JPH0298128A - Formation of semiconductor thin film - Google Patents

Formation of semiconductor thin film

Info

Publication number
JPH0298128A
JPH0298128A JP63250341A JP25034188A JPH0298128A JP H0298128 A JPH0298128 A JP H0298128A JP 63250341 A JP63250341 A JP 63250341A JP 25034188 A JP25034188 A JP 25034188A JP H0298128 A JPH0298128 A JP H0298128A
Authority
JP
Japan
Prior art keywords
thin film
film
temperature
substrate
compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63250341A
Other languages
Japanese (ja)
Other versions
JPH0580137B2 (en
Inventor
Yutaka Hayashi
豊 林
Mitsuyuki Yamanaka
光之 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP63250341A priority Critical patent/JPH0298128A/en
Publication of JPH0298128A publication Critical patent/JPH0298128A/en
Priority to US07/742,101 priority patent/US5232868A/en
Publication of JPH0580137B2 publication Critical patent/JPH0580137B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To form a superior film quality at a low temperature by a method wherein a plurality of compounds having a specified composition are fed on a substrate and a Ge-containing thin film is formed. CONSTITUTION:Compounds, GeXFYHZ and SiuHvFw, are fed on a heated substrate 4 and are reduced to form a Ge-containing thin film. Here, the thin film has a value of X, Y, u, v>=1, Z, w>=0. Thereby, a film formation is possible at a lower temperature compared with cases using any of the compounds. Moreover, by changing the mixing ratio of these compounds and a substrate temperature at the time of a film formation, the optical gap of the thin film can be changed. In such a way, as a Ge compound is reduced by an Si compound to form a Ge-containing thin film on the substrate 4, a superior film quality and a semiconductor thin film having a controlled optical gap can be formed at a low temperature.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電子素子、光学素子等に用いられる半導体薄膜
の形成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for forming semiconductor thin films used in electronic devices, optical devices, and the like.

[従来の技術] 従来熱以外のエネルギーを主として用いたプラズマCV
O等の成膜技術によって形成された電子素子用の薄膜は
、例えば光電変換素子等に用いた場合は、光電特性の光
劣化が大きく、問題になっていた。一方、熱エネルギー
を主として用いた熱CVO等の成膜技術によって形成さ
れた薄膜は光劣化が少なく、しかも複雑な表面形状を有
する基板の上にも比較的−様な膜厚で成膜することがで
きる。
[Conventional technology] Conventional plasma CV that mainly uses energy other than heat
When a thin film for an electronic device formed by a film forming technique such as O is used for, for example, a photoelectric conversion element, the photoelectric properties of the thin film are significantly deteriorated by light, which has been a problem. On the other hand, thin films formed by film-forming techniques such as thermal CVO that mainly use thermal energy have little photodegradation, and can be formed with relatively uniform film thickness even on substrates with complex surface shapes. Can be done.

[発明が解決しようとする課題J 従来、アモルファスシリコン太陽電池等の光電変換素子
用の薄膜はモノシラン、ジシラン等のシラン系の化合物
の熱分解で形成すると、光劣化の少ない膜および素子を
得ることができることが知られている。しかし成膜時の
基板温度が実用的な温度範囲としては500℃に近い温
度を必要とし、このため使用可能な基板の種類にも制限
があり光電変換素子用の薄膜としての膜質も最善のもの
ではなく、改善を必要としていた。しかも、これまで薄
膜の光学ギャップを1.6ev以下に小さく調節するこ
とは難しかった。
[Problem to be solved by the invention J] Conventionally, when thin films for photoelectric conversion elements such as amorphous silicon solar cells are formed by thermal decomposition of silane-based compounds such as monosilane and disilane, films and elements with less photodeterioration can be obtained. is known to be possible. However, the practical temperature range of the substrate temperature during film formation is close to 500°C, which limits the types of substrates that can be used, and the film quality as a thin film for photoelectric conversion elements is also the best. Instead, it needed improvement. Furthermore, until now it has been difficult to adjust the optical gap of a thin film to 1.6 ev or less.

本発明は従来の欠点を解消し、より低温で半導体薄膜を
形成することができ、しかも制御された光学ギャップを
有する薄膜を得ることのできる半導体薄膜の形成方法を
提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for forming a semiconductor thin film that can eliminate the conventional drawbacks, form a semiconductor thin film at a lower temperature, and obtain a thin film having a controlled optical gap.

[課題を解決するための手段] 本発明は、化合物G11XF、H2(X≧1.Y≧1゜
2≧0)と化合物Si、HvFw(U≧1.V≧1゜W
2O)とを加熱した基板上に供給し、基板上にGeを含
む薄膜を形成することを特徴とする。
[Means for Solving the Problems] The present invention provides compounds G11XF, H2 (X≧1.Y≧1゜2≧0) and compounds Si, HvFw (U≧1.V≧1゜W
2O) onto a heated substrate to form a thin film containing Ge on the substrate.

[作 用1 本発明者らは熱エネルギーを主として用いた熱CVD等
の半導体薄膜の成膜技術において、シラン系の化合物S
fuHvFw(U≧1.V≧1.W≧0)に、ざらにG
eのフッ化物またはそのフッ素の一部を水素で置換した
化合物GexFyHz (x≧1゜Y≧1.Z≧0)を
混合した原料を加熱した基板上に供給し、シラン系のみ
の成膜温度よりも低い温度またはG6xFy)lxのみ
の成膜温度よりも低い温度で、半導体薄膜を成膜するこ
とができることを着想し確かめた。また、シラン系のみ
又はGexF、)1.のみを原料とした場合、成膜はす
るが、成膜速度が、成膜温度で律速される温度範囲では
これらの化合物を混合した場合は、さらに−層大きな成
膜速度が得られることを確かめた。さらに、本発明者ら
はこれらの化合物の混合比だけではなく、混合比が一定
の時でも成膜時基板温度を変化させることにより、薄膜
の光学ギャップを変化させることができるということを
確かめた。本発明においてはこれらの方法を用いること
によってすぐれた膜質と制御された光学ギャップを有す
る半導体薄膜を低温度で基板上に形成することができる
[Function 1] The present inventors used a silane-based compound S in a semiconductor thin film forming technology such as thermal CVD that mainly uses thermal energy.
fuHvFw (U≧1.V≧1.W≧0), Zarani G
A raw material mixed with fluoride e or a compound GexFyHz (x≧1゜Y≧1.Z≧0) in which part of the fluorine has been replaced with hydrogen is supplied onto a heated substrate, and the temperature for forming a silane-based film alone is increased. It was conceived and confirmed that a semiconductor thin film can be formed at a temperature lower than that of G6xFy)lx alone. Also, only silane type or GexF,) 1. If these compounds were used as raw materials, a film could be formed, but in the temperature range where the film formation rate is determined by the film formation temperature, it was confirmed that an even greater film formation rate could be obtained when these compounds were mixed. Ta. Furthermore, the present inventors have confirmed that the optical gap of a thin film can be changed not only by changing the mixing ratio of these compounds but also by changing the substrate temperature during film formation even when the mixing ratio is constant. . In the present invention, by using these methods, a semiconductor thin film having excellent film quality and a controlled optical gap can be formed on a substrate at a low temperature.

[実施例1 以下に本発明の詳細な説明する。[Example 1 The present invention will be explained in detail below.

薄膜の成長には第1図に示すランプ加熱炉を用いた。石
英チャンバ(反応室)1内の基板支持具2上にSiCで
被覆されたカーボンサセプタ3が置かれ、その上に基板
4が載せられる。石英チャンバ1の外周には赤外線また
は白色光ランプ5およびミラー6からなる輻射加熱装置
が設けられ、サセプタ3を加熱し、従って基板4を加熱
することがで籾る。基板4の温度は熱電対7又はパイロ
メータ8によって測定され、さらに温度制御器9および
ランプ電源10を制御することによって所定の温度に保
つことができる。
A lamp heating furnace shown in FIG. 1 was used to grow the thin film. A carbon susceptor 3 coated with SiC is placed on a substrate support 2 in a quartz chamber (reaction chamber) 1, and a substrate 4 is placed thereon. A radiation heating device consisting of an infrared or white light lamp 5 and a mirror 6 is provided around the outer periphery of the quartz chamber 1 to heat the susceptor 3 and thus the substrate 4. The temperature of the substrate 4 is measured by a thermocouple 7 or a pyrometer 8, and can be maintained at a predetermined temperature by controlling a temperature controller 9 and a lamp power supply 10.

まず石英チャンバ1内を、ロータリポンプ11などの真
空ポンプによって、電磁弁12および液体窒素トラップ
13を通して排気する。石英チャンバ1内が所定の真空
度に達したことを真空計14によって確かめ、基板4を
所定温度まで加熱する。基板4が加熱されると、電磁バ
ルブ12は閉じられる。
First, the inside of the quartz chamber 1 is evacuated through the electromagnetic valve 12 and the liquid nitrogen trap 13 using a vacuum pump such as the rotary pump 11 . It is confirmed by the vacuum gauge 14 that the inside of the quartz chamber 1 has reached a predetermined degree of vacuum, and the substrate 4 is heated to a predetermined temperature. When the substrate 4 is heated, the electromagnetic valve 12 is closed.

Geのフッカ物またはそのフッ素の一部を水素で置換し
た化合物が配管系Aから、Siの水素化物またはその水
素の一部をフッ素で置換された化合物が、配管系Bから
それぞれバルブ15^、圧力調整バルブも使用可能であ
る。
Ge fluoride or a compound in which part of its fluorine has been replaced with hydrogen is supplied from piping system A, and a Si hydride or a compound in which part of its hydrogen has been replaced by fluorine is supplied from piping system B through valves 15^, Pressure regulating valves can also be used.

GeXFYllzの最も単純な代表としてGeF4を用
いた場合の実施例を以下に述べる。
An example using GeF4 as the simplest representative of GeXFYllz will be described below.

基板としては、薄膜の光学測定、すなわち膜厚、光学ギ
ャップE。optの算出および光伝導率の測定のために
は石英基板を、結合水素量の同定のための赤外吸収測定
用およびGeとSiの組成比を分に半導体薄膜が形成さ
れる。反応後に分解生成される水素およびフッ素および
未反応ガスはガス排出管21からバルブ22および圧力
調整バルブ23を経由して排気され、反応室内の圧力は
所定の値に制御される。
As a substrate, optical measurement of thin films, ie film thickness, optical gap E. A quartz substrate is formed for calculating opt and measuring photoconductivity, and a semiconductor thin film is formed for infrared absorption measurement and for determining the composition ratio of Ge and Si to identify the amount of bound hydrogen. Hydrogen and fluorine decomposed and produced after the reaction and unreacted gas are exhausted from the gas exhaust pipe 21 via the valve 22 and the pressure regulating valve 23, and the pressure inside the reaction chamber is controlled to a predetermined value.

ランプ加熱炉は石英管壁の加熱が少な(、従りて薄膜が
主として基板上に堆積するので有利である。しかし、基
板を抵抗加熱型のヒーターで加熱する抵抗加熱炉および
基板を高周波加熱する高周る。
Lamp-heated furnaces are advantageous because they heat the quartz tube wall less (and therefore the thin film is deposited primarily on the substrate). Go around high.

第2図はシラン系の化合物としてジシラン5i21(、
をGeFaとほぼ等量に混合し、反応室内の圧力を10
0Torrに制御して成膜した場合の、薄膜の成膜速度
および光学ギャップの成膜時温度依存性を示す、500
℃より充分低い325℃でも膜の成長が観察され、温度
の上昇に伴い成膜温度は増加するが、本実施例の実験条
件では350℃以上では成膜速度はほぼ一定となる。一
方、薄膜の光学ギヤツブは、325℃の成膜温度では0
.7evであるが、成膜温度の上昇と共に増加し、42
5℃の成膜温度では1.35evまで増加する。
Figure 2 shows disilane 5i21 (,
was mixed with GeFa in approximately equal amounts, and the pressure in the reaction chamber was increased to 10
500, which shows the temperature dependence of the thin film deposition rate and optical gap during film deposition when the film is deposited under 0 Torr control.
Film growth is observed even at 325° C., which is sufficiently lower than 325° C., and the film forming temperature increases as the temperature rises, but under the experimental conditions of this example, the film forming rate remains almost constant above 350° C. On the other hand, thin film optical gears have a temperature of 0 at a film formation temperature of 325°C.
.. 7ev, but it increases as the film forming temperature rises, and 42
At a film formation temperature of 5° C., it increases to 1.35ev.

GeF4とジシランの混合比を変えることによって、成
膜温度が一定でも成膜速度または光学ギャップを変化さ
せることができる。さらに反応室内の圧力を変えること
によって、成膜速度を変える合は475℃でも成膜しな
かった。ジシランのみを原料とする場合は450℃以下
では成膜速度は本実施例でGeFaを混合した場合に比
し著しく小さく、400℃以下ではほとんど成膜しなか
った。
By changing the mixing ratio of GeF4 and disilane, the deposition rate or optical gap can be changed even if the deposition temperature is constant. Further, when the film formation rate was changed by changing the pressure inside the reaction chamber, no film was formed even at 475°C. When only disilane was used as a raw material, the film formation rate was significantly lower at temperatures below 450°C than when GeFa was mixed in this example, and almost no film was formed at temperatures below 400°C.

第3図はGeF、とSi2Hgとをほぼ等量に混合し、
反応室内の圧力を10torrに制御して成膜した場合
の成膜速度と、堆積した膜の光学ギャップの成膜どGe
であり、SIの組成は2%以下であったが、高温(40
0℃以上)で形成された膜にはより多くのSiが含まれ
ている。たとえば425℃で成膜された膜には34%の
Stが含まれていることがオージェ分光分析で示された
Figure 3 shows GeF and Si2Hg mixed in almost equal amounts,
The film formation rate when the film was formed by controlling the pressure in the reaction chamber to 10 torr, and the optical gap of the deposited film.
The composition of SI was less than 2%, but at high temperature (40%
A film formed at a temperature of 0° C. or higher contains more Si. For example, Auger spectroscopy showed that a film formed at 425° C. contained 34% St.

従来のアモルファスSi膜の場合は反応温度が高くなる
とE。aptは低下した。第2図の結果は従来例と極だ
った対比を示している。
In the case of conventional amorphous Si films, the higher the reaction temperature, the higher the E. apt decreased. The results in Figure 2 show a sharp contrast with the conventional example.

また、未実施例では、GeF4のみを原料とする基膜温
度450℃以上で成膜速度が再度上昇する傾向がみられ
た。
In addition, in the non-example, there was a tendency for the film formation rate to increase again when the base film temperature was 450° C. or higher using only GeF4 as a raw material.

光学ギャップは400℃前後の成膜温度を境にして高温
側で増加する。この実施例の場合も従来のSi2H6の
みの成膜と異なり成膜温度上昇に従い光学ギャップの増
加する傾向がみられている。この実施例においても従来
のアモルファスSi膜の熱CVDと逆の傾向を示してい
る。
The optical gap increases on the high temperature side when the film forming temperature is around 400°C. In the case of this example as well, unlike the conventional film formation of only Si2H6, there is a tendency for the optical gap to increase as the film formation temperature increases. This example also shows a tendency opposite to that of conventional thermal CVD of an amorphous Si film.

第4図は成膜温度を350℃と450℃とに選び、5t
2)1.とGeF4との流量比を変化させて成膜した場
合の、成膜速度と成膜した膜の光学ギャップの成膜温度
依存性を示す。この場合も、第3図と同様、反応室内の
圧力を10torrとした。さらに基板をおく場所によ
るバラツキを小さくするために不活性キャリアガスとし
てA「を流した。成膜速度はSt、++67GeF4が
2前後で最高となり、5iJa/GeF4がガスのみに
よる場合よりもさらに低温で成膜が可能であるばかりか
、GexFyHzとSiuHvFwの流量比又は成膜温
度を設定することにより従来よりも低光学ギャップ域で
光学ギャップの制御を行うことができる。
Figure 4 shows the film formation temperature selected at 350°C and 450°C, and 5t
2)1. The dependence of the deposition rate and the optical gap of the deposited film on the deposition temperature when depositing the film by changing the flow rate ratio of GeF4 and GeF4 is shown. In this case as well, the pressure inside the reaction chamber was set to 10 torr, as in FIG. Furthermore, in order to reduce variations depending on where the substrate is placed, A'' was flowed as an inert carrier gas. Not only is it possible to form a film, but by setting the flow rate ratio of GexFyHz and SiuHvFw or the film forming temperature, it is possible to control the optical gap in a lower optical gap range than before.

上記の実施例ではG e x F −t tl zの一
例としてGeF4を用いたが、Ge2F6を用いれば膜
の成長温度範囲は量比5を境にして、それより大きい部
分では流量比の増加に従って光学ギャップの増加がみら
れ、400℃で成長した膜は1.Oev前後から1.2
ev以上の値まで増加した。
In the above example, GeF4 was used as an example of G e An increase in the optical gap was observed, and the film grown at 400°C was 1. 1.2 from around Oev
It increased to a value higher than ev.

以上の実施例の中で得られた膜の大部分は前にも述べた
ようにアモルファスであったが、成膜速度の小さい膜の
中には微細な結晶化を示している膜もあった。
Most of the films obtained in the above examples were amorphous, as mentioned earlier, but some of the films formed at low deposition rates showed fine crystallization. .

以上の実施例で示すように、本発明の成膜方法によれば
従来のシラン系のガス又はGexFYH2系のHにずれ
、Si、H8を用いれば512H6の場合よりわずか低
温側にずれる。
As shown in the above examples, according to the film forming method of the present invention, the temperature shifts to the conventional silane-based gas or GexFYH2-based H, and when Si and H8 are used, the temperature shifts slightly to the lower temperature side than in the case of 512H6.

本発明においては、GeFa、Ge2F6などの68の
フッ化物またはそのフッ素の一部を水素で置換した化合
物をSiの水素化物またはその水素の一部をフッ素で置
換した化合物で還元する。反応温度が低いと(GeF4
 と5t2H,の実施例では約350℃以下) 、Si
が薄膜中にとり込まれ難いためE。optは小さく、反
応温度が高いとSiが一部薄膜にとり込まれてE(lo
ptが増加すると考えられる。
In the present invention, a fluoride of 68 such as GeFa or Ge2F6 or a compound in which a portion of its fluorine is replaced with hydrogen is reduced with a hydride of Si or a compound in which a portion of its hydrogen is replaced with fluorine. If the reaction temperature is low (GeF4
and 5t2H, in the example below about 350°C), Si
E because it is difficult to incorporate into the thin film. opt is small, and if the reaction temperature is high, some Si is incorporated into the thin film and E(lo
It is considered that pt increases.

[発明の効果] 以上説明したように、本発明によればGeXFy)12
をSjuFvllwで還元してGeを含む薄膜を基板上
に形成するので、すぐれた膜質と制御された光学ギャッ
プを有する半導体薄膜を低温度で基板上に形成すること
ができる。
[Effect of the invention] As explained above, according to the present invention, GeXFy) 12
Since a thin film containing Ge is formed on a substrate by reducing Ge with SjuFvllw, a semiconductor thin film having excellent film quality and a controlled optical gap can be formed on the substrate at a low temperature.

6・・・ミラー 20・・・原料導入管、 21・・・ガス排出管、 A、B・・・配管系。6...Mirror 20...raw material introduction pipe, 21...gas exhaust pipe, A, B... Piping system.

指定代理人 工業技術院電子技術総合研究所長第2図お
よび第3図は成膜速度、光学ギャップの成膜温度依存性
を示す特性図、 第4図は成膜速度および光学ギャップの512116/
GeF4流量比依存性を示す特性図である。
Designated Agent Director, Electronics Technology Research Institute, Agency of Industrial Science and Technology Figures 2 and 3 are characteristic diagrams showing the film-forming temperature dependence of the film-forming rate and optical gap.
FIG. 3 is a characteristic diagram showing dependence on GeF4 flow rate ratio.

1・・・石英チャンバ(反応室)、 2・・・基板支持具、 3・・・サセプタ、 4・・・基板、 5・・・ランプ、 底膜速度 光像ギーI−ヮア A膜綺幕柩」 (”C) 第2図 A順■ 光電ギ豪9フ。1...Quartz chamber (reaction chamber), 2... Board support, 3...susceptor, 4... Board, 5...Lamp, Bottom membrane speed Light image gee I-waa A-membrane coffin” (”C) Figure 2 A order ■ Koden Gigo 9f.

A順侍巻扱劫 (°C)A-order samurai volume treatment (°C)

Claims (1)

【特許請求の範囲】 1)化合物Ge_XF_YH_Z(X≧1、Y≧1、Z
≧0)と化合物Si_UH_VF_W(U≧1、V≧1
、W≧0)とを加熱した基板上に供給し、該基板上にG
eを含む薄膜を形成することを特徴とする半導体薄膜の
形成方法。 2)前記基板の温度が、Si_UH_VF_Wのみまた
はGe_XF_YH_Zのみでは成膜しない温度である
ことを特徴とする請求項1に記載の半導体薄膜の形成方
法。 3)薄膜形成時の基板温度により薄膜の光学ギャップを
制御することを特徴とする請求項1に記載の半導体薄膜
の形成方法。 4)Ge_XF_YH_ZとSi_UH_VF_Wの混
合比を変化させることによって薄膜の光学ギャップを制
御することを特徴とする請求項1に記載の半導体薄膜の
形成方法。
[Claims] 1) Compound Ge_XF_YH_Z (X≧1, Y≧1, Z
≧0) and the compound Si_UH_VF_W (U≧1, V≧1
, W≧0) on a heated substrate, and G
A method for forming a semiconductor thin film, the method comprising forming a thin film containing e. 2) The method for forming a semiconductor thin film according to claim 1, wherein the temperature of the substrate is such that a film cannot be formed using only Si_UH_VF_W or only Ge_XF_YH_Z. 3) The method for forming a semiconductor thin film according to claim 1, characterized in that the optical gap of the thin film is controlled by the substrate temperature during thin film formation. 4) The method for forming a semiconductor thin film according to claim 1, wherein the optical gap of the thin film is controlled by changing the mixing ratio of Ge_XF_YH_Z and Si_UH_VF_W.
JP63250341A 1988-10-04 1988-10-04 Formation of semiconductor thin film Granted JPH0298128A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63250341A JPH0298128A (en) 1988-10-04 1988-10-04 Formation of semiconductor thin film
US07/742,101 US5232868A (en) 1988-10-04 1991-08-05 Method for forming a thin semiconductor film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63250341A JPH0298128A (en) 1988-10-04 1988-10-04 Formation of semiconductor thin film

Publications (2)

Publication Number Publication Date
JPH0298128A true JPH0298128A (en) 1990-04-10
JPH0580137B2 JPH0580137B2 (en) 1993-11-08

Family

ID=17206478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63250341A Granted JPH0298128A (en) 1988-10-04 1988-10-04 Formation of semiconductor thin film

Country Status (1)

Country Link
JP (1) JPH0298128A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61231718A (en) * 1985-04-01 1986-10-16 エナージー・コンバーション・デバイセス・インコーポレーテッド Gas mixture for accumulation of amorphous semiconductor and accumulation method
JPS61234029A (en) * 1985-04-10 1986-10-18 Canon Inc Forming method for accumulated film
JPS61237417A (en) * 1985-04-12 1986-10-22 Canon Inc Formation of deposited film
JPS61245519A (en) * 1985-04-23 1986-10-31 Canon Inc Formation of deposited film
JPS61252624A (en) * 1985-05-01 1986-11-10 Canon Inc Method of forming deposited film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61231718A (en) * 1985-04-01 1986-10-16 エナージー・コンバーション・デバイセス・インコーポレーテッド Gas mixture for accumulation of amorphous semiconductor and accumulation method
JPS61234029A (en) * 1985-04-10 1986-10-18 Canon Inc Forming method for accumulated film
JPS61237417A (en) * 1985-04-12 1986-10-22 Canon Inc Formation of deposited film
JPS61245519A (en) * 1985-04-23 1986-10-31 Canon Inc Formation of deposited film
JPS61252624A (en) * 1985-05-01 1986-11-10 Canon Inc Method of forming deposited film

Also Published As

Publication number Publication date
JPH0580137B2 (en) 1993-11-08

Similar Documents

Publication Publication Date Title
US4720395A (en) Low temperature silicon nitride CVD process
JP3581388B2 (en) Deposited polysilicon film with improved uniformity and apparatus therefor
KR20210117163A (en) method of depositing epitaxial material, structure formed using the method, and system for performing the method
US4237150A (en) Method of producing hydrogenated amorphous silicon film
Nagasawa et al. Atomic level epitaxy of 3C-SiC by low pressure vapour deposition with alternating gas supply
JP2016507001A (en) Low temperature deposition method for ceramic thin films
JP2556621B2 (en) Method for forming silicon carbide film
JPH0424430B2 (en)
US8642376B2 (en) Methods for depositing a material atop a substrate
US5232868A (en) Method for forming a thin semiconductor film
JPH0127568B2 (en)
JP6637095B2 (en) Low temperature deposition method of ceramic thin film
JPH0298128A (en) Formation of semiconductor thin film
JPH01252776A (en) Formation of aluminum film by vapor growth
JP3066819B2 (en) Thin film manufacturing method
KR100249825B1 (en) Method of copper chemical vapor deposition using metalorganic precursor
JPH0587171B2 (en)
JPH07221026A (en) Method for forming quality semiconductor thin film
JPH02262324A (en) X-ray transmitting film and its manufacture
JPS6010108B2 (en) Method for pyrolytically depositing silicon nitride onto a substrate
JP3857446B2 (en) SiC molded body
JPS6115150B2 (en)
JPS5957909A (en) Formation of amorphous silicon film
JPH0462073B2 (en)
CN117551980A (en) Two-dimensional transition metal selenide and preparation method thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term