JPH029744A - Production of dense oxide superconducting wire rod - Google Patents

Production of dense oxide superconducting wire rod

Info

Publication number
JPH029744A
JPH029744A JP63157991A JP15799188A JPH029744A JP H029744 A JPH029744 A JP H029744A JP 63157991 A JP63157991 A JP 63157991A JP 15799188 A JP15799188 A JP 15799188A JP H029744 A JPH029744 A JP H029744A
Authority
JP
Japan
Prior art keywords
hot isostatic
sheath
treatment
copper
wire rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63157991A
Other languages
Japanese (ja)
Inventor
Hiroshi Maeda
弘 前田
Tadashi Inoue
井上 廉
Hisashi Sekine
関根 久
Hiroichi Yamamoto
博一 山本
Kazutaka Mori
一剛 森
Koichi Numata
幸一 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
National Research Institute for Metals
Original Assignee
Mitsubishi Heavy Industries Ltd
National Research Institute for Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, National Research Institute for Metals filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP63157991A priority Critical patent/JPH029744A/en
Publication of JPH029744A publication Critical patent/JPH029744A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain the dense oxide superconducting wire rod by packing oxide superconducting powder into a two-layered sheath consisting, the outside layer of which consists of copper and the inside layer of silver and drawing the sheath, then subjecting the wire rod to the removal of the copper layer, a hot isostatic pressurization treatment in an inert gaseous atmosphere and a hot isostatic pressurization treatment in an oxidative atmosphere. CONSTITUTION:The oxide superconducting powder or the sintered body thereof is packed into the sheath, the outside layer of which consists of the copper and the inside layer of the silver. After this sheath is drawn, the wire rod is subjected to the treatment for stripping the copper of the sheath and the hot isostatic pressurization treatment in the inert gaseous atmosphere in arbitrary order. The wire rod is then subjected to the hot isostatic pressurization treatment in the oxidative atmosphere. The hot isostatic pressurization treatment in the inert gaseous atmosphere is executed under the conditions ranging, for example, 800-940 deg.C, 1800-2200kg/cm<2> and 1-10 hour treatment time. The hot isostatic pressurization treatment in the oxidative atmosphere is executed under the conditions ranging, for example, 350-500 deg.C, 1800-2200kg/cm<2> (about 400kg/cm<2> oxygen partial pressure) and 1-20 hour treatment time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、リニアモーターカー、超伝導推進船、核磁気
共鳴断層撮影装置などの超伝導コイルに適用される緻密
な酸化物超伝導線材の製造法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is directed to the use of dense oxide superconducting wires applied to superconducting coils in linear motor cars, superconducting propulsion vessels, nuclear magnetic resonance tomography devices, etc. Regarding manufacturing methods.

〔従来の技術〕[Conventional technology]

酸化物超伝導体の線材化に関しては未だ確立された製造
法はない。実用化されているNb38nなどの金14間
化合物ではCu−8n合金製のパイプにN111を充填
し、延伸加工した後に熱処理を施してNb3Snを合成
する方法が知られている。
There is still no established manufacturing method for producing wires from oxide superconductors. For gold inter14 compounds such as Nb38n that have been put into practical use, a method is known in which N111 is filled in a pipe made of a Cu-8n alloy, stretched, and then heat treated to synthesize Nb3Sn.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

高い臨界@度を有する酸化物超伝導体としては、例えば
に、NiF、構造を有する(LaBa)2Cu04や酸
素欠損ペロブスカイト型の(RE)BalCu30.−
δ([18:希土類元素ンなどが知られている。Tcが
90Kを越える(RE)BalCu30TJで酸素が7
−δと示されるのは、この酸化物では温度などによシ含
有する酸素量が異なることを示している。
Examples of oxide superconductors having a high degree of criticality include NiF, (LaBa)2Cu04 having a structure, and (RE)BalCu30 having an oxygen-deficient perovskite structure. −
δ ([18: Rare earth elements etc. are known. Tc exceeds 90K (RE) BalCu30TJ and oxygen is 7
The symbol -δ indicates that the amount of oxygen contained in this oxide varies depending on the temperature and other factors.

超伝導体ではδコα1であるが、焼結に必要な温度90
0℃以上ではδ″:″a9であると報告されている。こ
の物質が超伝導となるには、焼結後炉冷して酸素を含有
させ、δごα1とすることが必要である。
In superconductors, δ is α1, but the temperature required for sintering is 90
It is reported that δ″:″a9 at temperatures above 0°C. In order for this material to become superconductive, it is necessary to cool it in a furnace after sintering to contain oxygen so that δ is equal to α1.

超伝導物質の応用には、ゼロ抵抗や完全反磁性を利用し
た電力貯蔵、送電、リニアモーターカー 電磁推進船な
どからげられるが、これらに適用するには、超伝導体の
線材化が必須でお9%上記の高い臨界温度を有する酸化
物超伝導体については未だ実用に供される線材加工法は
確立されていない。
Applications of superconducting materials include power storage and transmission using zero resistance and perfect diamagnetism, linear motor cars, electromagnetic propulsion ships, etc., but in order to apply them to these applications, it is essential to convert superconductors into wires. For oxide superconductors having critical temperatures as high as 9% or above, no wire processing method has yet been established for practical use.

線材化の一方法としては、銀などのパイプ中に酸化物超
伝導体の粉末や焼結体を充填し、延伸加工後焼結する方
法が考えられる。しかし、大気圧下で焼結したのでは充
填密度は上がらず。
One possible method for forming a wire is to fill a pipe made of silver or the like with powder or sintered material of an oxide superconductor, stretch it, and then sinter it. However, sintering under atmospheric pressure does not increase the packing density.

臨界xi密度も向上しない。また、酸化物超伝導体は高
温において酸素を放出するので、シースが厚いとシース
内の酸化物に酸素を供給する之めに時間を要するという
問題があった。
The critical xi density also does not improve. Furthermore, since oxide superconductors release oxygen at high temperatures, there is a problem in that if the sheath is thick, it takes time to supply oxygen to the oxide within the sheath.

本発明は上記技術水準に鑑み、従来技術におけるような
問題点のない緻密な酸化物超伝導線材の製造法を提供し
ようとするものである。
In view of the above-mentioned state of the art, the present invention aims to provide a method for producing a dense oxide superconducting wire without the problems encountered in the prior art.

〔課題を解決する几めの手段〕[Elaborate means to solve problems]

すなわち本発明は外層を銅、内層を銀とするシースに酸
化物超伝導粉末又はその焼結体を充填して延伸加工し次
後、シースの銅の剥離処理及び不活性ガス雰囲気中の熱
間静水圧処理を任意の順序で行い、次いで酸化性雰囲気
中の熱間静水圧処理を行うことを特徴とする緻密な酸化
物超伝導線材の製造法でるる。
That is, in the present invention, a sheath having an outer layer of copper and an inner layer of silver is filled with an oxide superconducting powder or a sintered body thereof and stretched, and then the copper of the sheath is peeled off and the sheath is heated in an inert gas atmosphere. This is a method for producing a dense oxide superconducting wire, which is characterized in that hydrostatic pressure treatment is performed in an arbitrary order, followed by hot isostatic pressure treatment in an oxidizing atmosphere.

〔作 用〕[For production]

第1に銅と銀の二層シースを用いるのは、酸化雰囲気で
の熱間静水圧処理を行う前に銀シースの厚さを薄くして
酸素の供給をよくするためでおる。りまシ、銀単独では
加工可能なシースの厚さに限界がおるが、銅・銀の複合
加工後鋼を除去するとシース厚の薄い線材が得られる。
First, the reason why a two-layer sheath of copper and silver is used is to reduce the thickness of the silver sheath and improve the supply of oxygen before performing hot isostatic pressure treatment in an oxidizing atmosphere. There is a limit to the thickness of the sheath that can be processed using copper and silver alone, but by removing the steel after processing the copper and silver composite, a wire rod with a thin sheath thickness can be obtained.

なお、この銅の除去は延伸加工後でも不活性ガス雰囲気
での熱間静水圧処理の後でもどちらでもよい。
Note that this copper may be removed either after stretching or after hot isostatic pressure treatment in an inert gas atmosphere.

第2に酸化物の緻密化を計るために熱間静水圧処理を行
つ。ただし、銀は高酸素圧雰囲気では融点が降下するた
め緻密化は不活性ガス雰囲気(アルゴン、N素等)中で
行つ必要がおる。
Second, hot isostatic pressure treatment is performed to densify the oxide. However, since the melting point of silver decreases in a high oxygen pressure atmosphere, densification must be performed in an inert gas atmosphere (argon, nitrogen, etc.).

この熱間静水圧処理の条件としては、温度は800〜9
40℃、好ましくは890〜910℃で圧力は1800
〜2200 kg/lx”で処理時間は1〜10時間が
適当な条件でおる。すなわち、800℃より低い温度で
は焼結が不充分であシ、940℃を越えると酸化物分解
等による特性劣化が生じ、1時間未満では緻密化が不充
分であり、10時間を越えても処理効果に変化が生じな
い傾向がろるからである。
The conditions for this hot isostatic pressure treatment include a temperature of 800 to 9
40°C, preferably 890-910°C and a pressure of 1800°C
~2200 kg/lx'' and the processing time is 1 to 10 hours under appropriate conditions.In other words, if the temperature is lower than 800°C, sintering will be insufficient, and if it exceeds 940°C, the characteristics will deteriorate due to oxide decomposition etc. This is because densification is insufficient for less than 1 hour, and there is a tendency for no change in the treatment effect to occur even after 10 hours.

次に酸化物への酸素供給の九め酸化雰囲気中での熱間静
水圧処理を行う。この時温度は350〜500℃、好ま
しくは400〜450℃、圧力は1800〜2200 
′に9/lyw” (酸素分圧400kg/l、、”前
後)で処理時間は1〜20時間が適当な条件である。す
なわち、350℃未満では処理効果がな(,500℃以
上では銀シースが浴融してしまい、1時間未満では処理
効果がなく、20時間を越えても処理効果の増加が認め
られない傾向におるためでろる。
Next, hot isostatic pressure treatment in an oxidizing atmosphere is performed to supply oxygen to the oxide. At this time, the temperature is 350-500℃, preferably 400-450℃, and the pressure is 1800-2200℃.
Appropriate conditions are 9/lyw'' (oxygen partial pressure of 400 kg/l, around 100 kg/l) and a treatment time of 1 to 20 hours. In other words, there is no processing effect below 350°C (and above 500°C, the silver sheath melts, there is no processing effect under 1 hour, and no increase in processing effect is observed even after 20 hours). Orutame deroru.

〔実施例〕〔Example〕

(実施例1ン 粉末混合法によって得たYBa2Cu307−δ粉末を
外径15■、内径10箇の銅パイプと外径10■内径&
5+wの銀パイプからなるシースに充填し、冷間で延伸
加工を施して外径を5−とした。
(Example 1 YBa2Cu307-δ powder obtained by the powder mixing method was mixed with a copper pipe having an outer diameter of 15 mm and an inner diameter of 10 points and an outer diameter of 10 mm and an inner diameter of
It was filled into a sheath made of a 5+w silver pipe and cold-stretched to have an outer diameter of 5-.

これから銅をエツチング除去した後、アルゴン2000
 kg/ex” 、  900℃で2時間熱間静水圧処
理を施し、次いで酸素分圧400 kglon” (全
圧2000 kglon” ) * 500℃で2時間
熱間静水圧処理を施した。以上の処理を施し之超伝導線
材の相対密度は98%であり、また超伝導遷移を抵抗法
により測定した結果90にでシャープな遷移を示し、良
好な酸化物超伝導線材が得られた。
After etching away the copper, argon 2000
kg/ex”, hot isostatic pressure treatment was performed at 900°C for 2 hours, and then hot isostatic pressure treatment was performed at oxygen partial pressure of 400 kglon” (total pressure: 2000 kglon”)*500°C for 2 hours.The above treatment The relative density of the superconducting wire was 98%, and the superconducting transition measured by the resistance method showed a sharp transition at 90%, indicating that a good oxide superconducting wire was obtained.

(実施例2) 実施例1と同様に延伸加工を施し、銅を除去することな
く、処理温度を750℃、800℃。
(Example 2) Stretching was performed in the same manner as in Example 1, but the processing temperature was 750°C and 800°C without removing copper.

940℃として不活性ガス雰囲気(2000kg/i)
での熱間静水圧処理を5時間行った。その結果、750
℃では焼結が不充分(相対密度が変化しない)であった
が、800℃と940℃では焼結及び緻密化がN認され
た。
Inert gas atmosphere (2000kg/i) at 940℃
The hot isostatic pressure treatment was carried out for 5 hours. As a result, 750
At 800°C and 940°C, sintering was insufficient (relative density did not change), but sintering and densification were observed at 800°C and 940°C.

また処理温度は900℃として、処理時間全(L5.1
.10時間として不活性ガス雰囲気での処理を行ったと
ころ15時間よυは1及び10時間の加熱処理の方がよ
p緻密化していることが判つ念。
In addition, the treatment temperature was 900°C, and the total treatment time (L5.1
.. When the treatment was carried out in an inert gas atmosphere for 10 hours, it was found that the heat treatment for 1 and 10 hours was more dense than for 15 hours.

(実施例5) 実施例1と同様の処理で不活性ガス雰囲気における熱間
静水圧処理を行った線材を用い、、酸化雰囲気の熱間静
水圧処理を、温度を300゜350.450,500℃
と変えた以外は実施例1と同様に行つ九。その結果、5
oocの処理では超伝導遷移は確認されず、他の温度条
件では90に付近で超伝導遷移が確認され、特に450
℃処理において遷移がシャープであった0また処理温度
全450℃、処理時間をα5゜1.20.50時間とし
て酸化雰囲気での熱間静水圧処理を行った。その結果、
α5時間では臨界温度が70にであったが、1〜50時
間処理ではTcは90にでおり、1時間より20時間の
方が遷移がシャープであり、また20時間と3Q時間で
は差は見られなかった。
(Example 5) Using a wire that had been subjected to hot isostatic pressure treatment in an inert gas atmosphere in the same manner as in Example 1, it was subjected to hot isostatic pressure treatment in an oxidizing atmosphere at a temperature of 300°, 350°, 450°, and 500°. ℃
9. The procedure was carried out in the same manner as in Example 1, except for the following changes. As a result, 5
No superconducting transition was confirmed in the ooc treatment, but a superconducting transition was confirmed near 90°C under other temperature conditions, especially at 450°C.
In addition, hot isostatic pressure treatment was performed in an oxidizing atmosphere at a total treatment temperature of 450° C. and a treatment time of α5° of 1.20.50 hours. the result,
At α5 hours, the critical temperature was 70, but when treated for 1 to 50 hours, Tc reached 90, and the transition was sharper at 20 hours than at 1 hour, and there was no difference between 20 hours and 3Q time. I couldn't.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、緻密な酸化物超伝導線材の製造が可能
となり、その工業的効果は極めて顕著なものでおる。
According to the present invention, it is possible to manufacture a dense oxide superconducting wire, and its industrial effects are extremely significant.

Claims (1)

【特許請求の範囲】[Claims] 外層を銅、内層を銀とするシースに酸化物超伝導粉末又
はその焼結体を充填して延伸加工した後、シースの銅の
剥離処理及び不活性ガス雰囲気中の熱間静水圧処理を任
意の順序で行い、次いで酸化性雰囲気中の熱間静水圧処
理を行うことを特徴とする緻密な酸化物超伝導線材の製
造法。
After filling a sheath with an outer layer of copper and an inner layer of silver with oxide superconducting powder or a sintered body thereof and stretching, the copper of the sheath is optionally subjected to peeling treatment and hot isostatic pressure treatment in an inert gas atmosphere. 1. A method for producing a dense oxide superconducting wire, the method comprising: followed by hot isostatic pressure treatment in an oxidizing atmosphere.
JP63157991A 1988-06-28 1988-06-28 Production of dense oxide superconducting wire rod Pending JPH029744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63157991A JPH029744A (en) 1988-06-28 1988-06-28 Production of dense oxide superconducting wire rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63157991A JPH029744A (en) 1988-06-28 1988-06-28 Production of dense oxide superconducting wire rod

Publications (1)

Publication Number Publication Date
JPH029744A true JPH029744A (en) 1990-01-12

Family

ID=15661856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63157991A Pending JPH029744A (en) 1988-06-28 1988-06-28 Production of dense oxide superconducting wire rod

Country Status (1)

Country Link
JP (1) JPH029744A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5100867A (en) * 1987-12-15 1992-03-31 Siemens Aktiengesellschaft Process for manufacturing wire or strip from high temperature superconductors and the sheaths used for implementing the process
WO2005029511A1 (en) * 2003-09-17 2005-03-31 Sumitomo Electric Industries, Ltd. Superconducting device and superconducting cable
AU2004275126B2 (en) * 2003-08-28 2010-12-23 Sumitomo Electric Industries, Ltd. Superconducting device and superconducting cable

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5100867A (en) * 1987-12-15 1992-03-31 Siemens Aktiengesellschaft Process for manufacturing wire or strip from high temperature superconductors and the sheaths used for implementing the process
AU2004275126B2 (en) * 2003-08-28 2010-12-23 Sumitomo Electric Industries, Ltd. Superconducting device and superconducting cable
AU2004275126B8 (en) * 2003-08-28 2011-03-24 Sumitomo Electric Industries, Ltd. Superconducting device and superconducting cable
WO2005029511A1 (en) * 2003-09-17 2005-03-31 Sumitomo Electric Industries, Ltd. Superconducting device and superconducting cable
JPWO2005029511A1 (en) * 2003-09-17 2006-11-30 住友電気工業株式会社 Superconducting equipment and cables
CN100416714C (en) * 2003-09-17 2008-09-03 住友电气工业株式会社 Superconducting device and superconducting cable

Similar Documents

Publication Publication Date Title
US5063200A (en) Ceramic superconductor article
EP0431643B1 (en) Method of manufacturing oxide superconducting wire
JP2567505B2 (en) Method for producing bismuth oxide superconductor
JP2636049B2 (en) Method for producing oxide superconductor and method for producing oxide superconducting wire
JPWO2005022563A1 (en) Method for producing oxide superconducting wire, method for modifying oxide superconducting wire, and oxide superconducting wire
JPH029744A (en) Production of dense oxide superconducting wire rod
JPH04121912A (en) Manufacture of oxide high temperature superconductive conductor
JPH03159954A (en) Manufacture of product having improved physical characteristics and superconductivity
JP2592846B2 (en) Manufacturing method of oxide superconducting conductor
JPH028335A (en) Sheath for manufacturing of oxide superconducting wire rod
JPH02276113A (en) Manufacture of ceramics group superconductive wire material
JPS63279523A (en) Manufacture of compound superconductive wire
JP3848449B2 (en) Manufacturing method of oxide superconducting wire
JPH07282659A (en) Manufacture of high temperature superconducting wire rod
JP2583575B2 (en) Manufacturing method of oxide superconducting wire
JPH04167313A (en) Manufacture of oxide superconductor wire material
JPH04292817A (en) Manufacture of high temperature superconductor
JPH0395808A (en) Manufacture of oxide superconductor wire rod
JPH02183918A (en) Manufacture of oxide superconductor
JPH05211012A (en) Oxide superconductor and manufacture thereof
Poeppel et al. Recent improvements in bulk properties of ceramic superconductors
RU2258970C2 (en) Method for producing long composite conductors around high-temperature superconducting compounds
JPH02129812A (en) Manufacture of ceramic superconductor product
JPH02229753A (en) Preparation of ductile composite containing superconductive ceramic oxide
JPH05159641A (en) Manufacture of high temperature superconductive wire