JPH0296407A - Temperature compensation crystal oscillator - Google Patents

Temperature compensation crystal oscillator

Info

Publication number
JPH0296407A
JPH0296407A JP63248632A JP24863288A JPH0296407A JP H0296407 A JPH0296407 A JP H0296407A JP 63248632 A JP63248632 A JP 63248632A JP 24863288 A JP24863288 A JP 24863288A JP H0296407 A JPH0296407 A JP H0296407A
Authority
JP
Japan
Prior art keywords
temperature
circuit
compensation
voltage
characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63248632A
Other languages
Japanese (ja)
Inventor
Yoshifusa Ueno
美房 上野
Takayuki Suzuki
孝之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP63248632A priority Critical patent/JPH0296407A/en
Priority to JP63335050A priority patent/JPH02180410A/en
Priority to US07/382,107 priority patent/US5004988A/en
Priority to KR1019890010419A priority patent/KR930002036B1/en
Priority to DE68915355T priority patent/DE68915355T2/en
Priority to EP89113579A priority patent/EP0352695B1/en
Publication of JPH0296407A publication Critical patent/JPH0296407A/en
Pending legal-status Critical Current

Links

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)

Abstract

PURPOSE:To easily satisfy a temperature compensation characteristic by compensating the temperature characteristic of an oscillating circuit over the working temperature range by a first temperature compensating circuit and further compensating a special temperature are by a second temperature compensating circuit. CONSTITUTION:A crystal oscillator 10 is provided with electrode pairs 12 and 13 at the crystal piece of an AT cut, an oscillating circuit part 4 and a first temperature compensating circuit 14 are connected to an electrode pair 12 and a second temperature compensating circuit 15 is connected to an electrode pair 13. In the temperature compensating oscillator of such a constitution, the temperature characteristic of the circuit 4 is compensated at a standard temperature range by the circuit 14. For example, in the temperature range -30 to 70 deg.C, only near -20 deg.C and -60 deg.C, + or -1ppm is exceeded, and other part is within 1ppm and such a compensation temperature characteristic is obtained. Consequently, by the circuit 15, -20 deg.C part to slip off to a + side from a standard out of a first compensation characteristic is further compensated and is within + or -1ppm. Thus, without changing the circuit 14, the compensation temperature characteristic can be satisfied in the standard.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明;、t′温度補償水晶発振器(以下、温度補償回
路恭とする)を利用分野とし、特に水晶振動子を多電極
構造として水晶発振器の周波数温度特性(以下、温度特
性とする)を二重に補償した温度補償発振器に関する。
Detailed Description of the Invention (Industrial Field of Application) The field of the present invention is a temperature-compensated crystal oscillator (hereinafter referred to as a "temperature-compensated circuit"). The present invention relates to a temperature-compensated oscillator that double compensates for the frequency-temperature characteristics (hereinafter referred to as temperature characteristics) of .

(発明の背景) 温度補償発振器は、特に水晶振動子に起因した温度特性
による周波数変化を補償するものとして広く普及してい
る。近年では、年々厳しくなる通信事情等によ#)温度
に対17て更に高安定な温度補償光振器が望まれている
(Background of the Invention) Temperature-compensated oscillators are widely used to compensate for frequency changes due to temperature characteristics, particularly those caused by crystal resonators. In recent years, due to communications conditions that are becoming more severe year by year, there has been a demand for temperature-compensated optical oscillators that are even more stable with respect to temperature.

(従来技術) 第8図はこの種の一従来例を説明する温度補償発振器の
ブ四ツク図である。
(Prior Art) FIG. 8 is a block diagram of a temperature compensated oscillator illustrating a conventional example of this type.

温度補償発振器は発振回路1と温度補償回路2とからな
る。発振回路1は水晶振動子3を発振子とし、その一端
側を例えば回路部4の発振用トラレジ3夕5に接続する
。そして、図示しないコンデンサ等の他の回路素子と相
俟って例えばコルピッツ型の回路mを形成する。水晶振
動子3は切断角度を例えばATカットとじた厚みすべり
振動姿態とする。なお、図中のva。はT1源、voは
出力である。このような発振回路1では、第9図の曲線
(イ)に示したような温度特性になる。すなわち、水晶
振動子3を主因とした常温25℃近傍に変曲点をもった
三次曲線となる。
The temperature compensated oscillator consists of an oscillation circuit 1 and a temperature compensation circuit 2. The oscillation circuit 1 uses a crystal resonator 3 as an oscillator, and one end thereof is connected to, for example, an oscillation register 3 or 5 of the circuit section 4. In combination with other circuit elements such as a capacitor (not shown), a Colpitts type circuit m is formed, for example. The crystal resonator 3 has a thickness-shear vibration state with a cutting angle of, for example, an AT cut. In addition, va in the figure. is the T1 source and vo is the output. Such an oscillation circuit 1 has a temperature characteristic as shown by the curve (a) in FIG. 9. In other words, it becomes a cubic curve with an inflection point near the room temperature of 25° C. mainly caused by the crystal resonator 3.

温度補償回路2は補償電圧発生回路6(以下、電圧発生
回路6とする)と電圧可変容量素子7とからなる。電圧
発生回路6は電源V6゜とアース電位間に接続した!!
!温素子(例えばサーミスタ8)及び抵抗9の図示しな
い直・並列回路網からなる。
The temperature compensation circuit 2 includes a compensation voltage generation circuit 6 (hereinafter referred to as voltage generation circuit 6) and a voltage variable capacitance element 7. The voltage generating circuit 6 is connected between the power supply V6° and the ground potential! !
! It consists of a series/parallel network (not shown) of a thermal element (for example, a thermistor 8) and a resistor 9.

そして、サーミスタ8の抵抗値により、周囲温度に応答
した補償電圧v、1を出力端nに得る。?lrl償電圧
v虐電は、発振回路1の温度特性とは逆の三次曲線とな
る周波数電圧特性に設定される「前第9図の曲線(ロ)
」。電圧可変容量素子7は例えば電圧可変容量ダイオー
ド(以下、可変容量ダイオードとする)とし、カソード
側を電圧発生回路日の出力@nに、アノード側をアース
電位に接地する。そして、電圧発生回路6と可変ダイオ
ード7の接続点を水晶振動子3の一端側に接続する。し
iこがって、このようなものでは、周囲温度に応答した
?IQ償電圧■、□に基づいて可変容量ダイオード7の
容量値を変化させ、発振回路1の乙晶度特性を710償
して規格を満足する補償温度特性を得ることがでさる「
前第9図の曲線(ハ)」。
Then, depending on the resistance value of the thermistor 8, a compensation voltage v,1 responsive to the ambient temperature is obtained at the output terminal n. ? The lrl compensation voltage v is set to the frequency-voltage characteristic that is a cubic curve opposite to the temperature characteristic of the oscillation circuit 1.
”. The voltage variable capacitance element 7 is, for example, a voltage variable capacitance diode (hereinafter referred to as a variable capacitance diode), and its cathode side is grounded to the output @n of the voltage generating circuit, and its anode side is grounded to the earth potential. Then, the connection point between the voltage generation circuit 6 and the variable diode 7 is connected to one end of the crystal resonator 3. Shit, something like this responded to ambient temperature? It is possible to change the capacitance value of the variable capacitance diode 7 based on the IQ compensation voltages ■ and □, compensate for the O crystallinity characteristic of the oscillation circuit 1 by 710 degrees, and obtain a compensation temperature characteristic that satisfies the standard.
Curve (c) in Figure 9 above.

(従来技術の問題点) しかしながら、上記構成の温度補償発振器では理論上避
けることのできない次のような問題があった。
(Problems with the Prior Art) However, the temperature compensated oscillator having the above configuration has the following problems that cannot be avoided theoretically.

すなわち、上記補償温度特性を拡大した第10図の0印
を結ぶ曲線(ニ)から明らかなように、規格を例えば温
度範囲ΔT、が一30〜70℃で周波数許容偏差(以下
、許容偏差とする)Δf/rが+2ppmとすれば、こ
の補償温度特性は同規格を満足する。しかし、規格を同
温度範囲ΔT、で許容偏差±lppmとした場合には、
点線枠で示す一20℃及び60℃の部分で同規格外とな
る。
That is, as is clear from the curve (d) connecting the 0 marks in Fig. 10, which is an enlarged view of the above-mentioned compensation temperature characteristics, the standard is set to, for example, the frequency tolerance (hereinafter referred to as tolerance) in the temperature range ΔT of 130 to 70°C. ) If Δf/r is +2 ppm, this compensation temperature characteristic satisfies the same standard. However, if the standard is the same temperature range ΔT and the tolerance ±lppm,
The temperature is outside the standard at -20°C and 60°C, which are indicated by the dotted line frame.

従来、このような場合には、その補償温度特性に基づき
、各抵抗9の値を百計算により修正する。
Conventionally, in such a case, the value of each resistor 9 is corrected by a hundred calculations based on the compensation temperature characteristics.

そして、これにより電圧発生器′I86を新たに製作し
て交換し、許容偏差±ippmの規格を満足させていた
。しかし、一般には、抵抗のその値は良い物でも1〜2
%の誤差を持つ。また、サーミスタに関しても、厳密に
は各温度におけろ抵抗値の誤差やB定数も変化する。し
たがって、各Iバ抗9の値を修正したとしても理論計算
による補IIFt温度特性とは±0.5ppm程度の誤
差を生ずる。このようなことから、従来の潤度?m償発
振器では電圧発生回路6を再製作したとしても許容偏差
を±1ppIn以下にすることは、各素子の精度上の問
題から理論的Cζ困デ「と2ノでいた。そして、許容側
差Δ「/「を士lppm以下とする場合2とは、非常に
歩留りを悪くして生産性を低下するIj31題があった
。(発明の目的) 本発明は?I11償温度特性を規格内に満足して生産性
を向上する温度?l(I併発振器を提供することを目的
とする。
As a result, the voltage generator 'I86 was newly manufactured and replaced, and the standard of tolerance ±ippm was satisfied. However, in general, the value of the resistor is 1 to 2 even if it is good.
% error. Furthermore, regarding the thermistor, strictly speaking, the error in resistance value and the B constant also change at each temperature. Therefore, even if the value of each I resistance 9 is corrected, there will be an error of about ±0.5 ppm from the theoretically calculated complementary IIFt temperature characteristic. Because of this, is the conventional moisture? In the m-compensated oscillator, even if the voltage generation circuit 6 was remanufactured, it would be theoretically difficult to reduce the tolerance to ±1 ppIn or less due to the accuracy problems of each element. In case 2, when Δ'/' is set to less than 1ppm, there is a problem of Ij31 which greatly deteriorates the yield and reduces productivity. (Objective of the invention) What is the present invention? It is an object of the present invention to provide a temperature ?l(I) oscillator that satisfies and improves productivity.

(解決手段) 本発明は、水晶片に複数のTi極対を形成して多Ti極
構造の水晶振動子とし、前記電極対の一つに規格内温度
領域の温度特性を?I11償する第1温度補償同諮を備
えた発振回路部を設け、他の電極対に前記第1渇度?l
tI償回路による補償温度特性のうち特定温度領域を更
2ζ?ll1l償する第2温度ガn償部を設けて発振回
路の温度特性を二重に補償したことを解決手段とする。
(Solution Means) In the present invention, a plurality of Ti pole pairs are formed on a crystal piece to obtain a crystal resonator with a multi-Ti pole structure, and one of the electrode pairs has temperature characteristics within the standard temperature range. An oscillation circuit section having a first temperature compensation circuit for compensating for I11 is provided, and the other electrode pair is provided with the first temperature compensation coefficient ? l
Is the specific temperature region of the compensation temperature characteristics by the tI compensation circuit further increased by 2ζ? The solution is to double compensate the temperature characteristics of the oscillation circuit by providing a second temperature compensation section that compensates for the temperature characteristics of the oscillation circuit.

(発明の作用) 本発明は、第1澗度補償回路により得られる補償温度特
性のうち特定温度領域を第2温度補償回路1ζより補償
したので、第1温度補償部の回路素子を交換する必要が
ない。また、第1温度補償回路とf52温度補償回路と
は異なる電極対に接続するので、第1主温度?IYl償
回路と第2温度補償回路あるいは第2温度補償回路同志
の相互干渉を少なく17てそれぞれ独立的に機能させる
作用がある。
(Function of the Invention) In the present invention, a specific temperature region of the compensation temperature characteristics obtained by the first degree compensation circuit is compensated by the second temperature compensation circuit 1ζ, so it is not necessary to replace the circuit elements of the first temperature compensation section. There is no. Also, since the first temperature compensation circuit and the f52 temperature compensation circuit are connected to different electrode pairs, the first main temperature? This has the effect of minimizing mutual interference between the IY1 compensation circuit and the second temperature compensation circuit or between the second temperature compensation circuits and allowing them to function independently.

(mjJii例) 第1図は本発明の一実施例を説明する温度補償発振器の
ブロック図である。なお、前実施例図と同一部分には同
番号を付与してその説明を簡略する。そして、本実施例
では、前従来例の補償温度特性のうち規格から+側に外
れた部分の特定温度領域を更に?In償する場合を説明
する。
(mjJii example) FIG. 1 is a block diagram of a temperature compensated oscillator illustrating an embodiment of the present invention. Note that the same parts as in the previous embodiment drawings are given the same numbers to simplify the explanation thereof. In this embodiment, the specific temperature range of the portion of the compensation temperature characteristic of the previous conventional example that deviates from the standard to the + side is further expanded. A case of indemnification will be explained.

温度補償発振器は多電極型の水晶振動子10を利用する
。水晶振動子101;tATカットの水晶片11に二組
のTh極対12.13を設けてなる。第1M極対12に
は前述した発振回路部4と第1温度補償回路14とを接
続する。第2電極対13には第2温度補償回路15を接
続する。
The temperature compensated oscillator uses a multi-electrode type crystal resonator 10. Crystal resonator 101: Two sets of Th pole pairs 12 and 13 are provided on a tAT cut crystal piece 11. The oscillation circuit section 4 and the first temperature compensation circuit 14 described above are connected to the first M pole pair 12 . A second temperature compensation circuit 15 is connected to the second electrode pair 13 .

第1温度?lYl償回路14は従来の温度hn償回路(
前第8図の2)に相当17、第1電圧発生回路16(同
図の6に相当)と第1可変容爪ダイオード17(同図の
7に相当)とからなる。そして、規格内の周囲温度に応
答した第1補償電圧v、1を出力端nに得る。
First temperature? The lYl compensation circuit 14 is a conventional temperature hn compensation circuit (
It consists of a first voltage generating circuit 16 (corresponding to 6 in the same figure) and a first variable capacitance diode 17 (corresponding to 7 in the same figure). Then, the first compensation voltage v,1 responsive to the ambient temperature within the standard is obtained at the output terminal n.

第2温度補償回路】5は第2電圧発生回路18と第2可
変容量ダイオード19とからなる。第2電圧発生回路1
8は一端を第1電圧発生回路16と共用する電源v0゜
側、他端をアース電位とする。
[Second temperature compensation circuit] 5 consists of a second voltage generation circuit 18 and a second variable capacitance diode 19. Second voltage generation circuit 1
8 has one end at the power supply v0° side shared with the first voltage generating circuit 16, and the other end at ground potential.

そして、出力端すには規格内温度に応答した第2補ff
T電圧v、、を得るように形成される。第2?lr!償
電圧■、は、第2図への温度電圧特性図「曲線(ホ)」
に示したように、規格内温度の特定温度領域ΔT、外で
は略一定値の通常電圧V、とする。
Then, at the output terminal, there is a second compensator ff that responds to the temperature within the specification.
It is formed to obtain a T voltage v, . Second? lr! The compensation voltage ■ is the temperature-voltage characteristic diagram "Curve (E)" in Figure 2.
As shown in FIG. 2, it is assumed that the specified temperature range ΔT is within the standard temperature, and the normal voltage V is approximately constant outside the specified temperature range ΔT.

特定温度領域ΔT、内では通常電圧v1より低いレベル
の特定補償電圧(以下、特定電圧)■、とする。第2可
変容量ダイオード19はカソード側を電圧発生回路18
の出力端すに接続し、1ノード側をアース電位とする。
Within the specific temperature range ΔT, a specific compensation voltage (hereinafter referred to as specific voltage) is set at a level lower than the normal voltage v1. The second variable capacitance diode 19 has a cathode connected to the voltage generation circuit 18.
Connect to the output terminal of the terminal, and set the 1st node side to ground potential.

このようなものでは、補償電圧V□による第2可変容量
ダイオード19の容量変化が、対電極12と13の弾性
的結合により発振回路4に影響を及ぼしその発振周波数
を変化させる。なお、電極対13とアース電位との間の
コンデンサ20は周波数調整用である。 fP、3図は
第2電圧発生回路18の具体的な一例である。
In such a device, a change in the capacitance of the second variable capacitance diode 19 due to the compensation voltage V□ affects the oscillation circuit 4 due to the elastic coupling between the counter electrodes 12 and 13, changing its oscillation frequency. Note that the capacitor 20 between the electrode pair 13 and the ground potential is for frequency adjustment. fP, FIG. 3 is a specific example of the second voltage generation circuit 18.

この回路例では、電源V。(+)をコレクタ側、アース
電位をエミッタ側とiノでトランジスタTrl。
In this circuit example, the power supply V. Transistor Trl with (+) on the collector side and the ground potential on the emitter side and i.

T r zをシリーズに設ける。トランジスタTr1の
コレクタ側には負荷抵抗R,を、T r 1のコレクタ
とT r 2のエミッタ間には抵抗R3とR1とを縦続
して設ける。そして、抵抗R2とR8との接続点を第2
補償電圧v、2の出力端すとする。また、トランジスタ
T r 1のバイアス分割抵抗用としてサーミスタ1じ
1と抵抗R4を、Tryの同抵抗用として抵抗R5とサ
ーミスタRT2をそれぞれベース側(こ設ける。このよ
うな電圧発生回路18では、!・ランジスタ1°rlは
低温でOFF’、’igiでONとり、Tryは低温で
ON、高温で(’)FFとなる。
T r z is provided in series. A load resistor R is provided on the collector side of the transistor Tr1, and resistors R3 and R1 are connected in series between the collector of Tr1 and the emitter of Tr2. Then, connect the connection point between resistors R2 and R8 to the second
Assume that the output terminal has a compensation voltage v,2. Further, a thermistor 1 and a resistor R4 are provided on the base side for the bias dividing resistance of the transistor T r 1, and a resistor R5 and the thermistor RT2 are provided on the base side for the same resistance of the transistor T r 1. In such a voltage generating circuit 18,!・The transistor 1°rl is OFF' at low temperature and ON at 'igi.Try is ON at low temperature and (') FF at high temperature.

!、たがって、特定温度領域ΔT2の下限温度T、はサ
ーミスタTtT、と抵抗R4との比によって、」二限澗
度T2はサーミスタltT、と抵抗R1との比によって
決定する。また、特定温度領域Δ′r、の周波数補正量
によって求められ4特定電圧V、は抵抗R2とR1の比
によって決定される。この場合には、特定温度領域ΔT
、の上下限温度T、、T、及び特定電圧V、を決定すれ
ば、抵抗n、、rt、、R,は必然的(ご決定される。
! Therefore, the lower limit temperature T of the specific temperature range ΔT2 is determined by the ratio of the thermistor TtT and the resistor R4, and the second limit temperature T2 is determined by the ratio of the thermistor ltT and the resistor R1. Further, the specific voltage V, determined by the frequency correction amount of the specific temperature region Δ'r, is determined by the ratio of the resistors R2 and R1. In this case, the specific temperature range ΔT
If the upper and lower temperature limits T, ,T, and the specific voltage V, of , are determined, the resistances n, rt, ,R, are inevitably (determined).

このような構成の温度補償発振器では、第1温度補償回
y814により、発振@路4の温度特性(三次曲線)を
規t8温度範囲ΔT、にて補償する。
In the temperature compensated oscillator having such a configuration, the first temperature compensation circuit y814 compensates the temperature characteristic (cubic curve) of the oscillation@path 4 within the specified temperature range ΔT.

そして、前述したような温度@Un−30〜70℃内に
おいて一20℃及び60℃近傍でのみ±1ppInを越
え、他の部分ではlppm以内とした周波数偏差の補償
温度特性(以下、第1補償温度特性)を1(#る「前第
10図曲線(ニ)」。
Then, within the temperature range @Un-30 to 70°C as described above, the compensation temperature characteristic of the frequency deviation (hereinafter referred to as the first compensation Temperature characteristics) to 1 ("Previous Figure 10 curve (d)".

以下、第2温度?In償回路15により、第1?111
償扁度特性のうち規格から+側に外れた一20℃部分を
更に補償して±lppm以内にする場合を説明する。
Below is the second temperature? By the In compensation circuit 15, the 1st?111
A case will be described in which the -20°C portion of the compensation characteristic that deviates from the standard on the + side is further compensated to be within ±1 ppm.

先ず、第1補償温度特性に基づき、特定温度領域ΔT!
の上下限温度T□、T、及び特定電圧■、を設定する。
First, based on the first compensation temperature characteristic, a specific temperature range ΔT!
Set the upper and lower temperature limits T□, T, and specific voltage ■.

すなわち、第1補ff1度特性の一20℃近傍周辺では
1.8ppm@最大として順次小さくなる凸状間jネと
する。これにより、−20℃近傍での超過分が0.Fl
ppmであることから、周波数個差を±lppm以内と
するために周波数の補正量を一1ppmとする。そして
、補正量−1ppmに相当する可変容量ダイオード16
への特定電圧V、を設定する(前第2図A参照)。なお
、特定電圧V、は一定に設定しても、実際にはTr。
That is, in the vicinity of -20° C. of the first compensation ff1 degree characteristic, the convex gap is set to 1.8 ppm@maximum and gradually decreases. As a result, the excess at around -20°C is reduced to 0. Fl
ppm, the frequency correction amount is set to -1 ppm in order to keep the individual frequency difference within ±1 ppm. Then, the variable capacitance diode 16 corresponding to the correction amount -1 ppm
(See FIG. 2A above). Note that even if the specific voltage V is set constant, it is actually Tr.

Tryの動作特性上、上下限温度T8、T、8部では徐
々にその電圧レベルを小さくする。次に、特定温度領域
ΔT、は一20℃近傍を略中心とし、その上限温度T8
を例えば周波数側差0である一5℃、下限温度Tlを同
一30℃とする。
Due to the operating characteristics of Try, the voltage level is gradually reduced at the upper and lower temperature limits T8, T, and 8 parts. Next, the specific temperature range ΔT is approximately centered around -20°C, and its upper limit temperature T8
For example, it is assumed that the frequency side difference is -5°C, and the lower limit temperature Tl is the same 30°C.

とのような設定から、特定湿度領域ΔT2内では、特定
電圧v8が第2可変容量ダイオード19に印加される。
Based on the settings, a specific voltage v8 is applied to the second variable capacitance diode 19 within the specific humidity region ΔT2.

そして、第2可変容景ダイオードのC1からC,に上昇
する変化分ΔC1[第2図Hの曲線(へ)」は、対Wi
t!1li12と13との弾性的結合により、発振回路
4の発振周波数をΔ11の変化量をもってflからf、
に低下させる「第2図Cの曲151(+−)J。すなわ
ち、−20℃近傍では周波数幅差を一1ppm変化させ
、1.8ppmから0.8ppmにする。そして、−2
0℃近めでの変化率を最大(−1ppm)とし、その周
辺では実際上の印加電圧に応じて徐々に小さくする。
Then, the amount of change ΔC1 [the curve (to) in FIG.
T! Due to the elastic coupling between 1li12 and 13, the oscillation frequency of the oscillation circuit 4 changes from fl to f with a change amount of Δ11.
"Track 151(+-)J in Figure 2 C. That is, in the vicinity of -20°C, the frequency width difference is changed by -1 ppm, from 1.8 ppm to 0.8 ppm. Then, -2
The rate of change is set at a maximum (-1 ppm) near 0° C., and is gradually decreased around that point in accordance with the actual applied voltage.

その結果、特定温度領域ΔT、内では一20℃近傍を中
心として緩やかな1ppffI以内の略凸状曲線となる
「@第10図の三角印で結ぶ曲線(チ)のうちり部分」
As a result, within the specific temperature range ΔT, a roughly convex curve within 1 ppffI is formed with a center around -20°C.
.

なお、特定湿度領域ΔT、外では、第2可変容屋ダイオ
ード19に通常電圧v8が印加されるので、第1補償温
度特性に変化を来す。したがって、コンデンサ20をF
I塾して例えばmi?225℃における発振周波数を第
1湿度補償部11のみ付加しtこときと同一の発振周波
数に戻す必要がある。
Note that outside the specific humidity range ΔT, the normal voltage v8 is applied to the second variable temperature diode 19, so that the first compensation temperature characteristic changes. Therefore, the capacitor 20 is
For example, mi? It is necessary to return the oscillation frequency at 225° C. to the same oscillation frequency by adding only the first humidity compensator 11.

以上から、この湿度補償発振蕎では、第1補償温度特性
のうちtJl格から+側に外れた一20℃部分を、第2
湿度補償部11により更に選択的に補償1.てlppm
以内にする。したがって、規格を例えば湿度範囲一30
〜50℃内にて周波数偏差+i p p m以内とした
場合には、同規堵を満足する。そして、従来のように第
181度補償回路14を再製作17て交換する必要もな
いので、歩留を良好として生産性を向上する。また、第
1と第2の温度補償回路14と15とは異なる電極対1
2.13に接続して弾性的に結合するのみで、電気的に
は遮断されるので相互間の電気的影響を軽減して独立的
な補償特性を得ることができる。したがって、設計17
やすい利点を持つ。
From the above, in this humidity-compensated oscillator, the -20°C portion of the first compensation temperature characteristic that deviates from the tJl rating to the + side is
The humidity compensator 11 further selectively compensates 1. te lppm
within. Therefore, if the standard is, for example, humidity range - 30
If the frequency deviation is within +i p p m at a temperature of ~50° C., the uniformity is satisfied. Further, unlike the conventional method, there is no need to remanufacture 17 and replace the 181st degree compensation circuit 14, thereby improving yield and improving productivity. Further, the first and second temperature compensation circuits 14 and 15 are different from each other in the electrode pair 1.
2.13 and are coupled elastically, they are electrically cut off, so that mutual electrical influence can be reduced and independent compensation characteristics can be obtained. Therefore, design 17
It has the advantage of being easy to use.

(他の実施例) 第4図は本発明の他の実施例図を示す温度?ln*ln
型のブロック図である。なお、前実施例と同一部分には
同番号を付与してその説明は省略する。
(Other Embodiments) FIG. 4 shows another embodiment of the present invention. ln*ln
FIG. 3 is a block diagram of the mold. Note that the same parts as in the previous embodiment are given the same numbers and their explanations will be omitted.

乙の実施例は、前実施例がM1?l11償渇度特性の1
−側に越えた部分の周波数偏差を第2温度補償回路15
により補償したのに対し、−側に越えた部分を第2温度
補償回i15に換えた第3温度補償回路21により補償
する場合を説明するものである。
In the embodiment of B, is the previous embodiment M1? l11 Compensation degree characteristic 1
The second temperature compensation circuit 15 compensates for the frequency deviation in the part that exceeds the - side.
The following describes a case where the third temperature compensation circuit 21 replaces the second temperature compensation circuit i15 with compensation for the portion exceeding the negative side.

本実施例では、水晶振動子10(水晶片11)の一方の
電極対12に前述n様の光M回路部4と第1温度補償回
路16を接続する。そして、規格内の温度範囲ΔT、に
わたって発振回路1の温度特性を補償(7、第1補償湿
度特性を1する「前第10図の曲線(ニ)参照」。
In this embodiment, the aforementioned n-type optical M circuit section 4 and the first temperature compensation circuit 16 are connected to one electrode pair 12 of the crystal resonator 10 (crystal blank 11). Then, the temperature characteristics of the oscillation circuit 1 are compensated over the temperature range ΔT within the standard (7. See the curve (d) in FIG. 10 above, where the first compensation humidity characteristic is set to 1).

第3温度補償回路21は他方の電極対13に接続し、第
3Ti圧発生回路22とその出力端Cに接続17た可変
容星ダイオード23とからなる。第3電圧発生回路22
は一端を第1TI圧発生回路16と共用する電giv、
、側、他端をアース電位とする。
The third temperature compensation circuit 21 is connected to the other electrode pair 13 and includes a third Ti pressure generation circuit 22 and a variable capacity star diode 23 connected 17 to its output terminal C. Third voltage generation circuit 22
is a voltage giv whose one end is shared with the first TI pressure generation circuit 16;
, and the other end is at ground potential.

そして、出力端Cに規格内温度に応答しtこ第3補償電
圧V、を得るように形成される。この場合、第3前ff
′tri圧v、3は、第5図への温度電圧特性図「曲線
(す)」に示したように特定温度領域ΔT、外では一定
値の通常電圧V、とする。特定温度領域ΔT、内では通
常電圧より高いレベルの特定電圧v4とする。
The third compensation voltage V is formed at the output terminal C in response to the temperature within the specification. In this case, the third front ff
The 'tri pressure v, 3 is assumed to be the normal voltage V, which is constant outside the specific temperature range ΔT, as shown in the temperature-voltage characteristic diagram ``curve'' in FIG. Within the specific temperature range ΔT, the specific voltage v4 is set at a higher level than the normal voltage.

第6図は第3Ti圧発生回路22の具体的な一例である
。この?l(l償回路例は、電源Va。(+)をコレク
タ側、アース電位をエミッタ側としたトランジスタ゛r
r3.Tr4をパラレルに設ける。トランジスタTr3
(Tr4)のコレクタ側には負荷抵抗R@を、Tr3の
コレクタとエミッタ (アース電位)間には抵抗R7と
R1とを縦続して設ける。そして、抵抗R1とR,との
接続点を補償電圧V、の出力端Cとする。また、トラン
ジスタT r 、のバイアス分割11(杭用としてサー
ミスタRT 2とfit抗R0を、T r 4の同抵抗
用として抵抗R1,とサーミスタR1゛4とをそれぞれ
ベース側に設ける。このような電圧発生回路22では、
トランジスタTr3は低温でOFF、高温でONとし、
Tr4は低温でON、高温でOFFとする。したがって
、特定温度m域ΔT3の下限潤度T3はサーミスタRT
、と抵抗aSSとの比によって、下限温度T4はサーミ
スタRT、と抵抗R・との比によって決定される。また
、特定温度領域ΔT、の°周波数補正量で求められる特
定電圧v4は抵抗R,とR,の比によって決定される。
FIG. 6 shows a specific example of the third Ti pressure generation circuit 22. this? l(l) An example of a compensation circuit is a transistor with the power supply Va. (+) on the collector side and the earth potential on the emitter side.
r3. Tr4 is provided in parallel. Transistor Tr3
A load resistor R@ is provided on the collector side of (Tr4), and resistors R7 and R1 are connected in series between the collector and emitter (ground potential) of Tr3. The connection point between the resistors R1 and R is the output terminal C of the compensation voltage V. In addition, the bias division 11 of the transistor T r (a thermistor RT 2 and a fit resistor R0 are provided for the pile, and a resistor R1 and thermistor R1-4 are provided for the same resistance of the transistor T r 4 on the base side. In the voltage generation circuit 22,
Transistor Tr3 is turned off at low temperature and turned on at high temperature,
Tr4 is turned on at low temperature and turned off at high temperature. Therefore, the lower limit humidity T3 of the specific temperature m range ΔT3 is determined by the thermistor RT.
, and the resistance aSS, and the lower limit temperature T4 is determined by the ratio of the thermistor RT and the resistance R. Further, the specific voltage v4 obtained by the degree frequency correction amount of the specific temperature region ΔT is determined by the ratio of the resistors R and R.

この場合には、特定温度領域Δ′r、の上下@温度T1
、T4及び特定電圧v4を決定すれば、抵抗R,、Rゆ
、R1゜は必然的に決定される。
In this case, the upper and lower sides of the specific temperature range Δ′r @temperature T1
, T4 and the specific voltage v4, the resistances R, , R, and R1° are inevitably determined.

以下、第3温度補償回路21により、第1補償温度特性
のうち規格から一側に外れた60℃部分を更に補償して
±lppm以内にする場合を説明する。
Hereinafter, a case will be described in which the third temperature compensation circuit 21 further compensates for the 60° C. portion of the first compensation temperature characteristic that deviates from the standard to within ±lppm.

先ず、第1渇度補償特性r前第10図の曲線(ニ)」に
基づき、特定温度領域Δ′r、の上下限温度゛r1、T
4及び特定電圧■4を設定する。すなわち、GO℃近傍
周辺では−1,8ppmを最大として順次小さ(なる凹
状曲線とする。これにより、超過分が−0,8ppmで
あることから、60℃近傍での周波数偏差を±lppm
以内とするために補正量を1 p l) mとする。そ
して、補正量1pp+nに相当する第3可変容量ダイオ
ード23への特定電圧v4を設定する(前第5図A)。
First, based on the curve (d) in FIG. 10 before the first thirst compensation characteristic r, the upper and lower limit temperatures ゛r1,T of the specific temperature range Δ'r are determined.
4 and specific voltage ■4. In other words, it is a concave curve with a maximum value of -1.8 ppm around GO℃, which gradually decreases.As a result, since the excess is -0.8ppm, the frequency deviation near 60℃ is ±lppm.
In order to keep it within the range, the correction amount is set to 1 p l) m. Then, a specific voltage v4 to the third variable capacitance diode 23 corresponding to a correction amount of 1 pp+n is set (see FIG. 5A).

次に、特定湿度領域を60℃近傍な略中心とし、その上
限湿度T4を例えば周波数偏差−0,5ppmである7
0℃、下限温度T、を同一50℃とする。
Next, set the specific humidity region approximately at the center near 60°C, and set the upper limit humidity T4 to 7, which is, for example, a frequency deviation of -0.5 ppm.
0°C and lower limit temperature T are the same 50°C.

このような設定から、特定温度領域ΔT、内では、特定
電圧v4が第3可変容量ダイオード23に印加される。
Based on such settings, a specific voltage v4 is applied to the third variable capacitance diode 23 within the specific temperature range ΔT.

そして、第3可変容量ダイオード23のC8からC4に
低下する変化分ΔC2「第5図Bの曲線(ス)」は、対
電極12と13との弾性的結合により発振回路1の発振
周波数「、をΔ「鵞の変化量をもってf4に上昇させる
「第5図Cの曲線(ル)」。すなわち、−60℃近傍で
は周波数偏差をippm変化させ、 1.8ppmから
−0,8ppmにする。そして、−60℃近傍での変化
率を最大(IIIPIll)としてその周辺では実際上
の印加電圧に応じて徐々に小さ(する。
The change ΔC2 of the third variable capacitance diode 23 from C8 to C4 (curve (S) in FIG. ``Curve (L) in Figure 5'' that raises the value to f4 with a change amount of Δ. That is, in the vicinity of -60°C, the frequency deviation is changed by ippm, from 1.8 ppm to -0.8 ppm. Then, the rate of change near -60° C. is the maximum (IIIPIll), and around that point it gradually decreases (depending on the actual applied voltage).

その結果、特定温度領域ΔT、内では一60℃近傍を中
心として緩やかな1ppmm内の略凹状曲線となる「前
第10図の曲線(チ)の17!i分」。
As a result, within the specific temperature range ΔT, the curve becomes a roughly concave curve within 1 ppmm centered around −60° C., which is “17!i minutes of the curve (h) in FIG. 10”.

なお、この場合においても、第3可変容量グイオード2
1に通常m rE v zが印加されて第1 ?I(l
償温度特性に変化を来すので、コンデンサ20を調整し
て第1温度補償部14のみ付加したときと同一の発振周
波数(例えば常温時)にする必要がある。
Note that also in this case, the third variable capacitance guide 2
Normally m rE v z is applied to the first ? I(l
Since the compensation temperature characteristics change, it is necessary to adjust the capacitor 20 to make the oscillation frequency the same as when only the first temperature compensator 14 is added (for example, at room temperature).

以上から、この実施例では、第1補償温度特性のうち規
格から一側に外れた60℃部分でも、第3温度補償回路
217こより更に選択的に補償して±1 p p m以
内にする。したがって、規格を例えば温度範囲一10〜
70℃内にて周波数偏差上lppm以内とした場合には
、同規格を満足する。
From the above, in this embodiment, even the 60° C. portion of the first compensation temperature characteristic that deviates from the standard is further selectively compensated for by the third temperature compensation circuit 217 to within ±1 ppm. Therefore, for example, the temperature range -10~
If the frequency deviation is within lppm at 70°C, the standard is satisfied.

そして、従来のように第1温度補償回路11を再製作し
て交換する必要もないので、歩留を良好として生産性を
向上する。また、第1と第3の温度補償回rIlp11
4と21とは弾性的に結合するのみで、相互干渉を軽減
して独立的に第1補償湿度特性に作用するので、設計し
易い利点をもつ。
Further, unlike the conventional method, there is no need to remanufacture and replace the first temperature compensation circuit 11, thereby improving yield and improving productivity. In addition, the first and third temperature compensation circuits rIlp11
4 and 21 are only elastically coupled, reduce mutual interference, and act independently on the first compensation humidity characteristic, so they have the advantage of being easy to design.

(他の事項) なお、上記実施例ては第1温度補償回路14と第2澗度
補償回路15又は第3補償回路2Lを使用してf51補
(ft 2m度特性の周波数偏差が+側又は−側に外れ
た部分を補償する場合を説明したが、第3の実施例とし
て第7図に示したように構成し、第1温度補償特性の十
及び−側に外れた部分をともに?+!l償して例えば温
度範囲一30〜70℃にて周波数偏差±1pp+r+以
内とする規格を満足するようにしてもよい。すなわち、
水晶片11に3組の電極対12.13.24を設け、電
極対12には発振回路1と第1温度補償回路14を、電
極対13には第2温度補償回路15を、電極対24には
第3温度補償回路21を接続すればよい。 また、本発
明は第1温度補償特性の形態には拘らず規格を越える部
分についてその補償を基本的に行え得ることは勿論で、
規格を越える部分が3箇所以上の場合には、水晶振動子
をその数に応じた多電極構造として第1、第2、・・・
、第nの温度補償回路を付加してその部分の補償をすれ
ばよい。この点、特許請求の範囲では第2温度補償部と
しかIUJ記していないが、第3、第4、・・・、第n
温度補償部を付加したものも本発明の技術範囲に含まれ
ることは明らかである。また、特定温度領域例えばΔT
3の上下限温度T8、ΔT、は周波数偏差Oppmtと
なる、−30℃及び5℃としたが「第10図の曲線(ニ
)参照」、これに限らず例えば実際に1 p p rn
を越える部分を特定温度領域とし、この部分を補償して
±1ppnn以内とする特定電圧を設定してもよい。ま
た、第1及び第2実施例においても、通常電圧は所定レ
ベルの電圧値としたが、例えばこれを0レベルとして第
1補償温度特性への影響を防止するようにしたとしても
よい。
(Other matters) In addition, in the above embodiment, the first temperature compensation circuit 14 and the second degree compensation circuit 15 or the third compensation circuit 2L are used to compensate for f51 (ft) when the frequency deviation of the 2m degree characteristic is on the + side or Although we have described the case of compensating for the part that deviates to the - side, the third embodiment is configured as shown in FIG. For example, the frequency deviation may be within ±1 pp+r+ in the temperature range -30 to 70° C.
Three pairs of electrodes 12, 13, and 24 are provided on the crystal piece 11, the oscillation circuit 1 and the first temperature compensation circuit 14 are connected to the electrode pair 12, the second temperature compensation circuit 15 is connected to the electrode pair 13, and the electrode pair 24 The third temperature compensation circuit 21 may be connected to the third temperature compensation circuit 21. Furthermore, it goes without saying that the present invention can basically compensate for the portion exceeding the standard regardless of the form of the first temperature compensation characteristic.
If there are three or more parts that exceed the standard, the crystal resonator should have a multi-electrode structure according to the number of parts, such as the first, second,...
, an n-th temperature compensation circuit may be added to compensate for that portion. In this regard, in the claims, only the second temperature compensator is described as IUJ, but the third, fourth, ..., nth
It is clear that the technical scope of the present invention also includes a device with a temperature compensation section added thereto. In addition, a specific temperature range, for example ΔT
The upper and lower limit temperatures T8 and ΔT of 3 are set to -30°C and 5°C, which are the frequency deviation Oppmt, but "see curve (d) in Fig. 10", but not limited to this, for example, actually 1 p p rn
It is also possible to set a specific temperature range where the temperature exceeds 1, and set a specific voltage within ±1 ppnn by compensating for this temperature range. Further, in the first and second embodiments, the normal voltage is set to a predetermined voltage level, but it may be set to 0 level, for example, to prevent the influence on the first compensation temperature characteristic.

また、上記従来例では水晶振動子の多電極構造の1漸配
置については格別言及しなかったが、発振回路と接続す
るTi極対はその振動特性」二から水晶片の中央に形成
されることが望よしい。
Furthermore, although the above conventional example does not specifically mention the gradual arrangement of the multi-electrode structure of the crystal resonator, the Ti pole pair connected to the oscillation circuit is formed at the center of the crystal piece due to its vibration characteristics. is desirable.

また、本発明の多電極構造とした温度補償発振器の基本
は、本出願人が特顆昭63−15142号、同63−2
5093号にて開示するもので、必要(ζ応1シで参照
されたい。
Furthermore, the basics of the temperature-compensated oscillator having a multi-electrode structure according to the present invention are disclosed in Tokuko No. 63-15142 and No. 63-2.
It is disclosed in No. 5093, and is necessary (please refer to ζReference 1).

また、第1温度補償回vIS14は第1電圧光生回路1
6と可変容量ダイオード17から形成したが、例えばサ
ーミスタ、コンデンサ、抵抗の直・並列回路からなる所
07直接補償法により構成して第1補償湿度特性を#り
なものでも本発明は適用する。
Further, the first temperature compensation circuit vIS14 is connected to the first voltage photogenerating circuit 1.
6 and a variable capacitance diode 17, for example, the present invention is also applicable to a device configured by the direct compensation method and having a different first compensation humidity characteristic, for example, a series/parallel circuit of a thermistor, a capacitor, and a resistor.

また、本発明では付随的に次の効果を生ずる。Further, the present invention additionally produces the following effects.

すなわち、水晶振動子3の温度特性は理論上では常温2
5℃近防に変曲点をもつ三次曲線となるが、現実的には
理論上の温度特性を目標として設計しても副振動や微少
の切断角度差等の僅かな影響によりその温度特性に歪み
を来す。そして、このようなもの中には、温度補償発振
器用の水晶振動子としては温度特性を補償しきれず使用
できないものがある。しかl/ 、本発明を適用すれば
、理論値から多少逸脱した温度特性のものでも、温度特
性を部分的に補償して充分に利用でき、メーカとして経
済的に非常に有利にする効果を奏する。
In other words, the temperature characteristics of the crystal resonator 3 are theoretically equal to room temperature 2.
It is a cubic curve with an inflection point around 5 degrees Celsius, but in reality, even when designing with the theoretical temperature characteristics as the target, slight effects such as secondary vibrations and slight differences in cutting angles may cause the temperature characteristics to change. causes distortion. Among these devices, there are some that cannot be used as crystal resonators for temperature-compensated oscillators because their temperature characteristics cannot be fully compensated for. However, if the present invention is applied, even if the temperature characteristics slightly deviate from the theoretical values, the temperature characteristics can be partially compensated for and fully utilized, resulting in an extremely advantageous economical effect for the manufacturer. .

(発明の効果) 本発明は、第1温度補償回路により発振回路の温度特性
を吏用温度範囲にわたって?In償し、第1温度補償回
路により補償された補償温度特性のうち規格外となる部
分の特定温度領域を第2温度補償回路より更に?l(I
償したので、第1温度補償回路を従来のように交換する
ことな(補償温度特性を規格内に満足して生産性を向−
ヒする温度補償発振器を提供でき、産業上の価値は極め
゛て高い。
(Effects of the Invention) According to the present invention, the temperature characteristics of the oscillation circuit can be adjusted over the temperature range by the first temperature compensation circuit. In compensation, the specific temperature range of the portion outside the standard among the compensated temperature characteristics compensated by the first temperature compensation circuit is further compensated for by the second temperature compensation circuit? l(I
Now that the first temperature compensation circuit has been compensated for, there is no need to replace it like in the past.
It is possible to provide a temperature-compensated oscillator with high performance, and its industrial value is extremely high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例を説明する温度補償光振器
のブロック図である。第2図は第1実施例における特性
図で、同図へは温度電圧特性図、同図R1,を湿度容量
特性図、同図Cは温度周波数特性図である。第3図は第
1実施例における電圧発生回路図である。 第4図は本発明の第2実施例を説明する温度補償光振器
のブロック図である。第5図は第2実廁例における特性
図で、同図Aは温度電圧特性図、同図Bは湿度容量特性
図、同図Cは温度周波数特性図である。第6図は第2y
SMJi例における電圧発生回路図である。 第7図は本発明の第3実施例を説明する温度補償発振器
のブロック図である。 第8図は従来例を説明する温度補償発振器のブロック図
である。第9図は温度?l!]償発振器の温度特性図で
ある。 第10図は第9図の温度特性を拡大しR2図で、曲線(
ニ)は従来例、曲線(チ)上記実施例によるものである
。 1113発振回路、2.14.15.21・・・温度補
償回路、3.10・・・水晶振動子、4・・・発振回路
部、5、Trl、T r @−発振用トランジスタ、6
.16.18.22・・・電圧発生回路、7.17.1
9.23・・・可変容量ダイオード、8、rt’r、−
RT4・・・サーミスタ、9、R1−R,。・・・抵抗
、11・・・水晶片1.12.13.24・・・電極対
、20・・・コンデンサ。 第1I!! 第3閃 雲6= (+) (+) 第21!IA 第7図 第!5CIA 36一
FIG. 1 is a block diagram of a temperature compensated optical oscillator illustrating a first embodiment of the present invention. FIG. 2 is a characteristic diagram of the first embodiment, where R1 is a temperature-voltage characteristic diagram, R1 is a humidity-capacity characteristic diagram, and C is a temperature-frequency characteristic diagram. FIG. 3 is a voltage generation circuit diagram in the first embodiment. FIG. 4 is a block diagram of a temperature compensated optical oscillator illustrating a second embodiment of the present invention. FIG. 5 is a characteristic diagram of the second practical example, in which A is a temperature-voltage characteristic diagram, B is a humidity-capacity characteristic diagram, and C is a temperature-frequency characteristic diagram. Figure 6 is 2y
FIG. 3 is a voltage generation circuit diagram in an example of SMJi. FIG. 7 is a block diagram of a temperature compensated oscillator illustrating a third embodiment of the present invention. FIG. 8 is a block diagram of a temperature compensated oscillator illustrating a conventional example. What is the temperature in Figure 9? l! ] FIG. 2 is a temperature characteristic diagram of a compensated oscillator. Figure 10 is an R2 diagram that expands the temperature characteristics of Figure 9, and shows the curve (
D) is the conventional example, and curve (H) is based on the above embodiment. 1113 Oscillation circuit, 2.14.15.21... Temperature compensation circuit, 3.10... Crystal resonator, 4... Oscillation circuit section, 5, Trl, Tr@-transistor for oscillation, 6
.. 16.18.22... Voltage generation circuit, 7.17.1
9.23...variable capacitance diode, 8, rt'r, -
RT4...Thermistor, 9, R1-R,. ...Resistor, 11...Crystal piece 1.12.13.24...Electrode pair, 20...Capacitor. 1st I! ! Third flash cloud 6 = (+) (+) 21st! IA Figure 7! 5CIA 36-1

Claims (1)

【特許請求の範囲】[Claims] 水晶片に複数の電極対を形成して多電極構造の水晶振動
子とし、前記電極対の一つに規格内温度領域の周波数温
度特性を補償する第1温度補償回路の接続した発振回路
部を設け、他の電極対に前記主温度補償回路による補償
周波数温度特性のうち特定温度領域を更に補償する第2
温度補償回路を設けて構成したことを特徴とする温度補
償水晶発振器。
A crystal resonator with a multi-electrode structure is obtained by forming a plurality of electrode pairs on a crystal piece, and an oscillation circuit section connected to one of the electrode pairs is connected to a first temperature compensation circuit for compensating the frequency temperature characteristics in the standard temperature range. A second electrode is provided on the other electrode pair to further compensate for a specific temperature region of the compensation frequency temperature characteristics by the main temperature compensation circuit.
A temperature-compensated crystal oscillator characterized in that it is configured with a temperature-compensated circuit.
JP63248632A 1988-07-25 1988-09-30 Temperature compensation crystal oscillator Pending JPH0296407A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP63248632A JPH0296407A (en) 1988-09-30 1988-09-30 Temperature compensation crystal oscillator
JP63335050A JPH02180410A (en) 1988-07-25 1988-12-31 Temperature compensating multi-frequency oscillator
US07/382,107 US5004988A (en) 1988-07-25 1989-07-19 Quartz crystal oscillator with temperature-compensated frequency characteristics
KR1019890010419A KR930002036B1 (en) 1988-07-25 1989-07-22 Quartz crystal oscillator with temperature-compensated frequency characteristics
DE68915355T DE68915355T2 (en) 1988-07-25 1989-07-24 Quartz oscillator with temperature compensated frequency characteristics.
EP89113579A EP0352695B1 (en) 1988-07-25 1989-07-24 Quartz crystal oscillator with temperature-compensated frequency characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63248632A JPH0296407A (en) 1988-09-30 1988-09-30 Temperature compensation crystal oscillator

Publications (1)

Publication Number Publication Date
JPH0296407A true JPH0296407A (en) 1990-04-09

Family

ID=17181001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63248632A Pending JPH0296407A (en) 1988-07-25 1988-09-30 Temperature compensation crystal oscillator

Country Status (1)

Country Link
JP (1) JPH0296407A (en)

Similar Documents

Publication Publication Date Title
US8058941B2 (en) Voltage control type temperature compensation piezoelectric oscillator
US7728685B2 (en) Temperature compensation oscillator and method for manufacturing the same
US5004988A (en) Quartz crystal oscillator with temperature-compensated frequency characteristics
US4254382A (en) Crystal oscillator temperature compensating circuit
CA1134466A (en) Temperature-compensated crystal oscillator
US20080106348A1 (en) Temperature compensated crystal oscillator
US6794948B2 (en) Oscillation circuit and electronics using the same
JPH0296407A (en) Temperature compensation crystal oscillator
US5999063A (en) Temperature-compensated crystal oscillator using square-law converter circuits for lower and higher temperature sides
US3641461A (en) Temperature compensated crystal oscillator
US4051446A (en) Temperature compensating circuit for use with a crystal oscillator
JP2012138890A (en) Piezoelectric oscillator
JP2017212637A (en) Adjustment device, adjustment method, and oscillation device
JP2016144163A (en) Voltage controlled oscillation circuit
US3697890A (en) Wide deviation voltage controlled crystal oscillator with temperature compensation
JP2640131B2 (en) Temperature compensated crystal oscillator
US4587499A (en) Temperature compensating circuit for oscillator
JPH0235804A (en) Temperature compensating crystal oscillator
JP2002135051A (en) Piezoelectric oscillator
JP4561029B2 (en) OSCILLATOR CIRCUIT AND ELECTRONIC DEVICE USING THE SAME
JP2002026658A (en) Quartz oscillator circuit
JP2607931B2 (en) Crystal oscillator
JP2750904B2 (en) Compensation voltage generation circuit for temperature compensated oscillator
CN216390969U (en) Voltage-controlled oscillation circuit and electronic device
JP3399563B2 (en) Temperature compensated crystal oscillator