JPH0310392B2 - - Google Patents

Info

Publication number
JPH0310392B2
JPH0310392B2 JP7777388A JP7777388A JPH0310392B2 JP H0310392 B2 JPH0310392 B2 JP H0310392B2 JP 7777388 A JP7777388 A JP 7777388A JP 7777388 A JP7777388 A JP 7777388A JP H0310392 B2 JPH0310392 B2 JP H0310392B2
Authority
JP
Japan
Prior art keywords
sulfate
methane
bacteria
reducing bacteria
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7777388A
Other languages
Japanese (ja)
Other versions
JPH01249197A (en
Inventor
Juichi Tanimoto
Masaharu Tazaki
Kazuo Okamura
Seiji Minami
Takeshi Horyama
Hajime Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AKUA RUNESANSU GIJUTSU KENKYU KUMIAI
Original Assignee
AKUA RUNESANSU GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AKUA RUNESANSU GIJUTSU KENKYU KUMIAI filed Critical AKUA RUNESANSU GIJUTSU KENKYU KUMIAI
Priority to JP63077773A priority Critical patent/JPH01249197A/en
Publication of JPH01249197A publication Critical patent/JPH01249197A/en
Publication of JPH0310392B2 publication Critical patent/JPH0310392B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

「産業上の利用分野」 この発明は、メタン発酵等の嫌気性発酵によつ
て有機性廃水を処理する場合に行なわれる嫌気性
処理における硫酸還元反応抑制方法および硫酸還
元菌阻害性界面活性剤に関するものである。 「従来の技術」 メタン発酵などの嫌気性発酵による有機性廃水
の処理は、活性汚泥法等の好気性処理に比べて、
曝気動力が不用、汚泥生成量が少ない、エ
ネルギー源として利用できるメタンガスが生成す
る、高負荷の一次処理ができる、等の利点を持
つ水処理法であるが、この方法は特に有機物を高
濃度に含む廃水処理に適している。 「発明が解決しようとする課題」 しかしながら、上記のような高濃度の有機性廃
水のなかには、アルコール蒸留廃液、パルプ廃液
等のように、しばしば多量の硫酸イオンを含むも
のがある。このような廃水をメタン発酵させる
と、メタン細菌と同様の生育条件下で硫酸還元菌
が繁殖し、硫酸イオンがメタン細菌の生育および
メタン廃水を阻害する硫化物イオンに還元される
ため、メタン発酵が抑制されてメタン生成量、廃
水処理能力が低下し、著しい場合には、メタン発
酵が停止する。また、本来、メタン生成に使われ
る水素が硫酸イオンの還元に使われるため、生成
ガス中のメタン濃度が低下し、生成ガスのほとん
どが炭酸ガスとなつてエネルギー源としての価値
が低下する。さらに、生成ガス中に腐食性の硫化
水素ガスの濃度が増加する。 このため、嫌気性処理を行なう場合には、廃水
中の硫酸還元菌の生育を阻害することによつて硫
酸イオンの還元を抑制することが必要と考えられ
ており、そのために上記廃水中に硫酸還元菌を阻
害する物質を添加することも考えられるが、従来
は、そのような物質がメタン細菌に及ぼす影響が
知られていなかつたため、嫌気性処理において廃
水中に硫酸還元菌を阻害する物質を添加する試み
は未だ行なわれたことがなかつた。 この発明は、上記事情に鑑みてなされたもの
で、硫酸還元菌の生育を阻害すると共にメタン細
菌の生育を阻害しない物質を提供し、かつ、その
物質により廃水中の硫酸還元反応を抑制して嫌気
性処理を良好な状態で行なうことを目的としてい
る。 「課題を解決するための手段」 この発明の嫌気性処理における硫酸還元反応抑
制方法は、硫酸イオンを含む有機性廃水を嫌気性
発酵によつて処理する際に、上記有機性廃水にメ
タン細菌と共存する硫酸還元菌の生育を選択的に
阻害する界面活性剤を添加するものである。 また、この発明の硫酸還元菌阻害性界面活性剤
は、ツウイーン60、塩化オクタデシルトリメチル
アンモニウム、ドデシルベンゼンスルホン酸、臭
化セチルトリメチルアンモニウム、臭化セチルピ
リジニウム、塩化セチルピリジニウム、ポリエチ
レングリコールステアリルアミンから選ばれたう
ちの一種類または二種類以上の混合物からなるも
のである。 「作用」 この発明の嫌気性処理における硫酸還元反応抑
制方法においては、硫酸イオンの含む有機性廃水
を嫌気性発酵によつて処理する際に、上記有機性
廃水にメタン細菌と共存する硫酸還元菌の生育を
選択的に阻害する界面活性剤を添加することによ
つて、上記硫酸還元菌による硫酸イオンの還元を
抑制してメタン発酵を阻害する硫化物イオンの発
生を防ぐと共に上記硫酸還元菌がメタン生成に必
要な水素を消費することも防止する。このため、
この方法を用いて有機性廃水の嫌気性処理を行な
うと、メタン発酵が良好な状態で行なわれて、廃
水処理が効果的に行なわれることとなる。 また、この発明の硫酸還元菌阻害性界面活性剤
を用いた場合には、有機性廃水の嫌気性処理を効
率的に行なうことができる上、その硫酸還元菌阻
害性によつて、鉄製のタンク、配管等が硫酸還元
菌がつくりだす硫化水素ガスで腐食されることも
防止することができ、硫酸還元菌による被害に対
して広く応用することが可能である。 「実施例」 以下、この発明の一実施例を説明する。 この実施例では、例えばアルコール蒸留廃液あ
るいはパルプ廃液のように硫酸イオンを含む有機
性廃水中に、硫酸還元菌の生育を阻害すると共に
メタン細菌の生育を阻害しない硫酸還元菌阻害性
界面活性剤を添加し、その有機性廃水をメタン発
酵させて嫌気性処理を行なう。 このような硫酸還元菌阻害性界面活性剤として
は、例えばドデシルベンゼンスルホン酸などがあ
る。そして、このドデシルベンゼンスルホン酸を
例えば10ppm程度の適当な濃度になるようにして
発酵槽(あるいはリアクター、消化槽等)に添加
すると、ドデシルベンゼンスルホン酸の作用によ
り硫酸還元菌の活動が抑制されるため、硫酸イオ
ンの硫化物イオンへの還元が起こらず、メタン発
酵を良好好な状態で行なうことができる。 また、上記ドデシルベンゼンスルホン酸のよう
な硫酸還元菌阻害性界面活性剤は、硫酸還元菌に
よる腐食性の硫化水素ガスの発生も抑制できるた
め、反応処理における発酵槽、リアクター、また
は消化槽等ばかりでなく、土中等の嫌気下におけ
る鉄製の送油管、ガス管、および水道管等が硫化
水素ガスで腐食されることも防止することもでき
る。 なお、上記硫酸還元菌阻害性界面活性剤として
は、上記ドデシルベンゼンスルホン酸の他、ツウ
イーン60、塩化オクタデシルトリメチルアンモニ
ウム、臭化セチルトリメチルアンモニウム、臭化
セチルピリジニウム、塩化セチルピリジニウム、
ポリエチレングリコールステアリルアミンおよび
その他の界面活性剤などがある。そして、これら
の界面活性剤を用いた場合にも、ドデシルベンゼ
ンスルホン酸を用いた場合と同様な効果を奏する
ことができる。 「実施例」 (実験1) スクリーニングテスト 硫酸還元菌の生育を阻害し、メタン細菌の生育
を阻害しない物質を捜すため、表1に示すフロー
に基づいてスクリーニングテストを実施した。 このスクリーニングテストにおいては、メタン
細菌として、メタノールを炭素源として利用可能
で、しかもそのメタン発酵域の至適生育温度が55
℃のメタノサルシナ(Methanosalcina sp.
(DSM2906))を用い、硫酸還元菌として、上記
至適生育温度とほぼ等しい至適生育温度を持つデ
スルホトマクルム ニグリフイカンス
(Desulufotomaculum nigrificans(DSM574)を
用いた。そして、これら各菌の菌株に対して、表
2、表3に示す培地を調整した。
"Field of Industrial Application" This invention relates to a method for suppressing a sulfuric acid reduction reaction in anaerobic treatment performed when organic wastewater is treated by anaerobic fermentation such as methane fermentation, and a surfactant that inhibits sulfate-reducing bacteria. It is something. "Conventional technology" Treatment of organic wastewater by anaerobic fermentation such as methane fermentation is more effective than aerobic treatment such as activated sludge method.
This water treatment method has the following advantages: it does not require aeration power, produces little sludge, produces methane gas that can be used as an energy source, and can perform high-load primary treatment. Suitable for wastewater treatment including ``Problems to be Solved by the Invention'' However, among the above-mentioned highly concentrated organic wastewaters, some, such as alcohol distillation wastewater and pulp wastewater, often contain large amounts of sulfate ions. When such wastewater is subjected to methane fermentation, sulfate-reducing bacteria proliferate under the same growth conditions as methane bacteria, and sulfate ions are reduced to sulfide ions that inhibit the growth of methane bacteria and methane wastewater, resulting in methane fermentation. is suppressed, resulting in a decrease in methane production and wastewater treatment capacity, and in severe cases, methane fermentation stops. Additionally, since the hydrogen normally used to generate methane is used to reduce sulfate ions, the methane concentration in the produced gas decreases, and most of the produced gas becomes carbon dioxide, reducing its value as an energy source. Additionally, the concentration of corrosive hydrogen sulfide gas in the product gas increases. Therefore, when performing anaerobic treatment, it is considered necessary to suppress the reduction of sulfate ions by inhibiting the growth of sulfate-reducing bacteria in the wastewater. It is possible to add substances that inhibit sulfate-reducing bacteria, but until now, the effect of such substances on methane bacteria was not known, so it was not possible to add substances that inhibit sulfate-reducing bacteria to wastewater during anaerobic treatment. Attempts to add it have not yet been made. This invention was made in view of the above circumstances, and provides a substance that inhibits the growth of sulfate-reducing bacteria and does not inhibit the growth of methane bacteria, and also suppresses the sulfuric acid reduction reaction in wastewater with the substance. The purpose is to perform anaerobic treatment in good conditions. "Means for Solving the Problems" The method for suppressing sulfuric acid reduction reaction in anaerobic treatment of the present invention is a method for suppressing sulfuric acid reduction reaction in anaerobic treatment, when organic wastewater containing sulfate ions is treated by anaerobic fermentation, methane bacteria are added to the organic wastewater. A surfactant is added that selectively inhibits the growth of coexisting sulfate-reducing bacteria. Furthermore, the sulfate-reducing bacteria-inhibiting surfactant of the present invention is selected from Tween 60, octadecyltrimethylammonium chloride, dodecylbenzenesulfonic acid, cetyltrimethylammonium bromide, cetylpyridinium bromide, cetylpyridinium chloride, and polyethylene glycol stearylamine. It consists of one type or a mixture of two or more types. "Operation" In the method for suppressing sulfuric acid reduction reaction in anaerobic treatment of the present invention, when organic wastewater containing sulfate ions is treated by anaerobic fermentation, sulfuric acid reducing bacteria that coexist with methane bacteria are added to the organic wastewater. By adding a surfactant that selectively inhibits the growth of sulfate-reducing bacteria, the reduction of sulfate ions by the sulfate-reducing bacteria is prevented, and the generation of sulfide ions that inhibit methane fermentation is prevented, and the sulfate-reducing bacteria are It also prevents the consumption of hydrogen needed for methane production. For this reason,
When organic wastewater is treated anaerobically using this method, methane fermentation is carried out under good conditions, resulting in effective wastewater treatment. In addition, when the sulfate-reducing bacteria-inhibiting surfactant of the present invention is used, it is possible to efficiently perform anaerobic treatment of organic wastewater, and due to its sulfate-reducing bacteria-inhibiting property, it can be used in iron tanks. It can also prevent piping, etc. from being corroded by hydrogen sulfide gas produced by sulfate-reducing bacteria, and can be widely applied to damage caused by sulfate-reducing bacteria. “Example” An example of the present invention will be described below. In this example, a sulfate-reducing bacteria-inhibiting surfactant that inhibits the growth of sulfate-reducing bacteria and does not inhibit the growth of methane bacteria is added to organic wastewater containing sulfate ions, such as alcohol distillation waste liquid or pulp waste liquid. The organic wastewater is then subjected to methane fermentation for anaerobic treatment. Examples of such sulfate-reducing bacteria-inhibiting surfactants include dodecylbenzenesulfonic acid. When this dodecylbenzenesulfonic acid is added to a fermenter (or reactor, digestion tank, etc.) at an appropriate concentration of, for example, 10 ppm, the activity of sulfate-reducing bacteria is suppressed by the action of dodecylbenzenesulfonic acid. Therefore, reduction of sulfate ions to sulfide ions does not occur, and methane fermentation can be carried out in good conditions. In addition, sulfate-reducing bacteria-inhibiting surfactants such as the above-mentioned dodecylbenzenesulfonic acid can also suppress the generation of corrosive hydrogen sulfide gas by sulfate-reducing bacteria, so they are often used in fermenters, reactors, or digesters in reaction treatments. In addition, it is also possible to prevent iron oil pipes, gas pipes, water pipes, etc. from being corroded by hydrogen sulfide gas under anaerobic conditions such as soil. In addition to the above-mentioned dodecylbenzenesulfonic acid, the sulfate-reducing bacteria-inhibiting surfactant includes Tween 60, octadecyltrimethylammonium chloride, cetyltrimethylammonium bromide, cetylpyridinium bromide, cetylpyridinium chloride,
These include polyethylene glycol stearylamine and other surfactants. Even when these surfactants are used, the same effects as when dodecylbenzenesulfonic acid is used can be achieved. "Example" (Experiment 1) Screening Test In order to search for a substance that inhibits the growth of sulfate-reducing bacteria and does not inhibit the growth of methane bacteria, a screening test was conducted based on the flow shown in Table 1. In this screening test, methane bacteria were able to utilize methanol as a carbon source, and the optimal growth temperature for their methane fermentation range was 55°C.
Methanosarcina sp.
(DSM2906)), and Desulfotomaculum nigrificans (DSM574), which has an optimal growth temperature almost equal to the above optimal growth temperature, was used as the sulfate-reducing bacterium. Then, the culture medium shown in Tables 2 and 3 was prepared.

【表】【table】

【表】【table】

【表】 但し、上記培地はオートクレーブにより120℃
で15分間殺菌処理され、また、そのPHは7.2に調
整されている。そして、このスクリーニングテス
トは、窒素80%、二酸化炭素10%、水素10%の雰
囲気中において行なつた。
[Table] However, the above medium should be kept at 120℃ by autoclaving.
It is sterilized for 15 minutes and its pH is adjusted to 7.2. This screening test was conducted in an atmosphere of 80% nitrogen, 10% carbon dioxide, and 10% hydrogen.

【表】 但し、上記培地はオートクレーブにより120℃
で15分間殺菌処理され、また、そのPHは7.2に調
整されている。そして、このスクリーニングテス
トは、窒素80%、二酸化炭素10%、水素10%の雰
囲気中において行なつた。 なお、表3中におけるビタミン溶液および微量
元素溶液の配合をそれぞれ表4、表5に示す。
[Table] However, the above medium should be kept at 120℃ by autoclaving.
It is sterilized for 15 minutes and its pH is adjusted to 7.2. This screening test was conducted in an atmosphere of 80% nitrogen, 10% carbon dioxide, and 10% hydrogen. The formulations of the vitamin solution and trace element solution in Table 3 are shown in Table 4 and Table 5, respectively.

【表】【table】

【表】 このようなスクリーニングテストにおいて、培
地に硫酸還元菌が生存、生育する場合には、硫酸
塩が乳酸ナトリウムを還元剤として還元され、モ
ール塩中の鉄と作用して硫化鉄を生成し、培地が
黒変する。このため、このスクリーニングテスト
では、培地の黒変によつて硫酸還元菌の生育確認
とした。また、メタン細菌は、生育すると、培養
液の入つた試験管の下部に根粒状となつて沈殿す
るため、培養液は濁らない。さらに、メタン細菌
の生育に伴つてメタンガスが発生するので、これ
をもつて生育確認とする。 そして、このようにして多数の界面活性剤につ
いてスクリーニングテストを行つた結果、表6に
示す7種の界面活性剤が有効と認められた。 なお、各界面活性剤名の右側に記載した有効濃
度とは、メタン発酵が最も良好な状態で行なわれ
る濃度であるが、これ以外の濃度でも硫酸還元菌
の生育を抑制することが可能であり、その場合に
もメタン発酵を効率的に行なうことができる。
[Table] In such a screening test, if sulfate-reducing bacteria survive and grow in the culture medium, sulfate is reduced using sodium lactate as a reducing agent and interacts with iron in Mohr's salt to produce iron sulfide. , the medium turns black. Therefore, in this screening test, the growth of sulfate-reducing bacteria was confirmed by the blackening of the medium. Furthermore, when the methane bacteria grow, they precipitate in the form of nodules at the bottom of the test tube containing the culture solution, so the culture solution does not become cloudy. Furthermore, as methane bacteria grow, methane gas is generated, and this is used to confirm growth. As a result of conducting screening tests on a large number of surfactants in this manner, seven types of surfactants shown in Table 6 were found to be effective. The effective concentration listed to the right of each surfactant name is the concentration at which methane fermentation occurs in the best conditions, but it is possible to suppress the growth of sulfate-reducing bacteria at other concentrations as well. In that case as well, methane fermentation can be carried out efficiently.

【表】 (実験2) 共生テスト 実験1で有効と認められた表6の界面活性剤の
うちからドデシルベンゼンスルホン酸を選び、表
7の培地を用いて共生テストを行つた。 この共生テストでは、実験1と同様な実験方法
で行なわれ、メタン細菌の単独培養、メタン細菌
と硫酸還元菌との混合培養、および上記ドデシル
ベンゼンスルホン酸を10ppm添加したメタン細菌
と硫酸還元菌との混合培養を行なつた。そして、
メタン細菌の増殖は、メタンガス発生量をモニタ
ーすることにより検知し、硫酸還元菌の増殖は、
硫酸イオン濃度の変化をモニターすることにより
検知した。
[Table] (Experiment 2) Symbiotic test Dodecylbenzenesulfonic acid was selected from among the surfactants shown in Table 6 that were found to be effective in Experiment 1, and a symbiotic test was conducted using the culture medium shown in Table 7. This symbiosis test was conducted using the same experimental methods as Experiment 1, including a single culture of methane bacteria, a mixed culture of methane bacteria and sulfate-reducing bacteria, and a culture of methane bacteria and sulfate-reducing bacteria to which 10 ppm of dodecylbenzene sulfonic acid was added. A mixed culture was performed. and,
Growth of methane bacteria is detected by monitoring the amount of methane gas generated, and growth of sulfate-reducing bacteria is detected by monitoring the amount of methane gas generated.
Detection was made by monitoring changes in sulfate ion concentration.

【表】【table】

【表】 但し、上記培地は、PHが7.0に調整されている。 この共生テストの結果、第1図、第2図に示す
ように、メタン細菌と硫酸還元菌とを混合した系
にドデシルベンゼンスルホン酸を添加した場合に
は、メタン細菌単独の系と同様に良好なメタン発
酵が行なわれ、かつ硫酸還元菌の増殖も抑制され
た。 また、上記共生テストと同様に表7の培地を用
いて、上記表6中に記載した上記ドデシルベンゼ
ンスルホン酸以外の各界面活性剤を添加したメタ
ン細菌と硫酸還元菌との混合培養を行なつたとこ
ろ、これら各界面活性剤を添加した場合にも、上
記ドデシルベンゼンスルホン酸を添加した場合と
同様に良好なメタン発酵が行なわれ、かつ硫酸還
元菌の増殖も抑制された。 「発明の効果」 この発明の嫌気性処理における硫酸還元反応抑
制方法によれば、硫酸イオンを含む有機性廃水を
嫌気性発酵によつて処理する際に、上記有機性廃
水にメタン細菌と共存する硫酸還元菌の生育を選
択的に阻害する界面活性剤を添加するので、上記
硫酸還元菌による硫酸イオンの還元を抑制してメ
タン発酵を阻害する硫化物イオンの発生を防ぐこ
とができると共に、メタン生成に必要な水素が上
記硫酸還元菌に消費されることを防止することが
できる。このため、この方法を用いて有機性廃水
の嫌気性処理を行なつた場合には、メタン発酵を
良好な状態で行なうことができ、廃水処理を効果
的に行なうことができる。 また、この発明の硫酸還元菌阻害性界面活性剤
によれば、硫酸還元菌の生育を阻害すると共にメ
タン細菌の生育を阻害しないために嫌気性処理を
効率的に行なうことができるだけでなく、その硫
酸還元菌阻害性によつて、その嫌気性処理で用い
られる鉄製のタンク、配管などが硫酸還元菌がつ
くりだす硫化水素ガスで腐食されることも防止す
ることができる。そして、この硫酸還元菌阻害性
界面活性剤によれば、土中等の嫌気したにおける
鉄製の送油管、ガス管、水道管などが硫酸還元菌
がつくりだす硫化水素イオンで腐食されることも
防止することができ、その他の硫酸還元菌による
被害に対しても広く応用して幅広い産業分野に利
用することが可能である。
[Table] However, the pH of the above medium is adjusted to 7.0. As a result of this symbiosis test, as shown in Figures 1 and 2, when dodecylbenzenesulfonic acid was added to a system in which methane bacteria and sulfate-reducing bacteria were mixed, the results were as good as in a system with methane bacteria alone. methane fermentation was carried out, and the growth of sulfate-reducing bacteria was also suppressed. In addition, as in the symbiosis test above, using the medium shown in Table 7, a mixed culture of methane bacteria and sulfate-reducing bacteria was carried out to which each surfactant other than the above-mentioned dodecylbenzenesulfonic acid listed in Table 6 was added. However, when each of these surfactants was added, methane fermentation was carried out as well as in the case where dodecylbenzenesulfonic acid was added, and the growth of sulfate-reducing bacteria was also suppressed. "Effects of the Invention" According to the method for suppressing sulfuric acid reduction reaction in anaerobic treatment of the present invention, when organic wastewater containing sulfate ions is treated by anaerobic fermentation, methane bacteria coexist in the organic wastewater. Since a surfactant that selectively inhibits the growth of sulfate-reducing bacteria is added, it is possible to suppress the reduction of sulfate ions by the sulfate-reducing bacteria and prevent the generation of sulfide ions that inhibit methane fermentation. It is possible to prevent hydrogen necessary for production from being consumed by the sulfate-reducing bacteria. Therefore, when organic wastewater is anaerobically treated using this method, methane fermentation can be carried out in good conditions, and wastewater treatment can be carried out effectively. Furthermore, the sulfate-reducing bacteria-inhibiting surfactant of the present invention not only inhibits the growth of sulfate-reducing bacteria and does not inhibit the growth of methane bacteria, but also enables efficient anaerobic treatment. The sulfate-reducing bacteria inhibiting property also prevents iron tanks, piping, etc. used in the anaerobic treatment from being corroded by hydrogen sulfide gas produced by sulfate-reducing bacteria. This sulfate-reducing bacteria-inhibiting surfactant also prevents iron oil pipes, gas pipes, water pipes, etc. in anaerobic conditions such as soil from being corroded by hydrogen sulfide ions produced by sulfate-reducing bacteria. It can be widely applied to damage caused by other sulfate-reducing bacteria and can be used in a wide range of industrial fields.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は、共生テストの結果を示す図
であつて、第1図は培養時間と硫酸イオン濃度と
の関係を表すグラフ、第2図は培養時間とメタン
ガス発生量との関係を表すグラフである。
Figures 1 and 2 are diagrams showing the results of the symbiosis test, with Figure 1 being a graph showing the relationship between culture time and sulfate ion concentration, and Figure 2 being a graph showing the relationship between culture time and methane gas generation amount. This is a graph representing

Claims (1)

【特許請求の範囲】 1 硫酸イオンを含む有機性廃水を嫌気性発酵に
よつて処理する際に、上記有機性廃水にメタン細
菌と共存する硫酸還元菌の生育を選択的に阻害す
る界面活性剤を添加することを特徴とする嫌気性
処理における硫酸還元反応抑制方法。 2 第1項記載の嫌気性処理における硫酸還元反
応抑制方法で添加する界面活性剤において、ツウ
イーン60、塩化オクタデシルトリメチルアンモニ
ウム、ドデシルベンゼンスルホン酸、臭化セチル
トリメチルアンモニウム、臭化セチルピリジニウ
ム、塩化セチルピリジニウム、ポリエチレングリ
コールステアリルアミンから選ばれたうちの一種
類または二種類以上の混合物からなることを特徴
とする硫酸還元菌阻害性界面活性剤。
[Claims] 1. A surfactant that selectively inhibits the growth of sulfate-reducing bacteria coexisting with methane bacteria in the organic wastewater when organic wastewater containing sulfate ions is treated by anaerobic fermentation. A method for suppressing sulfuric acid reduction reaction in anaerobic treatment, characterized by adding. 2 Among the surfactants added in the method for suppressing sulfuric acid reduction reaction in anaerobic treatment described in item 1, Tween 60, octadecyltrimethylammonium chloride, dodecylbenzenesulfonic acid, cetyltrimethylammonium bromide, cetylpyridinium bromide, cetylpyridinium chloride , polyethylene glycol stearylamine, or a mixture of two or more thereof.
JP63077773A 1988-03-30 1988-03-30 Method for inhibiting reduction of sulfate in anaerobic treatment and surfactant hindering growth of sulfate reducing bacteria Granted JPH01249197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63077773A JPH01249197A (en) 1988-03-30 1988-03-30 Method for inhibiting reduction of sulfate in anaerobic treatment and surfactant hindering growth of sulfate reducing bacteria

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63077773A JPH01249197A (en) 1988-03-30 1988-03-30 Method for inhibiting reduction of sulfate in anaerobic treatment and surfactant hindering growth of sulfate reducing bacteria

Publications (2)

Publication Number Publication Date
JPH01249197A JPH01249197A (en) 1989-10-04
JPH0310392B2 true JPH0310392B2 (en) 1991-02-13

Family

ID=13643274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63077773A Granted JPH01249197A (en) 1988-03-30 1988-03-30 Method for inhibiting reduction of sulfate in anaerobic treatment and surfactant hindering growth of sulfate reducing bacteria

Country Status (1)

Country Link
JP (1) JPH01249197A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01272502A (en) * 1988-04-21 1989-10-31 Shimizu Corp Prevention against growing of sulfuric acid reduction fungi
JPH01270997A (en) * 1988-04-21 1989-10-30 Shimizu Corp Process and apparatus for anaerobic fermentation
JPH01268603A (en) * 1988-04-21 1989-10-26 Shimizu Corp Inhibition of growth of sulfuric acid-reducing bacterium
JP5117882B2 (en) * 2008-02-22 2013-01-16 日本製紙株式会社 Anaerobic treatment method for pulp wastewater
JP5625705B2 (en) * 2010-10-01 2014-11-19 栗田工業株式会社 Method and apparatus for anaerobic treatment of wastewater containing terephthalic acid
JP6817842B2 (en) * 2017-02-17 2021-01-20 ライオン株式会社 Biogas production accelerator and biogas production promotion method using it, organic waste treatment method, treatment equipment

Also Published As

Publication number Publication date
JPH01249197A (en) 1989-10-04

Similar Documents

Publication Publication Date Title
Basri et al. Improved biogas production from palm oil mill effluent by a scaled-down anaerobic treatment process
Gerardi The microbiology of anaerobic digesters
Wang et al. Enhanced solubilization and biochemical methane potential of waste activated sludge by combined free nitrous acid and potassium ferrate pretreatment
Nakamura et al. Fundamental studies on hydrogen production in the acid-forming phase and its bacteria in anaerobic treatment processes–the effects of solids retention time
Fan et al. Alleviation of ammonia inhibition via nano-bubble water supplementation during anaerobic digestion of ammonia-rich swine manure: Buffering capacity promotion and methane production enhancement
Ye et al. Methanogenic treatment of dairy wastewater: A review of current obstacles and new technological perspectives
Jackson-Moss et al. The effect of iron on anaerobic digestion
Serrano-Meza et al. Anaerobic digestion inhibition indicators and control strategies in processes treating industrial wastewater and wastes
JPH0310392B2 (en)
JPH0310394B2 (en)
JPH0310393B2 (en)
CN216472716U (en) On-spot amplification of biological strengthening microbial inoculum banks up device with earth in waste water treatment process
JPH0341240B2 (en)
UEKI et al. The role of sulfate reduction in methanogenic digestion of municipal sewage sludge
TWI511937B (en) An anaerobic treatment method and treatment device for the drainage of terephthalic acid
CN212655652U (en) Reaction device for removing sulfate in wastewater
JP6029649B2 (en) Wastewater treatment method
Blomgren et al. Enrichment of a mesophilic, syntrophic bacterial consortium converting acetate to methane at high ammonium concentrations
JPH08323387A (en) Anaerobic treatment
Ahmed et al. Effect of divalent iron on methanogenic fermentation of fat-containing wastewater
Khanal Single-stage anaerobic treatment of high sulfate wastewater with oxygenation to control sulfide toxicity
JPS62279896A (en) Methane fermentation method
Ding et al. Development of Iron based Materials for Anaerobic Digestion of Organic Waste
Ghosh et al. Anaerobic processes
Prameswari et al. Methane Production from Patchouli Oil Distillery Waste Using Wet Semi-Continuous and Dry Batch Anaerobic Digestion

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees