JPH0310082A - Method and device for forming deposited film - Google Patents

Method and device for forming deposited film

Info

Publication number
JPH0310082A
JPH0310082A JP14213989A JP14213989A JPH0310082A JP H0310082 A JPH0310082 A JP H0310082A JP 14213989 A JP14213989 A JP 14213989A JP 14213989 A JP14213989 A JP 14213989A JP H0310082 A JPH0310082 A JP H0310082A
Authority
JP
Japan
Prior art keywords
composition
deposited film
flow rate
film
absorption spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14213989A
Other languages
Japanese (ja)
Inventor
Nobumasa Suzuki
伸昌 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP14213989A priority Critical patent/JPH0310082A/en
Publication of JPH0310082A publication Critical patent/JPH0310082A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve uniformity in the deposited film composition between batches by measuring the IR absorption spectrum of a deposited film being formed to calculate the composition of the film and controlling the flow rate of a raw gas to obtain a desired film composition. CONSTITUTION:The flow rates of the raw gases from pipelines 4 and 5 are appropriately controlled by a flow controller 6, the gases are introduced into a reaction chamber 1 and kept at a specified pressure by an exhaust port 7, an output is impressed on an electrode 8 from a high-frequency power source 9 to produce plasma, and a film is formed on a substrate 2. At this time, the substrate 2 is irradiated with an IR 10 from an IR source 11, and the reflected light is spectrally split by an IR spectrometer 13 and detected by an IR detector 14 to obtain an IR absorption spectrum. The IR absorption spectrum is measured at regular time intervals and calculated by a computer 15 to obtain the composition of the film being deposited, a flow rate for imparting the desired composition is obtained based on the deviation from the desired composition, and the obtained flow rate is set in the flow controller 6. As a result, the composition of the deposited film being formed is automatically controlled, and the uniformity in the composition between batches is improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は半導体素子の製造に用いられる堆積膜形成装置
及び堆積膜形成方法に関し、特に堆積膜の組成の制御性
に優れた絶縁膜形成装置及び絶縁膜形成方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a deposited film forming apparatus and a deposited film forming method used in the manufacture of semiconductor devices, and in particular to an insulating film forming apparatus with excellent controllability of the composition of the deposited film. and an insulating film forming method.

【従来の技術1 半導体素子、特に超LSIの製造プロセスにおいて、絶
縁膜形成のためのCVD装置は重要な位置を占めている
[Prior Art 1] In the manufacturing process of semiconductor devices, especially VLSIs, CVD equipment for forming insulating films occupies an important position.

例えば、SiJ<膜は減圧CVD装置を用いて。For example, for SiJ< film, use a low pressure CVD device.

例えばモノシランとアンモニアとの混合ガスを数Tor
rの圧力下で、750℃以上950℃以下に加熱した基
体の上に熱分解によって堆積させて1選択酸化用マスク
やキャパシタ絶縁膜として用いられている。また、Si
N膜はプラズマCVD装置を用いて例えばモノシランと
アンモニア又は窒素との混合ガスをO,1Torr台の
圧力下でコンデンサ型の平行平板電極間に導入し、この
電極に高周波電圧を印加してプラズマを発生させ、これ
らのガスを励起、分解し、250℃以上300℃以下に
加熱した基体上に堆積させて、半導体素子のバッシベー
シゴン膜として用いられている。更に、5iOz系膜は
常圧または減圧CVD装置を用いて、例えばモノシラン
と酸素又は亜酸化窒素との混合ガスをl Torr以上
760 Torr以下の圧力下で、350℃以上450
℃以下に加熱した基体上に熱分解によって堆積させて、
眉間絶縁膜として用いられている。
For example, mix gas of monosilane and ammonia at several Torr.
It is deposited by thermal decomposition on a substrate heated to 750° C. or more and 950° C. or less under a pressure of r. Also, Si
The N film is produced by using a plasma CVD device to introduce a mixed gas of, for example, monosilane and ammonia or nitrogen between capacitor-shaped parallel plate electrodes under a pressure on the order of 0.1 Torr, and applying a high frequency voltage to these electrodes to generate plasma. These gases are generated, excited, decomposed, and deposited on a substrate heated to 250° C. or more and 300° C. or less, and used as a Bassibasigon film for semiconductor devices. Furthermore, the 5iOz film can be prepared using a normal pressure or reduced pressure CVD apparatus using a mixed gas of, for example, monosilane and oxygen or nitrous oxide at a temperature of 350° C. or more and 450° C. or more under a pressure of 1 Torr or more and 760 Torr or less.
Deposited by pyrolysis on a substrate heated below ℃,
It is used as an insulating film between the eyebrows.

[発明が解決しようとする課題] しかしながら、従来のCVD装置では、使用しているう
ちに圧力等の条件や環境が少しずつ変化し、バッチ間の
組成などの膜質の均一性が悪いという問題があった。こ
のことは、成膜プロセスの間組成などの膜質を測定し、
その情報に基づいて条件を変化させる制御系を具備して
いないことに起因している。
[Problems to be solved by the invention] However, with conventional CVD equipment, conditions such as pressure and environment change little by little during use, resulting in poor uniformity of film quality such as composition between batches. there were. This means that film quality such as composition can be measured during the film formation process.
This is due to the lack of a control system that changes conditions based on that information.

本発明の目的は、上記のような欠点の無い、即ちバッチ
間の組成の均一性を向上させることのできる堆積膜形成
装置及び方法を提供することである。
An object of the present invention is to provide a deposited film forming apparatus and method that does not have the above-mentioned drawbacks, that is, can improve composition uniformity between batches.

[課題を解決するための手段J 本発明の堆積膜形成装置は、形成中の堆積膜の赤外吸収
スペクトルを測定する手段と、該赤外吸収スペクトルに
基づき該形成中の堆積膜の組成を計算し且つ所望の堆積
膜組成を与えるのに必要な原料ガス流量を計算する手段
と、該計算された原料ガス流量を設定する手段とで構成
された堆積膜組成制御機構を有することを特徴とする。
[Means for Solving the Problems J] The deposited film forming apparatus of the present invention includes means for measuring an infrared absorption spectrum of a deposited film being formed, and a means for determining the composition of the deposited film being formed based on the infrared absorption spectrum. The deposited film composition control mechanism is comprised of means for calculating the raw material gas flow rate necessary to provide a desired deposited film composition, and means for setting the calculated raw material gas flow rate. do.

また、本発明の堆積膜形成方法は、形成中の堆積膜の赤
外吸収スペクトルを測定し、前記赤外吸収スペクトルに
基づき前記形成中の堆積膜の組成を計算し、且つ所望の
堆積膜組成を与えるのに必要な原料ガス流量を計算し、
計算された原料ガス流量に流量を制御することを特徴と
する。
Further, in the deposited film forming method of the present invention, the infrared absorption spectrum of the deposited film being formed is measured, the composition of the deposited film being formed is calculated based on the infrared absorption spectrum, and the desired deposited film composition is determined. Calculate the raw material gas flow rate required to give
It is characterized by controlling the flow rate to the calculated raw material gas flow rate.

本発明の堆積膜形成装置は、プラズマCVD装置、常圧
又は減圧の熱CVD装置、光CVD装置、プラズマ−光
混成励起CVD装置、ECRプラズマCVD装置など、
ガスを原料とする堆積膜形成装置ならばいかなる装置に
も適用可能である。
The deposited film forming apparatus of the present invention includes a plasma CVD apparatus, a normal pressure or reduced pressure thermal CVD apparatus, an optical CVD apparatus, a plasma-light hybrid excitation CVD apparatus, an ECR plasma CVD apparatus, etc.
The present invention can be applied to any apparatus for forming a deposited film that uses gas as a raw material.

本発明を以下に図面を参照して説明する。The invention will be explained below with reference to the drawings.

第1図は本発明をプラズマCVD装置に適用した場合の
実施例を示し、1は反応室、2はSLなどの基体、3は
基体2のための支持体、4は流量制御される原料ガスの
配管、5は流量制御されずに一定量で流れる原料ガスの
配管、6は流量制御器、7は排気口、8は高周波出力を
反応室1内に導入する電極、9は高周波電源、lOは赤
外線、11はハロゲンランプなどの赤外線光源、12は
赤外線を透過させるZn5eなどの窓、13は赤外分光
器、14は赤外線検出器、15はマイクロコンピュータ
などの計算機である。尚、流量制御される原料ガスとし
ては通常は流量の少ない方が、反応室内の圧力等の雰囲
気の変動が小さいため、選ばれるが、反応室l内に導入
される全てのガスについて流量を制御してもよい。
FIG. 1 shows an embodiment in which the present invention is applied to a plasma CVD apparatus, in which 1 is a reaction chamber, 2 is a substrate such as SL, 3 is a support for the substrate 2, and 4 is a raw material gas whose flow rate is controlled. , 5 is a pipe for raw material gas flowing at a fixed amount without flow rate control, 6 is a flow rate controller, 7 is an exhaust port, 8 is an electrode for introducing high frequency output into the reaction chamber 1, 9 is a high frequency power source, lO 11 is an infrared light source such as a halogen lamp, 12 is a window made of Zn5e or the like that transmits infrared rays, 13 is an infrared spectrometer, 14 is an infrared detector, and 15 is a calculator such as a microcomputer. Note that as the raw material gas whose flow rate is controlled, normally one with a low flow rate is selected because the fluctuations in the atmosphere such as the pressure inside the reaction chamber are small, but the flow rate of all gases introduced into the reaction chamber is controlled. You may.

第1図に示す装置を用いる場合には、まず、配管4及び
5からのそれぞれの原料ガスの流量を流量制御器6で適
当に設定して反応室1に導入し、排気ロアの後に設けた
コンダクタンス調節バルブ(図示せず)により所定の圧
力に保つ。赤外線光源11からの赤外線lOを赤外線透
過窓12を通して基体1に照射し、その反射光を赤外分
光器13で分光し、赤外線検出器14で検出することに
より赤外吸収スペクトルを得る。高周波電源9からの出
力を電源8に印加し、反応室1内にプラズマを発生させ
、成膜を行う。赤外吸収スペクトルは一定時間おきに測
定し、計算機15により以下の演算処理を行う。
When using the apparatus shown in FIG. 1, first, the flow rate of each raw material gas from the pipes 4 and 5 is set appropriately using the flow rate controller 6, and the raw material gas is introduced into the reaction chamber 1. A predetermined pressure is maintained by a conductance control valve (not shown). Infrared light lO from an infrared light source 11 is irradiated onto the substrate 1 through an infrared transmission window 12, and the reflected light is separated by an infrared spectrometer 13 and detected by an infrared detector 14 to obtain an infrared absorption spectrum. The output from the high frequency power source 9 is applied to the power source 8 to generate plasma in the reaction chamber 1 to form a film. The infrared absorption spectrum is measured at regular intervals, and the computer 15 performs the following arithmetic processing.

(i)堆積膜の構成要素の濃度を表す赤外吸収バンドの
吸光度の前回測定値からの変化量より堆積中の膜の組成
比を求める。例えばSiNの場合、(式中、 RcはSi/Hの組成比であり、ρ3、及びりはそれぞ
れSL及びNの濃度であり、ΔASt−N    5i
−41ΔA 及びΔ%−nはそれぞれSt−N(840cm−’)、
Si−H(2160cm−’)及びN −H(3340
c+++−’)の伸縮振動バンドの吸光度の前回測定値
からの変化量である)により求める。
(i) The composition ratio of the film being deposited is determined from the amount of change from the previous measurement value of the absorbance of the infrared absorption band representing the concentration of the constituent elements of the deposited film. For example, in the case of SiN, (where Rc is the composition ratio of Si/H, ρ3 is the concentration of SL and N, respectively, and ΔASt-N 5i
-41ΔA and Δ%-n are St-N (840 cm-'), respectively
Si-H (2160 cm-') and N-H (3340 cm-')
c+++-') is the amount of change in the absorbance of the stretching vibration band from the previous measurement value.

(if)予め実験的に求められたSiH4の流量変化に
対する組成変化率を用いて、所望する堆積膜の組成と堆
積中の膜の組成とのずれに基づいて所望する組成を与え
る流量を求める。例えば、化学量論的組成(SL/N=
0.75)をもつSiNを得る場合、(式中、 Q゛  は求められた流量であり、QSiFI4は現在
Si)++ の流量であり、R,は計算された組成比であり、ΔQS
iH4/ΔRcは流量組成変化率である)により求める
(if) Using the composition change rate with respect to the SiH4 flow rate change determined experimentally in advance, the flow rate that provides the desired composition is determined based on the difference between the desired composition of the deposited film and the composition of the film being deposited. For example, the stoichiometric composition (SL/N=
0.75), where Q is the determined flow rate, QSiFI4 is the current flow rate of Si)++, R, is the calculated composition ratio, and ΔQS
iH4/ΔRc is the flow rate composition change rate).

原料ガスの流量を、上記のようにして求められた流量(
SiNの場合は”5i)I4)に流量制御器6により設
定する。
The flow rate of the raw material gas is calculated as the flow rate (
In the case of SiN, it is set to "5i)I4)" by the flow rate controller 6.

以上の[赤外吸収スペクトルの測定−所望する堆積膜組
成を与える流量の演算−流量設定]の操作な成膜の間繰
り返す。繰り返しの回数は装置によって異なるが、−バ
ッチ最低二回は行なうことが望ましい。
The above operations [Measurement of infrared absorption spectrum - Calculation of flow rate to give desired deposited film composition - Setting of flow rate] are repeated during film formation. The number of repetitions varies depending on the equipment, but it is desirable to repeat the batch at least twice.

[実施例] 第1図に示した装置を用いた実施例を示す。流量制御さ
れる原料ガスとしてSiH4を配管4より初期設定流量
20 secmで導入し、流量制御されない原料ガスと
してN2を500 sec+Ilで導入して反応室l内
の圧力を0.1Torrとした。高周波電源9から50
0Wの高周波出力を電極8に投入し、10分開成膜な行
なった。この間上記した組成制御機構を2分間隔で用い
た。その後ウェハ交換と成膜を10回繰返した* St
/N組成比をオージェ分光法により測定したところ、0
.78±0.Olであり、バッチ間の組成はほぼ均一で
あった。
[Example] An example using the apparatus shown in FIG. 1 will be described. SiH4 was introduced from the pipe 4 as a raw material gas whose flow rate was controlled at an initial setting flow rate of 20 sec, and N2 was introduced as a raw material gas whose flow rate was not controlled at 500 sec+Il to set the pressure in the reaction chamber 1 to 0.1 Torr. High frequency power supply 9 to 50
A high frequency output of 0 W was applied to the electrode 8, and film formation was performed for 10 minutes. During this time, the composition control mechanism described above was used at 2 minute intervals. After that, wafer exchange and film formation were repeated 10 times* St
/N composition ratio was measured by Auger spectroscopy and found to be 0.
.. 78±0. The composition was almost uniform between batches.

[比較例] 実施例と同一条件で、組成制御機構を用いずに成膜を繰
返したところ、組成は0.78±0.05と不均一で特
に最初と最後のバッチ間の組成のずれが大きかった。
[Comparative example] When film formation was repeated under the same conditions as in the example without using a composition control mechanism, the composition was 0.78 ± 0.05, which was non-uniform, and there was a particular difference in composition between the first and last batches. It was big.

上記の操作例ではSiN膜の例を示したが、他に5i0
1.PSG、BPSGJSi*、Ti5ii、Ta*O
i、Al−5i、Al0i。
In the above operation example, an example of SiN film was shown, but in addition, 5i0
1. PSG, BPSGJSi*, Ti5ii, Ta*O
i, Al-5i, Al0i.

InP、 GaAs、 GaAlAsなど、二種以上の
要素で構成される堆積膜を二種以上の原料ガスを用いて
形成する場合に適用可能である。又、原料ガス流量の設
定は1種類の場合を示したが、二種以上のガス流量を変
化させてもよい。
It is applicable to the case where a deposited film composed of two or more kinds of elements such as InP, GaAs, GaAlAs, etc. is formed using two or more kinds of raw material gases. Further, although the case where one type of raw material gas flow rate is set is shown, the flow rate of two or more types of gases may be changed.

[発明の効果] 以上に説明したように、本発明においては成膜の間の堆
積膜組成の自動制御が可能になり、バッチ間の組成の均
一性が向上する。
[Effects of the Invention] As explained above, in the present invention, automatic control of the deposited film composition during film formation becomes possible, and the uniformity of the composition between batches is improved.

【図面の簡単な説明】 第1図は本発明をプラズマCVD装置に適用した場合の
実施例を示す概要図である。 図中、1は反応室、2はStなどの基体、3は基体2の
ための支持体、4は流量制御される原料ガスの配管、5
は流量制御されずに一定量で流れる原料ガスの配管、6
は流量制御器、7は排気口、8は高周波出力を反応室1
内に導入する電極、9は高周波電源、10は赤外線、1
1は赤外線光源、12は赤外線を透過させる窓、13は
赤外分光器、14は赤外線検出器、15はマイクロコン
ピュータなどの計算機である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing an embodiment in which the present invention is applied to a plasma CVD apparatus. In the figure, 1 is a reaction chamber, 2 is a substrate such as St, 3 is a support for the substrate 2, 4 is a pipe for raw material gas whose flow rate is controlled, and 5
is a pipe for raw material gas that flows at a constant rate without flow rate control, 6
is the flow rate controller, 7 is the exhaust port, and 8 is the high frequency output to the reaction chamber 1.
9 is a high frequency power supply, 10 is an infrared ray, 1
1 is an infrared light source, 12 is a window that transmits infrared rays, 13 is an infrared spectrometer, 14 is an infrared detector, and 15 is a calculator such as a microcomputer.

Claims (3)

【特許請求の範囲】[Claims] 1.形成中の堆積膜の赤外吸収スペクトルを測定する手
段と、該赤外吸収スペクトルに基づき該形成中の堆積膜
の組成を計算し且つ所望の堆積膜組成を与えるのに必要
な原料ガス流量を計算する手段と、該計算された原料ガ
ス流量を設定する手段とで構成された堆積膜組成制御機
構を有することを特徴とする堆積膜形成装置。
1. A means for measuring an infrared absorption spectrum of a deposited film being formed, a means for calculating the composition of the deposited film being formed based on the infrared absorption spectrum, and calculating a raw material gas flow rate necessary to provide a desired deposited film composition. A deposited film forming apparatus comprising a deposited film composition control mechanism comprising means for calculating and means for setting the calculated raw material gas flow rate.
2.堆積膜形成方法において、形成中の堆積膜の赤外吸
収スペクトルを測定し、前記赤外吸収スペクトルに基づ
き前記形成中の堆積膜の組成を計算し、且つ所望の堆積
膜組成を与えるのに必要な原料ガス流量を計算し、計算
された原料ガス流量に流量を制御することを特徴とする
堆積膜形成方法。
2. In the deposited film forming method, measuring an infrared absorption spectrum of the deposited film being formed, calculating the composition of the deposited film being formed based on the infrared absorption spectrum, and necessary for providing a desired deposited film composition. 1. A method for forming a deposited film, comprising: calculating a raw material gas flow rate, and controlling the flow rate to the calculated raw material gas flow rate.
3.前記流量の制御を1回の堆積膜形成あたり2回以上
行う請求項2記載の堆積膜形成方法。
3. 3. The method for forming a deposited film according to claim 2, wherein the flow rate is controlled two or more times per deposited film formation.
JP14213989A 1989-06-06 1989-06-06 Method and device for forming deposited film Pending JPH0310082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14213989A JPH0310082A (en) 1989-06-06 1989-06-06 Method and device for forming deposited film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14213989A JPH0310082A (en) 1989-06-06 1989-06-06 Method and device for forming deposited film

Publications (1)

Publication Number Publication Date
JPH0310082A true JPH0310082A (en) 1991-01-17

Family

ID=15308272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14213989A Pending JPH0310082A (en) 1989-06-06 1989-06-06 Method and device for forming deposited film

Country Status (1)

Country Link
JP (1) JPH0310082A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100708081B1 (en) * 2000-05-18 2007-04-16 삼성전자주식회사 Apparatus and method for manufacturing oxide aperture of VCSEL
US9228577B2 (en) 2012-11-05 2016-01-05 Kabushiki Kaisha Toyota Jidoshokki Swash plate type variable displacement compressor
US9228576B2 (en) 2012-11-05 2016-01-05 Kabushiki Kaisha Toyota Jidoshokki Swash plate type variable displacement compressor
US9309874B2 (en) 2012-11-05 2016-04-12 Kabushiki Kaisha Toyota Jidoshokki Swash plate type variable displacement compressor
US9309875B2 (en) 2012-11-05 2016-04-12 Kabushiki Kaisha Toyota Jidoshokki Swash plate type variable displacement compressor
US9316217B2 (en) 2012-11-05 2016-04-19 Kabushiki Kaisha Toyota Jidoshokki Swash plate type variable displacement compressor
US9512832B2 (en) 2013-10-31 2016-12-06 Kabushiki Kaisha Toyota Jidoshokki Swash plate type variable displacement compressor
US9752563B2 (en) 2013-11-06 2017-09-05 Kabushiki Kaisha Toyota Jidoshokki Swash plate type variable displacement compressor
US9816498B2 (en) 2013-03-29 2017-11-14 Kabushiki Kaisha Toyota Jidoshokki Variable displacement swash-plate compressor
US9903352B2 (en) 2012-11-05 2018-02-27 Kabushiki Kaisha Toyota Jidoshokki Swash plate type variable displacement compressor
CN113820290A (en) * 2020-06-17 2021-12-21 东京毅力科创株式会社 Film forming method and film forming apparatus
JP2022114415A (en) * 2021-01-26 2022-08-05 富蘭登科技股▲ふん▼有限公司 Device for measuring physical state of substance by spectrum and method for measuring physical state of substance by spectrum

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100708081B1 (en) * 2000-05-18 2007-04-16 삼성전자주식회사 Apparatus and method for manufacturing oxide aperture of VCSEL
US9228577B2 (en) 2012-11-05 2016-01-05 Kabushiki Kaisha Toyota Jidoshokki Swash plate type variable displacement compressor
US9228576B2 (en) 2012-11-05 2016-01-05 Kabushiki Kaisha Toyota Jidoshokki Swash plate type variable displacement compressor
US9309874B2 (en) 2012-11-05 2016-04-12 Kabushiki Kaisha Toyota Jidoshokki Swash plate type variable displacement compressor
US9309875B2 (en) 2012-11-05 2016-04-12 Kabushiki Kaisha Toyota Jidoshokki Swash plate type variable displacement compressor
US9316217B2 (en) 2012-11-05 2016-04-19 Kabushiki Kaisha Toyota Jidoshokki Swash plate type variable displacement compressor
US9903352B2 (en) 2012-11-05 2018-02-27 Kabushiki Kaisha Toyota Jidoshokki Swash plate type variable displacement compressor
US9816498B2 (en) 2013-03-29 2017-11-14 Kabushiki Kaisha Toyota Jidoshokki Variable displacement swash-plate compressor
US9512832B2 (en) 2013-10-31 2016-12-06 Kabushiki Kaisha Toyota Jidoshokki Swash plate type variable displacement compressor
US9752563B2 (en) 2013-11-06 2017-09-05 Kabushiki Kaisha Toyota Jidoshokki Swash plate type variable displacement compressor
CN113820290A (en) * 2020-06-17 2021-12-21 东京毅力科创株式会社 Film forming method and film forming apparatus
JP2022114415A (en) * 2021-01-26 2022-08-05 富蘭登科技股▲ふん▼有限公司 Device for measuring physical state of substance by spectrum and method for measuring physical state of substance by spectrum

Similar Documents

Publication Publication Date Title
US4581248A (en) Apparatus and method for laser-induced chemical vapor deposition
Flamm et al. The reaction of fluorine atoms with silicon
EP0464515A2 (en) Method of manufacturing silicon nitride film
JPH0310082A (en) Method and device for forming deposited film
JP2004119629A (en) Method of manufacturing silicon nitride film or silicon oxynitride film by thermal chemical vapor deposition method
JP2789587B2 (en) Manufacturing method of insulating thin film
JP3077591B2 (en) CVD apparatus and CVD film forming method
JP4087851B2 (en) Processing equipment
JPS5982732A (en) Manufacture for semiconductor device
JP3497848B2 (en) Method and apparatus for forming antireflection film and antireflection film
JPH03139824A (en) Depositing method for semiconductor device
JPS5710240A (en) Forming method of insulating film
JPH03212938A (en) Forming method of silicon nitride film
JPH04354131A (en) Semiconductor device manufacturing equipment
JPH059739A (en) Production of silicon dioxide thin film
JPS60190566A (en) Preparation of silicon nitride
JPH05335250A (en) Cvd device
JPS60249334A (en) Formation of thin film
JP3563092B2 (en) Self-biased plasma CVD coating method and apparatus
JPS61239620A (en) Plasma chemical vapor deposition (cvd) device
JPS63228712A (en) Vapor growth method of compound semiconductor
JPS646536B2 (en)
Benson-Woodward et al. Process control methodology for PSG and PETEOS films in a highly interactive multiprocess CVD system
RU2040072C1 (en) Method for production of thin films of silicon dioxide
Gougousi et al. Process diagnostics and thickness metrology using in situ mass spectrometry for the chemical vapor deposition of W from H 2/WF 6