JPH0310578B2 - - Google Patents

Info

Publication number
JPH0310578B2
JPH0310578B2 JP58098225A JP9822583A JPH0310578B2 JP H0310578 B2 JPH0310578 B2 JP H0310578B2 JP 58098225 A JP58098225 A JP 58098225A JP 9822583 A JP9822583 A JP 9822583A JP H0310578 B2 JPH0310578 B2 JP H0310578B2
Authority
JP
Japan
Prior art keywords
manganese
mnooh
manganese sulfate
present
aqueous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58098225A
Other languages
Japanese (ja)
Other versions
JPS59223236A (en
Inventor
Kazuaki Yamamura
Ryohei Ishikawa
Hiroshi Takeda
Shoji Sato
Shingo Tanida
Hiroshi Ochiai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuo Denki Kogyo Co Ltd
Original Assignee
Chuo Denki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuo Denki Kogyo Co Ltd filed Critical Chuo Denki Kogyo Co Ltd
Priority to JP9822583A priority Critical patent/JPS59223236A/en
Publication of JPS59223236A publication Critical patent/JPS59223236A/en
Publication of JPH0310578B2 publication Critical patent/JPH0310578B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、マンガン化合物の製造方法に関す
る。 MnOOHは、磁気フエライドヘツドや触媒等の
原料として重要な化合物である。特に、最近は耐
摩耗性の優れた磁気ヘツドフエライトの開発が進
められており、そのためには該フエライトのマン
ガン原料として高純度で特定の結晶形状を有する
MnOOHが要求されている。また、環境の保全と
いう観点から、種々のプロセスから排出される廃
水中の希薄なマンガンを除去、利用して、
MnOOHを得る方法も必要とされている。 特開昭50−80297号には、配向性フエライトの
マンガン原料として有用な針状のγ−MnOOHを
得るのに好適であると称される方法が記載されて
いる。この方法によれば、硫酸マンガンの水溶液
にアンモニア水と過酸化水素水を同時に添加する
ことによつて、従来よりも短かい熟成時間で上記
MnOOHが得られるとされている。しかしなが
ら、現実には該方法は、上記反応後50時間にわた
る空気中の熟成を必要としており、依然として時
間を消費する方法であることには変りがない。更
に、この特開昭50−80297号の方法は、高価な過
酸化水素を使用している点においても不利であ
る。また、このような方法によつてどの程度のマ
ンガン品位の生成物が得られるかも明らかでな
い。 特開昭50−67817号公報には、やはり配向性フ
エライトの原料として有益であると称される板状
ないしは鱗片状のβ−MnOOHを製造するための
方法が示唆されている。この方法も、硫酸マンガ
ン溶液にアンモニア水と過酸化水素水を添加する
ものであり、過酸化水素を使用する点において不
利である。また、該方法に従えば、所望の
MnOOHを得るためには、硫酸マンガン溶液の濃
度は1.0規定以下(すなわち、マンガンの濃度は
55/2=27.5g/以下)でなければならないと
されており、したがつて、該MnOOHを工業的に
大量生産するには適していない。また、この特開
昭50−67817号に示唆されている方法においても、
どの程度のマンガン品位の生成物が得られている
か定かでない。 MnOOH等のマンガン化合物を得るためには、
硫酸マンガン水溶液を空気酸化する研究も幾つか
行なわれている。例えば、「樋口ら:日本鉱業会
誌、98、625〜628(1982)」には、アルカリ領域に
おける硫酸マンガン水溶液の空気酸化に関する研
究が報告されている。この論文においては、
NaOHが添加された高PH域の硫酸マンガン水溶
液に常圧下でO2−N2混合ガスを吹込むことによ
つてβ−MnOOHが生成されると報告されてい
る。しかしながら、このような方法は、該論文の
著者も認めているように、所望の反応を促進させ
るためにガスの吹込みに際して流体力学的条件の
制御が必要である。したがつて、このような方法
を工業的規模で実施するには、解決すべき問題が
幾つか残されている。また、この論文に記載され
た方法は、きわめて稀薄なマンガン含有溶液
(Mn(OH)2として0.01mol/)を空気酸化する
ものであり、したがつて、単なるマンガン含有廃
水の処理には適用されるであろうが、フエライト
や触媒を実用的規模で製造するに際して使用され
ることには適していない。 そこで、本発明の目的は、原料となるマンガン
含有溶液の適用範囲が広く、しかも、経済的で短
時間にMnOOHを製造することができる方法を提
供することにある。 本発明の該目的は、硫酸マンガン水溶液にアン
モニア水を添加して得たスラリを、酸素ガスの存
在下に高温、高圧で水熱処理することにより達成
される。このような本発明の方法によつて、β−
MnOOH及びγ−MnOOH等が得られる。水熱処
理の条件は、本発明の方法を実施する目的、所望
のMnOOHの種類や品位に依存する。酸素ガスの
存在は、単独の酸素ガスを導入することによつて
得られるが、酸素ガスと不活性ガス(例えば、窒
素)の混合物または空気を用いてもよい。 本発明者は、磁気ヘツド用のフエライトの原料
として用いられるような針状のγ−MnOOHを中
心とするMnOOHを高純度で得るための条件も見
出している。かくして、本発明の好ましい態様に
従えば、硫酸マンガン水溶液にアンモニア水を添
加してPHを9.1より大きく且つ9.6以下に調整した
スラリーを、80〜200℃の温度下、5〜30Kg/cm2
の圧力の酸素ガス雰囲気中で水熱処理することを
特徴とするMnOOHの製造方法が提供される。 すなわち、硫酸マンガン水溶液にアンモニア水
を添加したスラリー(Mg(OH)2を含む)のPHが
9.1以下で水熱処理を行なうと、得られる生成物
中のマンガンの歩留りが悪くなる。他方、PHが
9.6より大きくなると、原料の硫酸マンガンの中
CaやMg等の不純物が生成物中に残存する。ま
た、水熱処理の温度が80℃より低くなつても、生
成物中のマンガン歩留りが悪くなり、不純物が多
くなる。しかしながら、水熱処理の温度を300℃
より高くすることは、熱エネルギーを浪費するの
で好ましくない。更に、水熱処理の酸素圧力が低
すぎても、生成物中のマンガン歩留りが悪くなつ
たり不純物が多くなるので、該圧力は8Kg/cm2
上とすべきである。他方、水熱処理時の圧力を30
Kg/cm2より高くしても耐圧設備に費用を要するが
格別に顕著な効果は得られない。 しかしながら、本発明の方法においては、原料
として用いられる硫酸マンガン水溶液の濃度に特
に制限は存しない。すなわち、本発明のマンガン
化合物の製造方法は、極めて稀薄な硫酸マンガン
水溶液、例えば、1000ppm程度のマンガン濃度の
硫酸マンガンを含有する廃水を用いることもで
き、したがつて、そのような廃水を処理する面も
兼持している。勿論、本発明の方法は、フエライ
トや触媒の原料となるMnOOHを工業的規模で製
造するのに実施されることもでき、そのような場
合には、さらに高濃度、例えば、150〜200g/
のマンガン濃度を有する硫酸マンガン水溶液が使
用される。 本発明に従えば、上記のごとき水熱処理によつ
て非常に短時間でγ−MnOOHのごときマンガン
化合物を得ることができ、従来の方法におけるよ
うな長時間の熟成を必要としない。すなわち、本
発明の方法における典型的な水熱処理は、所定温
度までに約1時間で昇温し、該所定温度に約1〜
2時間保持した後、約1時間で室温まで冷却する
ことによつて行なわれる。 以上の説明から明らかなように、本発明に従え
ば、特に高価な原料を必要とせずに、低濃度から
高濃度の硫酸マンガン水溶液を用いてMnOOHを
経済的且つ大量に製造することが可能となる。 以下、本発明を比較例および実施例に沿つて説
明する。 比較例 表1に示すようにマンガン濃度184g/の硫
酸マンガン水溶液200mlに2NのNH4OHを加えて
PH9.6のスラリーを得た。このスラリーをろ過、
水洗後、乾燥して得た固形物を分析すると第2表
のようになつた。この第2表から理解されるよう
に、マンガン歩留は58.2%と低く、また、Caや
Mg等の不純物の量も大きい。
The present invention relates to a method for producing a manganese compound. MnOOH is an important compound as a raw material for magnetic ferride heads and catalysts. In particular, the development of magnetic head ferrite with excellent wear resistance has been progressing recently, and for this purpose, the manganese raw material for the ferrite must be highly purified and have a specific crystal shape.
MnOOH is required. In addition, from the perspective of environmental conservation, we will remove and utilize diluted manganese in wastewater discharged from various processes.
A method of obtaining MnOOH is also needed. JP-A-50-80297 describes a method said to be suitable for obtaining acicular γ-MnOOH useful as a manganese raw material for oriented ferrite. According to this method, by simultaneously adding aqueous ammonia and hydrogen peroxide to an aqueous solution of manganese sulfate, it is possible to achieve the above-mentioned results in a shorter aging time than conventional methods.
It is said that MnOOH can be obtained. However, in reality, this method requires aging in air for 50 hours after the reaction, and is still a time-consuming method. Furthermore, the method of JP-A-50-80297 is disadvantageous in that it uses expensive hydrogen peroxide. It is also unclear what manganese grade products can be obtained by such methods. JP-A-50-67817 suggests a method for producing plate-like or scale-like β-MnOOH, which is also said to be useful as a raw material for oriented ferrite. This method also involves adding aqueous ammonia and aqueous hydrogen peroxide to the manganese sulfate solution, and is disadvantageous in that hydrogen peroxide is used. Moreover, if the method is followed, the desired
To obtain MnOOH, the concentration of manganese sulfate solution must be below 1.0 normal (i.e., the concentration of manganese must be
55/2 = 27.5 g/or less), therefore, it is not suitable for industrial mass production of MnOOH. Also, in the method suggested in this Japanese Patent Application Laid-open No. 50-67817,
It is unclear how high the manganese quality of the product is being obtained. To obtain manganese compounds such as MnOOH,
Some studies have also been conducted on air oxidation of manganese sulfate aqueous solutions. For example, "Higuchi et al.: Journal of the Japan Mining Society, 98, 625-628 (1982)" reports a study on air oxidation of an aqueous solution of manganese sulfate in an alkaline region. In this paper,
It has been reported that β-MnOOH is produced by blowing an O 2 -N 2 mixed gas under normal pressure into a manganese sulfate aqueous solution in a high pH range to which NaOH has been added. However, as acknowledged by the authors of the article, such methods require control of the hydrodynamic conditions during gas injection to promote the desired reaction. Therefore, several problems remain to be solved before implementing such a method on an industrial scale. Furthermore, the method described in this paper involves air oxidation of an extremely dilute manganese-containing solution (0.01 mol/Mn(OH) 2 ), and therefore cannot be applied to the simple treatment of manganese-containing wastewater. However, it is not suitable for use in producing ferrites and catalysts on a practical scale. Therefore, an object of the present invention is to provide an economical method for producing MnOOH in a short period of time, which has a wide range of application for a manganese-containing solution as a raw material. The object of the present invention is achieved by hydrothermally treating a slurry obtained by adding ammonia water to an aqueous manganese sulfate solution at high temperature and high pressure in the presence of oxygen gas. By such a method of the present invention, β-
MnOOH, γ-MnOOH, etc. are obtained. The conditions for the hydrothermal treatment depend on the purpose of carrying out the method of the present invention and the desired type and quality of MnOOH. The presence of oxygen gas can be obtained by introducing oxygen gas alone, but a mixture of oxygen gas and an inert gas (eg nitrogen) or air may also be used. The present inventors have also discovered conditions for obtaining highly pure MnOOH, mainly acicular γ-MnOOH, which is used as a raw material for ferrite for magnetic heads. Thus, according to a preferred embodiment of the present invention, a slurry prepared by adding aqueous ammonia to an aqueous manganese sulfate solution to adjust the pH to more than 9.1 and less than 9.6 is heated at a temperature of 80 to 200° C. to 5 to 30 kg/cm 2 .
Provided is a method for producing MnOOH, which is characterized by hydrothermal treatment in an oxygen gas atmosphere at a pressure of . In other words, the PH of a slurry (containing Mg(OH) 2 ) made by adding ammonia water to a manganese sulfate aqueous solution is
If hydrothermal treatment is performed at a temperature below 9.1, the yield of manganese in the resulting product will be poor. On the other hand, if the PH
If it is larger than 9.6, the inside of the raw material manganese sulfate
Impurities such as Ca and Mg remain in the product. Furthermore, even if the temperature of the hydrothermal treatment is lower than 80°C, the yield of manganese in the product will be poor and the amount of impurities will increase. However, the temperature of hydrothermal treatment is 300℃.
Setting it higher is not preferable because it wastes thermal energy. Furthermore, if the oxygen pressure in the hydrothermal treatment is too low, the manganese yield in the product will be poor and the amount of impurities will increase, so the pressure should be 8 Kg/cm 2 or higher. On the other hand, the pressure during hydrothermal treatment was increased to 30
Even if the pressure is higher than Kg/cm 2 , the cost of pressure-resistant equipment will be increased, but no particularly significant effect will be obtained. However, in the method of the present invention, there is no particular restriction on the concentration of the manganese sulfate aqueous solution used as a raw material. That is, the method for producing a manganese compound of the present invention can also use an extremely dilute aqueous manganese sulfate solution, for example, wastewater containing manganese sulfate with a manganese concentration of about 1000 ppm, and therefore, such wastewater can be treated. It also has a face. Of course, the method of the present invention can also be carried out to produce MnOOH, which is a raw material for ferrite and catalysts, on an industrial scale, and in such cases, even higher concentrations, for example 150 to 200 g/
An aqueous manganese sulfate solution with a manganese concentration of . According to the present invention, a manganese compound such as γ-MnOOH can be obtained in a very short time by the above-described hydrothermal treatment, and there is no need for long-term aging as in conventional methods. That is, in a typical hydrothermal treatment in the method of the present invention, the temperature is raised to a predetermined temperature in about 1 hour, and the temperature is raised to a predetermined temperature for about 1 to 1 hour.
This is carried out by holding for 2 hours and then cooling to room temperature in about 1 hour. As is clear from the above explanation, according to the present invention, MnOOH can be produced economically and in large quantities using manganese sulfate aqueous solutions of low to high concentrations without the need for particularly expensive raw materials. Become. Hereinafter, the present invention will be explained along with comparative examples and examples. Comparative Example As shown in Table 1, 2N NH 4 OH was added to 200ml of an aqueous manganese sulfate solution with a manganese concentration of 184g/
A slurry with a pH of 9.6 was obtained. Filter this slurry,
After washing with water and drying, the obtained solid was analyzed and the results were as shown in Table 2. As can be seen from Table 2, the manganese yield is low at 58.2%, and Ca and
The amount of impurities such as Mg is also large.

【表】【table】

【表】 実施例 前述の第1表の品位を有する硫酸マンガン水溶
液200mlに2NのNH4OH(アンモニア水)を加え
て第3表に示すような各PHを有するスラリーを調
製した。各スラリーを内容積2のオートクレー
ブ中に入れ、第3表に示す各圧力の酸素を封入
し、約1時間で150℃まで昇温し、該温度に1時
間保持後、室温まで冷却した。このように水熱処
理したスラリーを、ろ過、水洗、乾燥後分析する
と第3表のようになつた。 第3表に示すように、本発明に従う水熱処理に
より得られる生成物は不純物の量が激減されてお
り、更に、9.1よりも大きいPHのスラリーを水熱
処理するとマンガン歩留が極めて高くなる。ま
た、得られた生成物(実施例9)を顕微鏡で観察
すると、第1図及び第2図のようになり、γ−
MnOOHを主成分とする針状のMnOOHの存在が
認められる。 尚、表中の実施例No.1〜3は比較例である。
[Table] Example 2N NH 4 OH (ammonia water) was added to 200 ml of an aqueous manganese sulfate solution having the quality shown in Table 1 above to prepare slurries having various pH values shown in Table 3. Each slurry was placed in an autoclave with an internal volume of 2, and oxygen was sealed at each pressure shown in Table 3. The temperature was raised to 150° C. in about 1 hour, maintained at this temperature for 1 hour, and then cooled to room temperature. The slurry thus hydrothermally treated was analyzed after filtration, washing with water, and drying, and the results were as shown in Table 3. As shown in Table 3, the product obtained by hydrothermal treatment according to the present invention has a significantly reduced amount of impurities, and furthermore, when slurry with a pH greater than 9.1 is hydrothermally treated, the manganese yield is extremely high. Furthermore, when the obtained product (Example 9) was observed under a microscope, it was as shown in Figures 1 and 2, and γ-
The presence of acicular MnOOH mainly composed of MnOOH is observed. In addition, Example Nos. 1 to 3 in the table are comparative examples.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、本発明によつて得られ
たマンガン化合物のそれぞれ、3000倍および6000
倍の電子顕微鏡写真である。
Figures 1 and 2 show the manganese compound obtained by the present invention at 3000 times and 6000 times, respectively.
This is a magnified electron micrograph.

Claims (1)

【特許請求の範囲】[Claims] 1 硫酸マンガン水溶液にアンモニア水を添加し
て得たPH9.1より大きく且つ9.6以下のスラリー
を、5〜30Kg/cm2の圧力の酸素ガス雰囲気中で、
80〜200℃の温度下で水熱処理することを特徴と
するMnOOHの製造方法。
1 A slurry with a pH greater than 9.1 and 9.6 or less obtained by adding ammonia water to an aqueous manganese sulfate solution is heated in an oxygen gas atmosphere at a pressure of 5 to 30 kg/cm 2 .
A method for producing MnOOH, characterized by hydrothermal treatment at a temperature of 80 to 200°C.
JP9822583A 1983-06-02 1983-06-02 Production of high purity manganese compound Granted JPS59223236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9822583A JPS59223236A (en) 1983-06-02 1983-06-02 Production of high purity manganese compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9822583A JPS59223236A (en) 1983-06-02 1983-06-02 Production of high purity manganese compound

Publications (2)

Publication Number Publication Date
JPS59223236A JPS59223236A (en) 1984-12-15
JPH0310578B2 true JPH0310578B2 (en) 1991-02-14

Family

ID=14214015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9822583A Granted JPS59223236A (en) 1983-06-02 1983-06-02 Production of high purity manganese compound

Country Status (1)

Country Link
JP (1) JPS59223236A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130287677A1 (en) * 2010-12-20 2013-10-31 Ocean's King Lighting Science & Technology Co., Ltd. Preparation method and use of manganese dioxide nano-rod
JP5811233B2 (en) * 2014-06-12 2015-11-11 東ソー株式会社 Manganese oxide and method for producing lithium manganate using the same
CN104445423B (en) * 2014-12-15 2016-05-18 中信大锰矿业有限责任公司大新锰矿分公司 A kind of preparation method of high-purity manganese dioxide
CN108439476B (en) * 2018-04-23 2020-07-28 陕西省膜分离技术研究院有限公司 Preparation of low-valence manganese oxide, product and synthetic lithium ion sieve precursor L i1.6Mn1.6O4Application of

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5815035A (en) * 1981-07-13 1983-01-28 Isao Tanabe Manufacture of heavy manganese dioxide
JPS5820729A (en) * 1981-07-27 1983-02-07 Chuo Denki Kogyo Kk Preparation of manganese oxide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5815035A (en) * 1981-07-13 1983-01-28 Isao Tanabe Manufacture of heavy manganese dioxide
JPS5820729A (en) * 1981-07-27 1983-02-07 Chuo Denki Kogyo Kk Preparation of manganese oxide

Also Published As

Publication number Publication date
JPS59223236A (en) 1984-12-15

Similar Documents

Publication Publication Date Title
US3970738A (en) Process for producing iron oxide products from waste liquids containing ferrous salts
EP0750589B1 (en) Reduction of residual chloride content in iron oxides
RU2003107342A (en) METHOD FOR PRODUCING IRON OXIDES
CN111646560A (en) Method for degrading aniline organic matters in water by catalyzing peroxydisulfate
US5057299A (en) Method for making beta cobaltous hydroxide
JP3272759B2 (en) Manufacture of trimanganese oxide
US4062927A (en) Process for the preparation of a hydroxylamine salt
JPH0310578B2 (en)
US4006216A (en) Preparation of nickel black
US3840479A (en) Catalyst preparation
CA1082426A (en) Preparation of manganous hydroxide
JP3824709B2 (en) Manufacturing method of high purity iron oxide powder
DE3622364C2 (en) Process for the preparation of ammonium salts of iron (III) aminopolycarboxylic acid complexes
US4264570A (en) Method of producing magnesium sulphate
KR0136191B1 (en) Refining method of iron oxide
GB2059410A (en) Process for producing hydrated iron oxide
SU1326591A1 (en) Method of producing ferric oxide pigment
JPH08183617A (en) Production of fine lepidocrocite particles or powder
SU1759928A2 (en) Method of producing zinc oxide by hydrometallurgy
US3887684A (en) Removal of sulfur dioxide from waste gases
JP2669010B2 (en) Desiliconization method in metal salt solution
SU1030315A1 (en) Method for preparing acicular gamma iron oxide used for producing magnetic carriers
GB2059411A (en) Process for producing hydrated iron oxide
GB2059409A (en) Process for producing hydrated iron oxide
JP2915512B2 (en) Manganese whisker manufacturing method