JPH029444A - Catalytic body for exhaust gas purification - Google Patents

Catalytic body for exhaust gas purification

Info

Publication number
JPH029444A
JPH029444A JP63159982A JP15998288A JPH029444A JP H029444 A JPH029444 A JP H029444A JP 63159982 A JP63159982 A JP 63159982A JP 15998288 A JP15998288 A JP 15998288A JP H029444 A JPH029444 A JP H029444A
Authority
JP
Japan
Prior art keywords
exhaust gas
temperature
catalyst
ceramic
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63159982A
Other languages
Japanese (ja)
Inventor
Kazuo Yamashita
山下 和夫
Kenji Tabata
研二 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63159982A priority Critical patent/JPH029444A/en
Priority to AU38415/89A priority patent/AU3841589A/en
Priority to PCT/JP1989/000631 priority patent/WO1990000088A1/en
Publication of JPH029444A publication Critical patent/JPH029444A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To increase the purification efficiency of an exhaust gas at a low temperature by using a semi-conductor ceramic capable of self-temperature control as a carrier with a catalyst for exhaust gas purification to be borne by the carrier, and energizing the ceramic in a catalytic body for purifying the exhaust gas from a combustion device. CONSTITUTION:A semi-conductor ceramic with a structural formula such as expressed by formula 1 (A is alkaline earth metal such as Ca or Sr; x is 0.7<=x<=1; alpha is 3<alpha<70(mol%)) has a self-temperature control function. Then, catalysts consisting of platinum elements, transition elements or perovskite composite oxide are carried on the wall surface of a honeycomb of the semi-conductor ceramic. If a voltage is applied to the ceramic through an electrode, the whole honeycomb becomes heated uniformly and the catalyst demonstrates a purification performance. If an exhaust gas at a low temperature is allowed to flow in, the power increases to maintain the surface temperature at a fixed level, so that adequate purification efficiency is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は家庭用燃焼器(含調理器)、各種工業炉等の燃
焼装置より排出される排ガスを浄化する触媒体に関する
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a catalyst body for purifying exhaust gas discharged from combustion devices such as household combustors (including cooking appliances) and various industrial furnaces.

従来の技術 近年、各種の燃焼機器により排出される排気ガスのクリ
ーン化の要望が強い、この要望を満たすために、各燃焼
機器に排ガス浄化装置が取付けられるようになってきた
。この排ガス浄化装置には−mに触媒が取付けられるが
、この触媒の排ガス浄化性能は第3図に示すように温度
に依存し、ある温度以上にならないとその性能は充分に
発揮されない。すなわち、第3図はグリル用触媒の温度
に対するGo(濃度1%)のCOを変化率を示したもの
であり、実用的には触媒の温度が300℃以上であるこ
とが好ましいことがわかる。
BACKGROUND OF THE INVENTION In recent years, there has been a strong demand for cleaner exhaust gas emitted by various types of combustion equipment.In order to meet this demand, exhaust gas purification devices have been installed in each type of combustion equipment. A catalyst is attached to this exhaust gas purification device at -m, but the exhaust gas purification performance of this catalyst depends on the temperature as shown in FIG. 3, and its performance is not fully exhibited unless the temperature exceeds a certain temperature. That is, FIG. 3 shows the rate of change in CO of Go (concentration 1%) with respect to the temperature of the grill catalyst, and it can be seen that it is practically preferable that the temperature of the catalyst is 300° C. or higher.

前述のごとく触媒の温度が高いことが好ましい。As mentioned above, it is preferable that the temperature of the catalyst is high.

したがって、燃焼機器の排ガスの温度が高く、かつ燃焼
部に近い所に触媒装置を設置することができる場合は問
題がないが、燃焼器の燃焼温度が低い場合、または装置
の構成上触媒装置を熱源の近くに設置できない場合があ
る。このような場合は排ガスの温度が低く触媒により充
分にクリーン化することができない。したがって排ガス
の温度が低い場合は、排ガスを再加熱したり、触媒を加
熱したすする方法がとられてきた。
Therefore, there is no problem if the exhaust gas temperature of the combustion equipment is high and the catalyst device can be installed close to the combustion part, but if the combustion temperature of the combustor is low or the catalyst device is It may not be possible to install it near a heat source. In such a case, the temperature of the exhaust gas is so low that it cannot be sufficiently cleaned by the catalyst. Therefore, when the temperature of the exhaust gas is low, methods have been used to reheat the exhaust gas or heat the catalyst for sipping.

発明が解決しようとする課題 前記説明のように、排ガスの温度が低い場合、排ガスの
浄化効率をあげるため、排ガスの温度を再加熱により温
めるか、触媒の温度を加熱するかの手段が必要であった
。前者は再加熱するためのかなりの大きな空間が必要で
あり、かつ排ガス全体を必要温度以上にあげるのは困難
であった。また、後者は実用的にはセラミックスからな
るハニカム担体に触媒を担持させているが、このハニカ
ム担体にヒータをあてがい加熱してもハニカム担体全体
が−様な温度にならず、相当大きな温度差を住するため
、効率よく排ガスを浄化することができなかった。この
ため必要以上の能力のヒータを広面積にわたって設置せ
ねばならず、触媒装置が必要以上に大きくなってしまう
という課題があった・ 本発明は上記課題を解決し、容易に均一に触媒が加熱さ
れる排ガス浄化用触媒体を堤供するものである。
Problems to be Solved by the Invention As explained above, when the temperature of the exhaust gas is low, in order to increase the purification efficiency of the exhaust gas, it is necessary to increase the temperature of the exhaust gas by reheating or to increase the temperature of the catalyst. there were. The former requires a fairly large space for reheating, and it is difficult to raise the entire exhaust gas above the required temperature. In addition, in the latter case, the catalyst is practically supported on a honeycomb carrier made of ceramics, but even if the honeycomb carrier is heated by applying a heater, the entire honeycomb carrier does not reach a certain temperature, and there is a considerable temperature difference. Because they live there, it was not possible to efficiently purify exhaust gas. For this reason, there was a problem that a heater with a capacity higher than necessary had to be installed over a wide area, and the catalyst device became larger than necessary.The present invention solves the above problem and easily and uniformly heats the catalyst. The present invention provides a catalyst body for purifying exhaust gas.

課題を解決するための手段 上記課題を解決するため、本発明の排ガス浄化用触媒体
は、自己温度制御をする半導体セラミックを担体とし1
.これに排ガスを浄化する触媒を担持させたものである
Means for Solving the Problems In order to solve the above problems, the catalyst body for exhaust gas purification of the present invention uses a semiconductor ceramic as a carrier that controls its own temperature.
.. This supports a catalyst that purifies exhaust gas.

作用 自己温度制御半導体セラミックは第2図に示すように温
度上昇に伴い抵抗が増加する。特にある温度Tc (キ
ュリー温度)以上になると抵抗は急激に増加する。した
がって担体の一部が温度上昇し、その部分の温度が高く
なると、この部分の抵抗が増大し通電量が減少する。そ
の結果、この部分の温度が低下し周囲の温度と同一温度
になる。
As shown in FIG. 2, the resistance of the self-temperature-controlled semiconductor ceramic increases as the temperature rises. In particular, when the temperature exceeds a certain temperature Tc (Curie temperature), the resistance increases rapidly. Therefore, when the temperature of a part of the carrier increases, the resistance of this part increases and the amount of current flowing decreases. As a result, the temperature of this area decreases to the same temperature as the surrounding area.

逆に、抵抗の急変温度すなわちキュリー温度Tc以下に
なると通電量が増加し温度が上昇する。このようにして
、自己温度制御半導体セラミックは常に全体が一定の温
度になるように動作する。したがって、触媒が効率よく
排ガスを浄化する温度とTcとが一致するように自己温
度制御セラミックを設計すると排ガスが流通する部分の
温度は担持体全体にわたって一定温度を保持する。
Conversely, when the resistance suddenly changes temperature, that is, becomes lower than the Curie temperature Tc, the amount of energization increases and the temperature rises. In this way, the self-temperature-controlled semiconductor ceramic always operates at a constant temperature throughout. Therefore, if a self-temperature control ceramic is designed so that Tc matches the temperature at which the catalyst efficiently purifies exhaust gas, the temperature of the portion through which exhaust gas flows will be maintained at a constant temperature throughout the support.

実施例 以下、本発明の一実施例について図面を参照して説明す
る。第1図(a)は本発明の触媒体lを、第1図(b)
は(a)の断面の一部を示す0本発明の特徴は前述のご
とく触媒体1を構成するセラミックに自己温度制御を有
する半導体セラミックを用いた点にある。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings. FIG. 1(a) shows the catalyst body l of the present invention, and FIG. 1(b) shows the catalyst body l of the present invention.
1 shows a part of the cross section of (a) 0 The feature of the present invention is that, as described above, the ceramic constituting the catalyst body 1 is a semiconductor ceramic having self-temperature control.

以下、各要素毎に説明する。触媒体lを構成する自己温
度制御半導体セラミックとして、チタン酸鉛−酸化チタ
ン(P b T i O+ −T i Oり系複合セラ
ミックがある。このセラミンクはチタン酸ナマリ (P
 b T t 03 )のキュリー温度Tc490℃で
自己温度制御を行う。鉛(Pb)の−部をストロンチウ
ム(Sr)またはカルシウム(Ca)で置換することに
よりTcを低下することができる。実用的にはPbの約
30%をSrまたはCaで置換したTc約300℃から
前記490℃までが適当である。Tie、の添加量を変
えることにより自己温度制御半導体セラミックの抵抗を
変えることができる。実用的にはTiQtの量はPbT
i0.に対して3〜70mo 1 %カ適当である。3
mo1%以下になると抵抗が増大し所定の温度に上げに
くい、また70mo1%以上になると自己制御特性が損
なわれてくる。したがって、自己温度制御半導体セラミ
ックスとして次の構造式を有するものが適当である。
Each element will be explained below. As a self-temperature-controlling semiconductor ceramic that constitutes the catalyst body l, there is a lead titanate-titanium oxide (P b Ti O+ -T i O based composite ceramic).
Self-temperature control is performed at the Curie temperature Tc of 490°C (T t 03 ). Tc can be lowered by replacing the - part of lead (Pb) with strontium (Sr) or calcium (Ca). Practically, it is appropriate to use Tc in which about 30% of Pb is replaced with Sr or Ca from about 300°C to the above-mentioned 490°C. By changing the amount of Tie added, the resistance of the self-temperature-controlled semiconductor ceramic can be changed. Practically speaking, the amount of TiQt is PbT.
i0. 3 to 70 mo 1 % is appropriate. 3
If the mo amount is less than 1%, the resistance will increase and it will be difficult to raise the temperature to a predetermined temperature, and if the mo amount is more than 70 mo1%, the self-control characteristics will be impaired. Therefore, a material having the following structural formula is suitable as a self-temperature control semiconductor ceramic.

構造式 %式% A:Ca、Sr等のアルカリ土類金属 x:Q、7≦x≦1 α:3〈α<70(mol%) 以下、自己温度制御半導体セラミックの具体的な作成例
を示す、酸化鉛(PbO)、酸化チタン(TiCh)、
炭酸ストロ7チウム(S r COs)を原料粉末とし
、組成比 (P bo、+ S r++、+)T i 03−3 
Q T i 02になるように配合した。なお、ドープ
剤として五酸化ニオブ(NbtOs)をチタン(Ti)
に対するニオブ(Nb)の置換量が0.2mo1%にな
るように加えた。前記配合粉末を600℃、3時間仮焼
した後成型し、1050℃で2時間アルゴン雰囲気中で
焼結し、ハニカム状の焼結体を得た。
Structural formula % Formula % A: Alkaline earth metal such as Ca, Sr, etc. Lead oxide (PbO), titanium oxide (TiCh),
Strotium carbonate (S r COs) is used as a raw material powder, and the composition ratio (P bo, + S r++, +) Ti 03-3
It was blended so that Q T i 02. Note that niobium pentoxide (NbtOs) is used as a doping agent for titanium (Ti).
Niobium (Nb) was added so that the amount of substitution was 0.2 mo1%. The blended powder was calcined at 600° C. for 3 hours, then molded, and sintered at 1050° C. for 2 hours in an argon atmosphere to obtain a honeycomb-shaped sintered body.

この焼結体のTcは400℃であった。The Tc of this sintered body was 400°C.

前記のごとくして得られたハニカム状の焼結体の中空部
分が排ガスの流通部分である。このハニカムの壁面に触
媒3を担持させる。触媒3としては白金、パラジウム、
ルテニウム、ロジウム等の白金属元素、またはニッケル
、コバルト、銅、クロム等の遷移元素、あるいはランタ
ン・セリウム・コバルトを有するペロブスカイト複合酸
化物等からなる触媒を用いる。触媒3の担持方法として
は前記触媒3を隼独に担持してもよいが、前記触媒3を
一旦T−アルミナ等のセラミックス粉末に担持させた後
、前記セラミック粉末をハニカム壁面に担持させると比
表面積の大きな触媒体1を得ることができる。この後、
前記ハニカムの上下面に下地にニッケル、上地に銀より
なる薄膜設け、電極4とした。このようにして触媒体1
を得た。
The hollow part of the honeycomb-shaped sintered body obtained as described above is the part through which exhaust gas flows. A catalyst 3 is supported on the wall surface of this honeycomb. As the catalyst 3, platinum, palladium,
A catalyst made of a white metal element such as ruthenium or rhodium, a transition element such as nickel, cobalt, copper, or chromium, or a perovskite composite oxide containing lanthanum, cerium, and cobalt is used. As a method of supporting the catalyst 3, it is possible to support the catalyst 3 in a single layer, but if the catalyst 3 is first supported on a ceramic powder such as T-alumina, and then the ceramic powder is supported on the honeycomb wall surface, the catalyst 3 may be supported on a honeycomb wall. A catalyst body 1 with a large surface area can be obtained. After this,
Thin films made of nickel as the base and silver as the top were provided on the upper and lower surfaces of the honeycomb to form electrodes 4. In this way, the catalyst body 1
I got it.

前記触媒体1を燃焼機器に取り付は電圧を印加すると、
自己温度制御半導体プラスチックは容易に全体が均一に
発熱し、触媒がその機能を充分に発生することができる
温度に短時間で到達した。
When the catalyst body 1 is attached to a combustion device and a voltage is applied,
The self-temperature-controlled semiconductor plastic easily and uniformly generated heat throughout the entire body, and the temperature at which the catalyst can fully perform its function was reached in a short time.

低温の排ガスが流入しても、通電量がアップ(出力アッ
プ)し、触媒体1の表面温度は一定に保たれたま−であ
った。以上のごとく排ガスの温度が低くても充分に浄化
クリーンなガスとすることができた。
Even when low-temperature exhaust gas flowed in, the amount of electricity was increased (output increased) and the surface temperature of the catalyst body 1 remained constant. As described above, even if the temperature of the exhaust gas was low, the gas could be sufficiently purified and clean.

発明の効果 以上のように本発明の触媒体によれば次の効果が得られ
る。
Effects of the Invention As described above, the catalyst of the present invention provides the following effects.

すなわち、本発明の触媒体は電圧印加により容易にハニ
カム全体を均一な高温にすることができるため、たとえ
燃焼機器の排ガスが低温であっても充分に排ガスを浄化
しクリーンなガスとすることができる。また本発明の触
媒体は自己温度制御性を有する半導体セラミックからな
っているため、温度制御装置を必要としない。
In other words, the catalyst body of the present invention can easily raise the entire honeycomb to a uniform high temperature by applying voltage, so even if the exhaust gas from combustion equipment is at a low temperature, it can sufficiently purify the exhaust gas and make it a clean gas. can. Furthermore, since the catalyst body of the present invention is made of a semiconductor ceramic that has self-temperature control properties, it does not require a temperature control device.

したがって本発明の触媒体を用いれば、低温の排ガスを
加熱するための空間や、ハニカムに取り付けるためのヒ
ータを必要としないため、装置を小形化することができ
る。
Therefore, if the catalyst body of the present invention is used, there is no need for a space for heating low-temperature exhaust gas or a heater to be attached to the honeycomb, so the device can be downsized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の一実施例の触媒体の外観斜視図
、第1図(b)は同図(a)に示す触媒体の部分断面図
、第2図は自己温度制御を有する半導体セラミ、りの温
度−抵抗特性を示す特性図、第3図は温度に対する触媒
の活性度合を示す特性図である。 1・・・・・・触媒体、2・・・・・・自己温度制御を
有する半導体セラミック、3・・・・・・触媒。 代理人の氏名 弁理士 中尾敏男 はか1名第 2 図 セラミック ;X  叉 (°C)
FIG. 1(a) is an external perspective view of a catalyst body according to an embodiment of the present invention, FIG. 1(b) is a partial sectional view of the catalyst body shown in FIG. 1(a), and FIG. 2 is a self-temperature control FIG. 3 is a characteristic diagram showing the temperature-resistance characteristics of the semiconductor ceramic, and FIG. 3 is a characteristic diagram showing the degree of activity of the catalyst with respect to temperature. 1... Catalyst body, 2... Semiconductor ceramic having self-temperature control, 3... Catalyst. Name of agent: Patent attorney Toshio Nakao (1 person) Figure 2 Ceramic; X fork (°C)

Claims (1)

【特許請求の範囲】 1)自己温度制御を有する半導体セラミックを担体とし
、これに排ガスを浄化する触媒を担持させた排ガス浄化
用触媒体。 (2)自己温度制御を有する半導体セラミックの構造式
が (Pb_xA_1_−_x)TiO_3−αTiO_2
A:Ca、Sr等のアルカリ土類金属 x:0.7≦x≦1 α:3<α<70(mol%) である請求項1記載の排ガス浄化用触媒体。
[Scope of Claims] 1) A catalyst body for exhaust gas purification, in which a semiconductor ceramic having self-temperature control is used as a carrier, and a catalyst for purifying exhaust gas is supported on the carrier. (2) The structural formula of the semiconductor ceramic with self-temperature control is (Pb_xA_1_-_x)TiO_3-αTiO_2
A: Alkaline earth metal such as Ca or Sr x: 0.7≦x≦1 α: 3<α<70 (mol%) The catalyst body for exhaust gas purification according to claim 1.
JP63159982A 1988-06-28 1988-06-28 Catalytic body for exhaust gas purification Pending JPH029444A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63159982A JPH029444A (en) 1988-06-28 1988-06-28 Catalytic body for exhaust gas purification
AU38415/89A AU3841589A (en) 1988-06-28 1989-06-26 Catalytic assembly for use in cleaning exhaust gas
PCT/JP1989/000631 WO1990000088A1 (en) 1988-06-28 1989-06-26 Catalytic assembly for use in cleaning exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63159982A JPH029444A (en) 1988-06-28 1988-06-28 Catalytic body for exhaust gas purification

Publications (1)

Publication Number Publication Date
JPH029444A true JPH029444A (en) 1990-01-12

Family

ID=15705417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63159982A Pending JPH029444A (en) 1988-06-28 1988-06-28 Catalytic body for exhaust gas purification

Country Status (1)

Country Link
JP (1) JPH029444A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202015009039U1 (en) 2014-11-18 2016-07-25 Unilever N.V. Low pH composition comprising special preservative systems
DE202015009054U1 (en) 2014-11-18 2016-08-05 Unilever N.V. A composition comprising salt of acyl glutamate as a primary surfactant or primary anionic surfactant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202015009039U1 (en) 2014-11-18 2016-07-25 Unilever N.V. Low pH composition comprising special preservative systems
DE202015009054U1 (en) 2014-11-18 2016-08-05 Unilever N.V. A composition comprising salt of acyl glutamate as a primary surfactant or primary anionic surfactant

Similar Documents

Publication Publication Date Title
US4485191A (en) Catalysts for converting reductive and oxidative gases in exhaust gases into innoxious gases
JPH06213512A (en) Fluid heater and its preparation
JP2818051B2 (en) Air purifier also serves as a heater
JPH08141408A (en) Catalyst carrier with resistance regulation type heater for purification of exhaust gas and production
JPH029444A (en) Catalytic body for exhaust gas purification
KR20110033375A (en) Heater integrated catalyst reactor, manufacturing method thereof, and air cleaner having heating function using the same
JPH05115796A (en) Waste gas purifying apparatus
JPH029450A (en) Catalytic body for exhaust gas purification
KR970021025A (en) Piezoceramic and its manufacturing method
WO1990000088A1 (en) Catalytic assembly for use in cleaning exhaust gas
JPH029449A (en) Catalyst for cleaning exhaust gas
JPS6133232A (en) Oxidation catalyst for catalytic combustion
CN209819762U (en) Air purifier
JPS6349216A (en) Filter for purifying exhaust gas
JPS60175547A (en) Catalytic combustion device
JPH0557024B2 (en)
JPH01317540A (en) Oxidizing catalyst
JPS60202742A (en) Oxidation catalyst for catalytic combustion
JPH0464736B2 (en)
JPS6182843A (en) Catalytic body for purifying waste gas
JPS60235639A (en) Oxidation catalyst for catalytic combustion
JP2002346387A (en) Exhaust gas cleaning catalyst
JP2743641B2 (en) Catalyst purification device
JPH0749024A (en) Heating method by electromagnetic wave and electromagnetic wave absorbing heating body
JP2001205092A (en) Composite catalyst for clarification of exhaust gas