JPH0296064A - Vibration controlling of high-rise construction - Google Patents

Vibration controlling of high-rise construction

Info

Publication number
JPH0296064A
JPH0296064A JP63244514A JP24451488A JPH0296064A JP H0296064 A JPH0296064 A JP H0296064A JP 63244514 A JP63244514 A JP 63244514A JP 24451488 A JP24451488 A JP 24451488A JP H0296064 A JPH0296064 A JP H0296064A
Authority
JP
Japan
Prior art keywords
force
external force
exciter
deformation
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63244514A
Other languages
Japanese (ja)
Inventor
Masaaki Yamada
正明 山田
Yutaka Asami
豊 浅見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP63244514A priority Critical patent/JPH0296064A/en
Publication of JPH0296064A publication Critical patent/JPH0296064A/en
Pending legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

PURPOSE:To obtain the effect of vibration control with a simple construction by installing an exciter to rotate a pair of eccentric masses corresponding to external force to provide turning torque conforming to natural frequency of a construction and canceling the external force by centrifugal force to be generated. CONSTITUTION:An exciter to rotate a pair of eccentric masses 11 corresponding to external force is installed in the direction of X. After that, the direction and magnitude of external force to act on the construction is detected by a sensor, and is inputted to a computer. Then, the length of an arm 13 is controlled, a rotary shaft 12 is rotated by a motor to provide the masses 11 with turning torque corresponding to natural frequency of the construction. They are rotated in the opposite direction each other to generate centrifugal force, and the force to cancel external force is generated. Canceling force is generated by another exciter in correspondence with the external force in the direction of Y. According to the constitution, economic efficiency can be increased.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高層構造物、特に超高層構造物の制振方法に係
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a vibration damping method for high-rise structures, particularly super-high-rise structures.

(従来の技術) 構造物に風の力が作用した場合、その力によって構造物
が変形する。第7図は変形前の構造物(A)と、風によ
る力Pによって変形した後の構造物を示す。図中δは構
造物頂部での変形量を示す。
(Prior Art) When wind force acts on a structure, the structure deforms due to the force. FIG. 7 shows the structure (A) before deformation and the structure after being deformed by the force P caused by the wind. In the figure, δ indicates the amount of deformation at the top of the structure.

一方、構造物が高層になり、固有周期が長くなると、例
えば風力、風向等の時間的変化により構造物の固有周期
と一致した振動が励起される。このときの構造物の変形
は第8図に示すように、前記風の力による変形δに、振
動による変形δ′が加わる形で表現される。ただし、振
動による変形δ′は前記変形δの状態を中心に、時間と
ともに左右に揺れる変形を示している。この変形を時間
とともに表現すると第9図のようになる。
On the other hand, when a structure becomes taller and has a longer natural period, vibrations that match the natural period of the structure are excited due to temporal changes in wind force, wind direction, etc., for example. As shown in FIG. 8, the deformation of the structure at this time is expressed by adding deformation δ' due to vibration to deformation δ due to the wind force. However, the deformation δ' due to vibration indicates a deformation that swings from side to side with time, centering on the state of the deformation δ. This deformation is expressed over time as shown in Figure 9.

一方、風の力を振動数毎に分解し、振動数(1/5ec
)と、パワースペクトル(m2/5ec)との関係を図
示すると第10図のようになる。
On the other hand, the force of the wind is decomposed into each frequency, and the frequency (1/5ec
) and the power spectrum (m2/5ec) is illustrated in FIG. 10.

図中、斜線部分のパワーが構造物の固有振動近傍のパワ
ーである。
In the figure, the power in the shaded area is the power near the natural vibration of the structure.

図から明らかなように、構造物の固有振動成分と一致し
た部分のパワーに比して、可成り長い周期領域の風のパ
ワーが圧倒的に優勢であって、この領域の風のパワーが
前掲第7図に示した構造物の変形δに寄与するものであ
る。
As is clear from the figure, the power of the wind in a fairly long period region is overwhelmingly superior to the power in the part that matches the natural vibration component of the structure, and the power of the wind in this region is This contributes to the deformation δ of the structure shown in FIG.

このように、風全体のパワーからすると僅かなパワーで
ある固有振動数成分が徐々に蓄積され、構造物の固有振
動数による共振を生起するのが、前述の変形δ′の特徴
である。即ち第11図に示すように、構造物の揺れにあ
った風による外力fが僅かづつ働き、徐々に変形が大き
くなる。
In this way, the characteristic of the deformation δ' is that the natural frequency component, which is a small amount of power compared to the power of the entire wind, gradually accumulates, causing resonance due to the natural frequency of the structure. That is, as shown in FIG. 11, the external force f due to the wind caused by the shaking of the structure acts little by little, and the deformation gradually increases.

既存のタワーやこれから計画が予想される超々高層構築
物では前記の変形δ′による揺れが大きく、居住者に船
酔い的な不快感が与えられる。また風力による変形δに
、振動による変形δ′が加算され大きな変形を生ずる。
Existing towers and ultra-high-rise structures that are expected to be planned in the future are subject to significant shaking due to the above-mentioned deformation δ', causing residents to experience discomfort similar to seasickness. Furthermore, deformation δ' due to vibration is added to deformation δ due to wind force, resulting in large deformation.

従来はこの大きな変形に耐えられるように構造物の設計
に際して部材断面を徒らに大きくするという方策がとら
れるにずぎす、不快感に対する対応は不十分であった。
Conventionally, in order to withstand this large deformation, when designing a structure, measures have been taken to unnecessarily increase the cross section of the member, but measures against discomfort have not been sufficient.

(発明が解決しようとする課題) しかしながら単に部材断面を大きくするだげでは制振効
果が期待できず、居住性が向」ニされなかった。
(Problem to be Solved by the Invention) However, simply increasing the cross section of the member cannot expect a vibration damping effect, and the livability has not been improved.

本発明はこのような実情に鑑みて提案されたもので、そ
の目的とする処と、簡単な構成て制振効果が得られ、居
住性が向上される構造物の制振方法を提供する点にある
The present invention has been proposed in view of the above circumstances, and its purpose is to provide a vibration damping method for structures that can obtain vibration damping effects with a simple configuration and improve livability. It is in.

(課題を解決するだめの手段) 風力、風向等の時間的変化により構造物の固有周Qと一
致した振動が励起されるのは、第11図に示すように、
風全体のパワーからのると僅かなパワーである固有振動
成分が徐々に蓄積され、構造物の固有振動数による共振
を生起するごとに起因するのであるから、構造物の固有
振動数と一致した振動を励起させないためには、第11
図における外力(風力)Pに見合った力を外力Pと反対
方向にかけて相殺すればよい。
(Means to Solve the Problem) As shown in Figure 11, vibrations that match the natural circumference Q of a structure are excited due to temporal changes in wind force, wind direction, etc.
The natural vibration component, which is a small amount of power compared to the overall power of the wind, gradually accumulates and is caused each time resonance occurs due to the natural frequency of the structure, so the natural frequency of the structure matches the natural frequency of the structure. In order not to excite vibration, the 11th
It is sufficient to apply a force commensurate with the external force (wind force) P in the figure in the opposite direction to the external force P to cancel it out.

第12図はこの状態を示し、外力かP、相殺力がτて、
同相殺力τを働かせない場合の変形を実線で示し、前記
相殺力を働かせた場合の変形を破線で示す。
Figure 12 shows this state, where the external force is P, the countervailing force is τ,
The deformation when the countervailing force τ is not applied is shown by a solid line, and the deformation when the countervailing force is applied is shown by a broken line.

地震力の場合についても同様なことがいえる。The same can be said for seismic forces.

即ち第13図に示すように、地震力による変形に対し、
同変形を抑える方向に相殺力τを働かせることによって
、この相殺力を働かせない実線で示した場合に比して、
揺れば破線に示したように急速に小さくなる。
In other words, as shown in Figure 13, against deformation due to earthquake force,
By applying the countervailing force τ in the direction of suppressing the same deformation, compared to the case shown by the solid line in which this countervailing force is not applied,
If it shakes, it will rapidly become smaller as shown by the broken line.

前記の目的を達成するため、本発明に係る構造物の制振
方法はこのような事実に基いて提案されたもので、構造
物内において、X方向の外力に対応して1対の偏心質量
を回転させろ起振機と、X方向の外力に対応して1対の
偏心質量を回転させる起振機とを設置し、同各起振機に
構造物の固有振動数と一致ずろ回転力を与え、発生ずる
遠心力を利用して、外力を相殺する方向の力を生起せし
めて構造物の外力による振動を制御することを特徴とす
るものである。
In order to achieve the above object, the vibration damping method for a structure according to the present invention has been proposed based on the above facts, and within the structure, a pair of eccentric masses are A vibration exciter that rotates the structure and a vibration exciter that rotates a pair of eccentric masses in response to an external force in the It is characterized by controlling the vibration of the structure due to the external force by using the centrifugal force that is applied and generated to generate a force in a direction that cancels out the external force.

(作用) 本発明によれば、構造物内に設置された、X方向あるい
ばX方向の外力に対応して偏心質量を回転させる起振機
に、構造物の固有振動数と一致する回転力を)了−え、
遠心力を生起せしめることにより外力を相殺する方向の
力を生起せしめ、構造物の固有振動数と一致した振動を
励起させないようにするものである。
(Function) According to the present invention, a vibration exciter installed in a structure that rotates an eccentric mass in response to an external force in the X direction or in the power),
By generating centrifugal force, a force is generated in a direction that cancels out the external force, thereby preventing vibrations that match the natural frequency of the structure from being excited.

(実施例) 以下本発明を1示の実施例について説明する。(Example) The present invention will be described below with reference to one embodiment.

構造物(Δ)の最」二階、若しくはその近くの階を含む
1個所または複数個所、例えば機械室フロア」二の水平
2点に偏心質量θ0)が設置される。
An eccentric mass θ0) is installed at one or more locations including the second-most floor of the structure (Δ) or a floor near it, for example, at two horizontal points on the machine room floor.

同各偏心質量(10)は、質量m(It)及び同質量(
11)の回転軸02)並に両者を連結するアームα3)
より構成され、同アームθ3)は可変長Tとされていて
、前記回転軸02)をモーターによって駆動し、前記各
偏心質1Qo)に構造物の固有振動と一致した回転力を
与えるとともに、互いに逆方向に回転せしめて遠心力を
生起せしめ、外力を相殺する方向の力を発生させる。
Each of the eccentric masses (10) is composed of the mass m (It) and the same mass (
11) rotation axis 02) and the arm α3) that connects both.
The arm θ3) has a variable length T, drives the rotating shaft 02) by a motor, applies a rotational force to each of the eccentrics 1Qo) that matches the natural vibration of the structure, and rotates each other. Rotating in the opposite direction generates centrifugal force, which generates a force that offsets the external force.

第1図はX方向の相殺力を発生させる場合を示し、第2
図はX方向の相殺力を発生させる場合の動きを示す。
Figure 1 shows the case where a countervailing force is generated in the X direction, and the second
The figure shows the movement when generating a countervailing force in the X direction.

前記質量(1)が円振動数w=2πr(f:振動数)で
回転しているときに生じる遠心力Fは次の(1)式%式
% −に式より明らかなように、外力の大きさGこ合わせて
発生ずる遠心力Fを制御できるように、γを可変長とす
る。
The centrifugal force F generated when the mass (1) rotates at a circular frequency w = 2πr (f: frequency) is expressed by the external force as shown in the following equation (1). γ is made to have a variable length so that the centrifugal force F generated by the magnitude G can be controlled.

而して第1図の場合、質量(11)が実線黒丸の位置に
くると、画質量(11)の遠心力Fは共にY方向を向き
、装置全体では2XFのY方向力となる。
In the case of FIG. 1, when the mass (11) comes to the position of the solid black circle, the centrifugal force F of the image mass (11) both points in the Y direction, and the entire apparatus becomes a Y direction force of 2XF.

この力と、外力Pの高さ方向の総和外力Sとを釣合わせ
る。
This force and the total external force S in the height direction of the external force P are balanced.

而して前記画質M (+ D O+)ば夫々逆方向に回
転し、遠心力の方向が徐々に変化し、1/4周期後には
破線の位置にくる。このとき前記画質量(l 1) (
l l)の遠心力は共に絶対値がFに等しく、X方向の
みの力となる。しかし向きが正反対であり、装置全体で
はX方向の力は0となる。
The image quality M (+D O+) rotates in opposite directions, and the direction of the centrifugal force gradually changes, reaching the position indicated by the broken line after 1/4 cycle. At this time, the image quality (l 1) (
Both of the centrifugal forces of l and l) have an absolute value equal to F, and are a force only in the X direction. However, the directions are exactly opposite, and the force in the X direction is zero for the entire device.

このように第1図においては、X方向の力は常に画質量
で相殺されて0となり、Y方向の力のみが交互に発生ず
ることになる。
In this manner, in FIG. 1, the force in the X direction is always canceled out by the image volume and becomes 0, and only the force in the Y direction is generated alternately.

同様に第2図に示す例ではX方向の力のみが交互に発生
するものである。
Similarly, in the example shown in FIG. 2, only forces in the X direction are generated alternately.

なお構造物に働く外力の向き、大きさのチエツクは、制
振装置の設置階に設置された加速度肝等のセンサーによ
って、構造物の動きから推定する。
The direction and magnitude of external forces acting on the structure are checked by estimating the movement of the structure using sensors such as an acceleration sensor installed on the floor where the vibration damping device is installed.

かくしてセンサーで検出されたデータ、及び質量(11
)の位置のデータは常にコンピュータに入力され、前記
アーム03)の長ざTのコントロール並に回転軸02)
の回転数の補正に適用される。この作業のフロー図を第
5図に示す。
Thus, the data detected by the sensor and the mass (11
) position data is always input into the computer, and the control of the length T of the arm 03) as well as the rotation axis 02)
Applied to the rotation speed correction. A flow diagram of this work is shown in FIG.

なお前記−双の偏心質量00)の装置は、構造物が略正
方形の平面の場合には、第3図及び第4図に示すように
」二下2段に配設しでもよい。
In addition, when the structure has a substantially square plane, the above-mentioned devices with the two eccentric masses 00) may be arranged in two lower stages as shown in FIGS. 3 and 4.

次に本方法の作用効果の一例を挙げる。Next, an example of the effects of this method will be given.

構造物の質量をM、 構造物の外力によって生しる増分加速度をα、起振機の
偏心質量をm、 起振機の回転半径(アーム長)をT、 起振機の円振動数をw=2πf (f:振動数) とすれば、 構造物に作用する外力と加速度との関係は次式1式% また偏心質量mがWなる円振動数で回転しているときの
起振機の最大起振力は次式(3)で表わされる。
The mass of the structure is M, the incremental acceleration caused by the external force of the structure is α, the eccentric mass of the exciter is m, the radius of rotation (arm length) of the exciter is T, the circular frequency of the exciter is If w = 2πf (f: frequency), then the relationship between the external force acting on the structure and the acceleration is expressed by the following equation 1% Also, when the eccentric mass m is rotating at a circular frequency of W, The maximum excitation force is expressed by the following equation (3).

F(起振力) −2Xm7w2=2×mT(2πf )
2−、(3) 構造物に作用する外力を前記起振機によって制御する、
即ち前掲(2)(3)式を釣合わせる。
F (excitation force) −2Xm7w2=2×mT (2πf)
2-, (3) controlling the external force acting on the structure by the exciter;
That is, equations (2) and (3) above are balanced.

F(外力)−F(起振力) M・α−2×4π2γf2 故に構造物の質NMに対する起振機の質Mmば次式(4
)で与えられる。
F (external force) - F (excitation force) M・α-2×4π2γf2 Therefore, the quality of the exciter Mm with respect to the quality of the structure NM is expressed by the following equation (4
) is given by

M −α/2×4π2 r f2、、〜(4)ここでα
−1,0Gan T = 21′=20cI′ f =0.5112 (周期も= 25ec)とすれば
、 m −10/2×4π2 X200  Xo、52= 1 /395(4)式は外
力のαに応して、7.f、mのうち2つを決めれば一つ
か求まる。) (発明の効果) 本発明によればX方向及びY方向の外力に対応して夫々
偏心質量を回転する起振機を設置し、夫々に構造物の固
有振動数と一致する回転力を与え遠心力を生起せしめる
ことにより、外力を相殺する方向の力を生起せしめるこ
とによって、構造物の固有振動数と一致した振動を励起
させることのないようにし、超高層建築物やタワー等、
主として風に起因する不快感を伴なう揺れを抑え、居住
性の向」二を図ることができ、従来のように部材断面を
徒らに大きくする必要がないので経済的にも有利である
M −α/2×4π2 r f2,, ~(4) where α
-1,0Gan T = 21' = 20cI' f = 0.5112 (period = 25ec), then m -10/2 x 4π2 X200 Xo, 52 = 1 /395 Equation (4) is Accordingly, 7. If two of f and m are determined, one can be found. ) (Effects of the Invention) According to the present invention, an exciter that rotates an eccentric mass in response to an external force in the X direction and in the Y direction is installed, and a rotating force that matches the natural frequency of the structure is applied to each exciter. By generating centrifugal force, a force is generated in a direction that cancels out the external force, so that vibrations that match the natural frequency of the structure are not excited, and the
It is possible to suppress the unpleasant shaking mainly caused by the wind, and improve livability, and it is also economically advantageous because there is no need to make the cross section of the member unnecessarily large as in the past. .

また本発明は風のみならず、地震に対する振動について
も制御できる。
Furthermore, the present invention can control not only wind vibrations but also vibrations caused by earthquakes.

更にまた本発明の方法に使用される振動制御装置は構造
物の計画段階から採用することも、また構造物の完成後
に設置することもてきる。
Furthermore, the vibration control device used in the method of the present invention can be employed from the planning stage of the structure or can be installed after the structure is completed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は夫々本発明に係る高層構造物の制振
方法の一実施例の実施状況を示す平面図、第3図及び第
4図は夫々本発明の方法の他の実施例の実施状況を示す
正面図並に平面図、第5図は本発明の方法の操作フロー
図、第6図は起振機の設置例を示す縦断面図、第7図は
風による構造物の一般の変形を示す説明図、第8図は第
7図の変形に振動による変形が加わった場合を示す説明
図、第9図は第8図の時間、変形曲線、第10図は風外
力の振動数・パワースペクトル図、第11図は風外力に
よる変形の増幅を示す図表、第12図は風外力に相殺力
を働かせた場合の変形を示す図表、第13図は地震力に
相殺力を働かせた場合の変形を示す図表である。 00)−−〜偏心質量   (I+)−質量02)−一
回転軸    θ3)−アーム代理人 弁理士 岡 本
 重 文 外2名 ピンの
FIGS. 1 and 2 are plan views showing the implementation status of one embodiment of the vibration damping method for high-rise structures according to the present invention, and FIGS. 3 and 4 are respectively other embodiments of the method of the present invention. Fig. 5 is an operation flow diagram of the method of the present invention, Fig. 6 is a vertical sectional view showing an example of installing an exciter, and Fig. 7 is a front view and a plan view showing the implementation status of the method. An explanatory diagram showing general deformation, Figure 8 is an explanatory diagram showing the case where vibration-induced deformation is added to the deformation in Figure 7, Figure 9 is the time and deformation curve of Figure 8, and Figure 10 is an explanatory diagram of the external wind force. Frequency/power spectrum diagram. Figure 11 is a diagram showing the amplification of deformation due to external wind force. Figure 12 is a diagram showing deformation when a countervailing force is applied to the external wind force. Figure 13 is a diagram showing the deformation when a countervailing force is applied to the external wind force. It is a chart showing deformation when working. 00) - Eccentric mass (I+) - Mass 02) - Axis of one rotation θ3) - Arm agent Patent attorney Shige Okamoto 2 other people pin

Claims (1)

【特許請求の範囲】[Claims] (1)構造物内において、X方向の外力に対応して1対
の偏心質量を回転させる起振機と、Y方向の外力に対応
して1対の偏心質量を回転させる起振機とを設置し、同
各起振機に構造物の固有振動数と一致する回転力を与え
、発生する遠心力を利用して、外力を相殺する方向の力
を生起せしめて構造物の外力による振動を制御すること
を特徴とする高層構造物の制振方法。
(1) Inside the structure, a vibration exciter that rotates a pair of eccentric masses in response to an external force in the X direction, and a vibration exciter that rotates a pair of eccentric masses in response to an external force in the Y direction. The system applies rotational force that matches the natural frequency of the structure to each exciter, and uses the generated centrifugal force to generate a force that cancels out the external force, thereby suppressing vibrations caused by the external force of the structure. A vibration damping method for a high-rise structure characterized by controlling the vibration.
JP63244514A 1988-09-30 1988-09-30 Vibration controlling of high-rise construction Pending JPH0296064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63244514A JPH0296064A (en) 1988-09-30 1988-09-30 Vibration controlling of high-rise construction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63244514A JPH0296064A (en) 1988-09-30 1988-09-30 Vibration controlling of high-rise construction

Publications (1)

Publication Number Publication Date
JPH0296064A true JPH0296064A (en) 1990-04-06

Family

ID=17119811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63244514A Pending JPH0296064A (en) 1988-09-30 1988-09-30 Vibration controlling of high-rise construction

Country Status (1)

Country Link
JP (1) JPH0296064A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02285177A (en) * 1989-04-26 1990-11-22 Shimizu Corp Vibration controlling method and vibration controller tower-like construction
US5345834A (en) * 1991-01-08 1994-09-13 Kabushiki Kaisha Sankyo Seiki Seisakusho Velocity-reduced drive system
DE102006059189A1 (en) * 2006-12-15 2008-06-19 Tutech Innovation Gmbh Device for vibration control of a construction
JP2010052908A (en) * 2008-08-29 2010-03-11 Hitachi Ltd Elevator vibration damping device and elevator using the same
DE102011109070A1 (en) 2011-07-30 2013-01-31 Tutech Innovation Gmbh Device and set of devices for controlling mechanical vibrations
WO2015126073A1 (en) * 2014-02-24 2015-08-27 곽병만 Vibration generator using phase difference for amplitude control and method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63293283A (en) * 1987-05-23 1988-11-30 株式会社 九段建築研究所 Vibration generating and dampening apparatus of high construction

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63293283A (en) * 1987-05-23 1988-11-30 株式会社 九段建築研究所 Vibration generating and dampening apparatus of high construction

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02285177A (en) * 1989-04-26 1990-11-22 Shimizu Corp Vibration controlling method and vibration controller tower-like construction
US5345834A (en) * 1991-01-08 1994-09-13 Kabushiki Kaisha Sankyo Seiki Seisakusho Velocity-reduced drive system
DE102006059189A1 (en) * 2006-12-15 2008-06-19 Tutech Innovation Gmbh Device for vibration control of a construction
WO2008071428A1 (en) 2006-12-15 2008-06-19 Soletanche Freyssinet Device for vibration control of a structure
DE102006059189B4 (en) * 2006-12-15 2008-08-14 Tutech Innovation Gmbh Device for vibration control of a construction
US9169894B2 (en) 2006-12-15 2015-10-27 Soletanche Freyssinet Device for vibration control of a structure
JP2010052908A (en) * 2008-08-29 2010-03-11 Hitachi Ltd Elevator vibration damping device and elevator using the same
DE102011109070A1 (en) 2011-07-30 2013-01-31 Tutech Innovation Gmbh Device and set of devices for controlling mechanical vibrations
WO2013017244A2 (en) 2011-07-30 2013-02-07 Tutech Innovation Gmbh Device and set of devices for monitoring mechanical oscillations
DE102011109070B4 (en) * 2011-07-30 2016-05-12 Tutech Innovation Gmbh Device and set of devices for controlling mechanical vibrations
WO2015126073A1 (en) * 2014-02-24 2015-08-27 곽병만 Vibration generator using phase difference for amplitude control and method thereof

Similar Documents

Publication Publication Date Title
JP2008101769A (en) Vibration reducing mechanism and its specification setting method
JPH0296064A (en) Vibration controlling of high-rise construction
US5347772A (en) Vibration suppressing structure
JP4936175B2 (en) Vibration reduction mechanism and specification method thereof
JP5725331B2 (en) Beam vibration reduction mechanism
JP5574592B2 (en) Active mass damper, vibration control method for demolished building, and demolished method for demolished building
JP4936174B2 (en) Excitation reaction force reduction mechanism and setting method thereof
JPS59161566A (en) Vibration control apparatus
JP6830251B2 (en) Vibration damping device
JPH01244001A (en) Vibration control method and its device of high-rise building
JP2009155801A (en) Vibration control structure
JP3483535B2 (en) Damping structure
JP2665088B2 (en) Damping device
JPH0131714Y2 (en)
JP5116603B2 (en) Vibration control method for demolished buildings
JP2553181Y2 (en) Pendulum damping device
JP3154597B2 (en) Active vibration suppression device using unbalanced shaker
JP6456774B2 (en) Vibration control structure
JP3429912B2 (en) Damping device
JP2680518B2 (en) Wind-resistant damping structure of cable-stayed bridge
JPH05187151A (en) Vibration control device
JPH086501B2 (en) Vibration control method for structures
JP2553180Y2 (en) Inverted pendulum type vibration damping device
JP2003139191A (en) Vibration prevention device
JPS62197574A (en) Rotary damper for earthquake damping system