good agreement, and it was found that the atomic layer growth was well controlled. A clear periodic structure can also be confirmed in the transmission electron micrograph.
[0041]
【The invention's effect】
As described above, according to the method for forming a nitride thin film of the present invention, a single atomic layer nitride thin film grows at a high speed by spraying the source gas once. Further, after the nitride thin film is grown, the surface of the nitride thin film is covered with ammonia gas, so that the evaporation of nitrogen is sufficiently prevented, and a high-quality nitride thin film is obtained. That is, a high-quality nitride thin film can be formed in a short time.
[0042]
Further, according to the method for manufacturing a quantum well device of the present invention, since the nitride thin film contained in the quantum well device can be controlled well at the atomic layer level, a quantum well device exhibiting good optical characteristics can be obtained. Further, since the nitride thin film can be formed in a short time, the productivity of the quantum well device can be improved.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an example of a nitride thin film manufacturing apparatus to which a method for forming a nitride thin film of the present invention is applied.
FIGS. 2A and 2B are diagrams showing one step of a method for forming a nitride thin film according to the present invention, in which FIG. 2A shows a state in which source gas is sprayed, and FIG. 2B shows an atomic layer of aluminum by source gas spraying; The formation state of is shown.
FIGS. 3A and 3B are diagrams showing another process of the method for forming a nitride thin film according to the present invention, in which FIG. 3A shows a state after stopping the spraying of the source gas, and FIG. The atomic layer of aluminum nitride formed by shows the formation state.
4 is a graph showing the results of X-ray diffraction according to Example 1. FIG.
5 is a graph showing the results of X-ray diffraction according to Example 2. FIG.
6 shows the results of transmission electron microscope photography according to Example 2. FIG.
[Explanation of symbols]
2 ... substrate, 15 ... aluminum layer (metal element layer), 17 ... AlN layer (nitride thin film).

Claims (4)

1×10−3〜1Paのアンモニア雰囲気中で、有機金属ガスを含む原料ガスを、加熱した基板側に吹き付けて、前記基板の表面を覆うアンモニアを追い出し、前記基板上に前記有機金属ガス中の金属元素からなる金属元素層を形成する工程と、
前記原料ガスの吹き付けを停止することにより、再び前記基板の表面をアンモニアで覆い、このアンモニアにより前記金属元素層を窒化させ、前記基板上に前記金属元素層の窒化物である窒化物薄膜を形成する工程と、
を含み、
前記原料ガスを加熱した前記基板側に吹き付ける際に、前記基板に対して設けられた原料ガス吹付け管を用い、前記原料ガス吹付け管を通して前記原料ガスを前記基板に吹き付けるとともに、
前記原料ガス吹付け管の先端開口が前記基板よりも大きくなっていることを特徴とする窒化物薄膜の形成方法。
In an ammonia atmosphere of 1 × 10 −3 to 1 Pa, a source gas containing an organometallic gas is blown to the heated substrate side to drive off the ammonia covering the surface of the substrate, and the organometallic gas in the organometallic gas is deposited on the substrate. Forming a metal element layer made of a metal element;
By stopping the spraying of the source gas, the surface of the substrate is again covered with ammonia, and the metal element layer is nitrided with the ammonia to form a nitride thin film that is a nitride of the metal element layer on the substrate. And a process of
Including
When spraying the source gas to the heated substrate side, using a source gas spray tube provided to the substrate, and spraying the source gas to the substrate through the source gas spray tube ,
A method for forming a nitride thin film, characterized in that a leading end opening of the source gas spray tube is larger than the substrate .
前記金属元素が、Ga又はAlであることを特徴とする請求項1に記載の窒化物薄膜の形成方法。  The method for forming a nitride thin film according to claim 1, wherein the metal element is Ga or Al. 前記有機金属ガスが、第1有機金属ガスと、第2有機金属ガスとを含み、前記第1有機金属ガス中の金属元素と前記第2有機金属ガス中の金属元素が異なることを特徴とする請求項1又は2に記載の窒化物薄膜の形成方法。  The organometallic gas includes a first organometallic gas and a second organometallic gas, wherein a metal element in the first organometallic gas is different from a metal element in the second organometallic gas. The method for forming a nitride thin film according to claim 1. 基板上に窒化物薄膜を含む量子井戸デバイスの製造方法において、
前記窒化物薄膜を、請求項1〜のいずれか一項に記載の窒化物薄膜の形成方法により形成することを特徴とする量子井戸デバイスの製造方法。
In a method for manufacturing a quantum well device including a nitride thin film on a substrate,
A method for manufacturing a quantum well device, wherein the nitride thin film is formed by the method for forming a nitride thin film according to any one of claims 1 to 3 .
JP2002332454A 2002-11-15 2002-11-15 Method of forming nitride thin film and method of manufacturing quantum well device Expired - Fee Related JP4308502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002332454A JP4308502B2 (en) 2002-11-15 2002-11-15 Method of forming nitride thin film and method of manufacturing quantum well device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002332454A JP4308502B2 (en) 2002-11-15 2002-11-15 Method of forming nitride thin film and method of manufacturing quantum well device

Publications (2)

Publication Number Publication Date
JP2004165571A JP2004165571A (en) 2004-06-10
JP4308502B2 true JP4308502B2 (en) 2009-08-05

Family

ID=32809531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002332454A Expired - Fee Related JP4308502B2 (en) 2002-11-15 2002-11-15 Method of forming nitride thin film and method of manufacturing quantum well device

Country Status (1)

Country Link
JP (1) JP4308502B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007117583A2 (en) * 2006-04-07 2007-10-18 Applied Materials Inc. Cluster tool for epitaxial film formation
JP4908453B2 (en) 2008-04-25 2012-04-04 住友電気工業株式会社 Method for fabricating a nitride semiconductor laser

Also Published As

Publication number Publication date
JP2004165571A (en) 2004-06-10

Similar Documents

Publication Publication Date Title
Lim et al. Effects of substrate temperature on the microstructure and photoluminescence properties of ZnO thin films prepared by atomic layer deposition
US20060205197A1 (en) Compound semiconductor devices and methods of manufacturing the same
US20110003420A1 (en) Fabrication method of gallium nitride-based compound semiconductor
US20040023427A1 (en) Forming indium nitride (InN) and indium gallium nitride (InGaN) quantum dots grown by metal-organic-vapor-phase-epitaxy (MOCVD)
RU2643176C1 (en) Non-polar led epitaxial plate of blue glow on substrate of lao and method of its production
Shimizu et al. Metalorganic vapor phase epitaxy growth of (InxGa1-xN/GaN) n layered structures and reduction of indium droplets
JP2006273618A (en) AlGaN SUBSTRATE AND ITS MANUFACTURING METHOD
US20060189019A1 (en) Growth process of a crystalline gallium nitride based compound and semiconductor device including gallium nitride based compound
JP2009155141A (en) Method of preparing semiconductor substrate, semiconductor substrate, and compound semiconductor luminous element using it
JP3895410B2 (en) Device comprising group III-V nitride crystal film and method for manufacturing the same
JP4308502B2 (en) Method of forming nitride thin film and method of manufacturing quantum well device
CN108428621B (en) In amorphous SiO2Method for growing GaN film on substrate
US20050132950A1 (en) Method of growing aluminum-containing nitride semiconductor single crystal
JP2001148348A (en) Gab SEMICONDUCTOR ELEMENT AND MANUFACTURING METHOD
US7960292B2 (en) Method of fabricating zinc oxide film having matching crystal orientation to silicon substrate
JP3779831B2 (en) Method of crystal growth of nitride III-V compound semiconductor and laminated structure of semiconductor obtained by the method
CN101140969B (en) Compound semi-conductor device and method of producing the same
US20090309189A1 (en) Method for the growth of indium nitride
JP3991815B2 (en) Method for growing zinc oxide crystal film
TWI596710B (en) A method for fabricating semiconductor device
JP3577880B2 (en) Method for manufacturing group 3-5 compound semiconductor
JP4748925B2 (en) Epitaxial substrate, semiconductor multilayer structure, and method for reducing dislocations in group III nitride layer
KR100769986B1 (en) Method of manufacturing thin film using icp-mocvd method
WO2018080300A1 (en) Method for producing a non-polar a-plane gallium nitride (gan) thin film on an r-plane sapphire substrate
JP4964271B2 (en) GaN crystal film manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090501

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees