JPH0291840A - Magneto-optical detector - Google Patents

Magneto-optical detector

Info

Publication number
JPH0291840A
JPH0291840A JP24104988A JP24104988A JPH0291840A JP H0291840 A JPH0291840 A JP H0291840A JP 24104988 A JP24104988 A JP 24104988A JP 24104988 A JP24104988 A JP 24104988A JP H0291840 A JPH0291840 A JP H0291840A
Authority
JP
Japan
Prior art keywords
output
magneto
magnetic disk
optical
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24104988A
Other languages
Japanese (ja)
Inventor
Shigehiko Fujimaki
成彦 藤巻
Katsuo Abe
勝男 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24104988A priority Critical patent/JPH0291840A/en
Publication of JPH0291840A publication Critical patent/JPH0291840A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/012Recording on, or reproducing or erasing from, magnetic disks
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B33/00Constructional parts, details or accessories not provided for in the other groups of this subclass
    • G11B33/10Indicating arrangements; Warning arrangements

Abstract

PURPOSE:To eliminate the influence of the output variation of a light source and to emphasize a changing quantity of signals caused by a Kerr effect without making an optical system more complicated in a magnetic disk evaluating device utilizing the Kerr effect by differentiating the output of a photodetector to evaluate the output. CONSTITUTION:A magnetic disk 5 upon which a magnetic field is impressed by means of a magnetic field generating device 13 is irradiated with a required polarized laser beam through a polarizer 3 and reflected light receiving a Kerr effect is made incident on a photodetector 9. The output of the photodetector 9 is processed by means of a differentiator 12 after passing through an amplifier 12 and becomes an output which is suppressed in noise caused by the slow variation of a light source and emphasized in the Kerr effect. The output of the differentiator 12 is supplied to an oscilloscope 14 and host computer 15 which evaluate a magnetic disk. Therefore, evaluation of a magnetic disk can be performed with high accuracy and high S/N without making an optical system more complicated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁性膜の磁気特性評価装置に係わり特に光と
磁気の相互作用である光磁気効果(カー効果)を応用し
て、磁気ディスクの磁気特性分布を、非接触、非破壊、
しかも迅速に測定するのに好適な光磁気検出装置に関す
る。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an apparatus for evaluating the magnetic properties of a magnetic film, and in particular applies the magneto-optical effect (Kerr effect), which is the interaction between light and magnetism, to evaluate magnetic disks. magnetic property distribution, non-contact, non-destructive,
Moreover, the present invention relates to a magneto-optical detection device suitable for rapid measurement.

〔従来の技術〕[Conventional technology]

光磁気効果(カー効果〕の検出手段は、従来から光磁気
ディスク装置の光磁気再生法として利用されている。光
磁気再生は、レーザと磁性媒体との光磁気相互作用によ
るレーザ光の偏光面の微小変位を検出することによりな
される。かかる微小変位の検出には、例えば、差動検出
法が、光源からのノイズを抑えた光磁気検出法としてよ
く用いられている。なお、この種の技術は、「磁気記録
技術」日本工業技術センター(昭s8) P、 662
〜P、665に記載がある。
Detection means for the magneto-optical effect (Kerr effect) have traditionally been used as a magneto-optical reproducing method for magneto-optical disk drives.Magneto-optical reproducing is based on the polarization plane of laser light due to magneto-optical interaction between a laser and a magnetic medium. This is done by detecting minute displacements.For the detection of such minute displacements, for example, the differential detection method is often used as a magneto-optical detection method that suppresses noise from the light source. The technology is "Magnetic Recording Technology" Japan Industrial Technology Center (S8) P, 662
~P, 665.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術の差動検出法では、光源に起因するノイズ
の影響を完全には避けられない欠点がある。これに加え
て、光磁気検出信号が極めて微弱である場合には、精度
よく磁気情報を検出する点で問題があった。
The conventional differential detection method described above has the drawback that it cannot completely avoid the influence of noise caused by the light source. In addition to this, when the magneto-optical detection signal is extremely weak, there is a problem in accurately detecting magnetic information.

光磁気再生法は、媒体を透過、或いは媒体表面で反射し
た光の偏光面の回転が、磁化の向きによりて異なるファ
ラデー効果、カー効果を利用する。
The magneto-optical reproduction method utilizes the Faraday effect and the Kerr effect, in which the rotation of the polarization plane of light transmitted through a medium or reflected on the surface of the medium differs depending on the direction of magnetization.

例えば、カー効果による磁気情報の検出を、第2図に示
す光読み出しの原理に従って説明する。
For example, detection of magnetic information using the Kerr effect will be explained according to the principle of optical readout shown in FIG.

同図において、Pは入射光の偏光方向、Aは検光子(ア
ナライザ)の偏光方向である。磁化の向きに対応した偏
光面の回転をθ鮨θ−9偏光面をi+−一とし、アナラ
イザの設定角を入射偏光方向と直交する位置(消光位置
)からφとする。膜の反射率をR1入射光強度をPoと
すれば、RPoがアナライザに入射する光強度となり、
&+、L−に対するアナライザ透過後の光強度1+、 
I−は、I th−RPo ghi” (φ±θ)(1
)となる、しかるに、φ−θとすれば、!−を0にでき
るので、アナライザ透過後の出力光の変化は、最大コン
トラストになると考えられる。しかし、実際にはI−は
0にはならない、その理由は、2つの偏光子の偏光方向
を直交させたときの出力光の入射光に対する場合、すな
わち消光比EがOにならないからである。実際の光学系
では、媒体や光学素子が間に入るので、消光比Eはさら
に悪化する。このため、光検出器の出力電流I+は、1
+−μaptpo Ighi” <φ+θ) + E 
1    (21となる。ここで、μは検出器感度、C
は増幅器の利得である。(2)式に示すように、E項に
よる出力は、θに関係せず光源に含まれる雑音を含むな
ど、雑音源となるので好ましくない。この為、従来、差
動検出法を用いて、このE項をキャンセルすることが行
われているが、(2)式のPoの代わりにその変動Δp
、を代入した分だけの雑音が残ってしまう。
In the figure, P is the polarization direction of the incident light, and A is the polarization direction of the analyzer. The rotation of the plane of polarization corresponding to the direction of magnetization is θ-9, and the plane of polarization is i+-1, and the set angle of the analyzer is φ from the position perpendicular to the incident polarization direction (extinction position). If the reflectance of the film is R1 and the incident light intensity is Po, then RPo is the light intensity incident on the analyzer,
&+, light intensity 1+ after passing through the analyzer for L-,
I- is I th-RPoghi” (φ±θ)(1
), but if φ−θ, then ! Since - can be set to 0, it is thought that the change in output light after passing through the analyzer will have the maximum contrast. However, in reality, I- does not become 0, because when the polarization directions of the two polarizers are orthogonal to each other, the extinction ratio E does not become 0 when the output light is relative to the incident light. In an actual optical system, the extinction ratio E is further deteriorated because a medium and an optical element are interposed. Therefore, the output current I+ of the photodetector is 1
+−μaptpo Ighi” <φ+θ) + E
1 (21, where μ is the detector sensitivity, C
is the gain of the amplifier. As shown in equation (2), the output due to the E term is undesirable because it includes noise included in the light source regardless of θ and becomes a noise source. For this reason, conventionally, a differential detection method has been used to cancel this E term, but instead of Po in equation (2), its variation Δp
, remains as much as the noise.

しかも、差動検出法では、光学系が複雑になるばかりで
なく、光学系、増幅器のアンバランスのために、E項を
完全に除去できないなど、精度のよい光磁気検出を行う
には問題がありた。
Moreover, the differential detection method not only requires a complicated optical system, but also has problems in achieving accurate magneto-optical detection, such as the inability to completely remove the E term due to imbalance in the optical system and amplifier. There was.

本発明の目的は、光磁気効果の測定において、光学系を
複雑にすることなく、光源の出力変動の影響を除去する
光磁気検出手段を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a magneto-optical detection means that eliminates the influence of output fluctuations of a light source in the measurement of magneto-optical effects without complicating the optical system.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、検出信号の増幅段に微分器を接続すること
により達成される。
The above object is achieved by connecting a differentiator to the amplification stage of the detection signal.

〔作用〕[Effect]

光検出器の増幅段に結合した微分器は、交流成分だけを
通過させ、直流成分を阻止するだけでなく、光源の動作
状態のゆりくりし変動に起因するノイズと、直流成分と
同Il!に抑えるように動作する。
The differentiator coupled to the amplification stage of the photodetector not only passes only the alternating current component and blocks the direct current component, but also eliminates noise due to gradual fluctuations in the operating state of the light source and the same Il! It works to keep it in check.

微分器は、また、入力電圧の時間変化の割合に比例した
出力電圧を得るので、磁場掃引に基づく光磁気信号のヒ
ステリシス変化の検出において、偏光面のカー回転によ
る信号の変化分を強調して取り出すことができる。
The differentiator also obtains an output voltage proportional to the rate of time change of the input voltage, so when detecting hysteresis changes in magneto-optical signals based on magnetic field sweeps, it is possible to emphasize changes in the signal due to Kerr rotation of the plane of polarization. It can be taken out.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面にもとすいて説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は、本発明の一実施例を示す磁気ディスク評価装
置の構成図である。同図において、レーザ光源1から出
力したレーザビーム2は、偏光子3で直線偏光となり、
集光レンズ4により磁気ディスク5に入射する。次に、
磁気ディスク5で微小に偏光した反射光6は、レンズ7
、検光子8を経て、検出器9で検出される。
FIG. 1 is a block diagram of a magnetic disk evaluation apparatus showing an embodiment of the present invention. In the figure, a laser beam 2 output from a laser light source 1 becomes linearly polarized by a polarizer 3,
The light is incident on the magnetic disk 5 through the condensing lens 4 . next,
The reflected light 6 that has been slightly polarized by the magnetic disk 5 is passed through a lens 7.
, and is detected by a detector 9 after passing through an analyzer 8.

上記光学系で検出された光磁気信号1oは、増幅器11
に接続した微分器12で、磁場発生装置13′VCよる
掃引磁場にともなったヒステリシス変化分が強調された
後、デジタルストレージオシロスコープ14からホスト
コンピュータ15に転送される。但し、磁気ディスク面
に磁場を印加する磁場発生装置13は、磁場掃引31に
ともなった磁場発生装置自身の変形が、光磁気信号の検
出に影響しないために、光学系と独立して設置しである
。尚、本実施例では、磁場発生装置としてワイス形磁石
を用いた。次に、ホストコンピュータ15は、取り込ん
だ信号の波形を図示すると共に、保磁力(gc)、角形
比などの磁気特性を計算表示する。更に、ホストコンピ
ュータ15は、駆動系16を制御し、測定位置をずらし
て上記操作を繰り返すことにより、磁気ディスクの磁気
特性分布マツプを作成する。
The magneto-optical signal 1o detected by the optical system is transmitted to the amplifier 11
The differentiator 12 connected to the magnetic field generator 13' VC emphasizes the hysteresis change caused by the swept magnetic field, and then the data is transferred from the digital storage oscilloscope 14 to the host computer 15. However, the magnetic field generator 13 that applies a magnetic field to the magnetic disk surface cannot be installed independently of the optical system so that the deformation of the magnetic field generator itself caused by the magnetic field sweep 31 will not affect the detection of the magneto-optical signal. be. In this example, a Weiss magnet was used as the magnetic field generator. Next, the host computer 15 graphically illustrates the waveform of the captured signal, and calculates and displays magnetic properties such as coercive force (gc) and squareness ratio. Furthermore, the host computer 15 controls the drive system 16, shifts the measurement position, and repeats the above operations to create a magnetic property distribution map of the magnetic disk.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、光磁気効果(カー効果〕を応用した磁
気ディスク評価装置において、光磁気効果によるヒステ
リシス変化分を強調した光磁気信号が、光源雑音の影響
を抑えて検出されるので、光学系を複雑にすることなく
高精度、高S/N比での測定が可能となる。
According to the present invention, in a magnetic disk evaluation device that applies the magneto-optical effect (Kerr effect), a magneto-optical signal that emphasizes the hysteresis change due to the magneto-optical effect is detected while suppressing the influence of light source noise. Measurement with high accuracy and high S/N ratio is possible without complicating the system.

上記の磁気ディスク評価装置では、磁気ディスクを破壊
することなく磁気特性分布を、非接触で迅速に測定でき
る。従りて、本装置をインラインの測定装置として利用
すれば、磁気ディスクの品質管理を容易にし、歩留まり
の向上に大きく貢献する。
The magnetic disk evaluation device described above can quickly measure the magnetic property distribution in a non-contact manner without destroying the magnetic disk. Therefore, if this device is used as an in-line measuring device, it will facilitate quality control of magnetic disks and greatly contribute to improving yield.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の磁気ディスク評価装置の構
成図、第2図は光磁気再生における光読み出しの原理図
である。 1・・・・・・・・−・・レーザ光源 2・・・・・・・・・・−・レーザビーム3・・・・・
・・・−・・偏光子 4・・・・・・・・・・・・集光レンズ5・・・・・・
・・・・・・磁気ディスク6・・・・・・・・・・・・
反射ビーム0101086.0.、、レンズ ・・・・・・・・・・・・検光子 ・・・・・・・・・・・・光検出器 ・・・・・・・・・光磁気信号 ・・・・・・・・・増幅器 ・・・・・・・・・微分器 ・・・・・−・・磁場発生装置 ・・・・・・・・・デジタルストレージオシロスコープ
・・・・・・・・・ホストコンピュータ・・・・・−・
・円板駆動部 ・・・・・・・・・レコーダ
FIG. 1 is a block diagram of a magnetic disk evaluation apparatus according to an embodiment of the present invention, and FIG. 2 is a diagram showing the principle of optical reading in magneto-optical reproduction. 1........- Laser light source 2........- Laser beam 3...
...... Polarizer 4 ...... Condensing lens 5 ...
・・・・・・Magnetic disk 6・・・・・・・・・・・・
Reflected beam 0101086.0. , Lens・・・・・・・・・Analyzer・・・・・・・・・Photodetector・・・・・・・Optical magnetic signal・・・・・・・・・Amplifier・・・・・・・・・Differentiator・・・・−・・Magnetic field generator・・・・・・・・・Digital storage oscilloscope・・・・・・・・・Host computer・・・・・・・-・
・Disk drive unit・・・・・・Recorder

Claims (1)

【特許請求の範囲】[Claims] 1、偏光したレーザ光を磁気ディスク面に集光する集光
手段と、前記磁気ディスク面に磁場を印加する磁場発生
装置と、前記磁気ディスク面からの反射光の偏光状態を
検出する光検出手段からなる光学系において、光検出器
の増幅段に微分器を接続して検出信号を微分することに
より光源の動作状態に起因するノイズ成分を阻止すると
共に、光磁気効果による信号の変化分を強調して取り出
すことを特徴とする光磁気検出装置。
1. A focusing means for focusing polarized laser light on a magnetic disk surface, a magnetic field generator for applying a magnetic field to the magnetic disk surface, and a light detection means for detecting the polarization state of light reflected from the magnetic disk surface. In this optical system, a differentiator is connected to the amplification stage of the photodetector to differentiate the detection signal, thereby blocking noise components caused by the operating status of the light source and emphasizing changes in the signal due to magneto-optical effects. A magneto-optical detection device characterized by a magneto-optical detection device.
JP24104988A 1988-09-28 1988-09-28 Magneto-optical detector Pending JPH0291840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24104988A JPH0291840A (en) 1988-09-28 1988-09-28 Magneto-optical detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24104988A JPH0291840A (en) 1988-09-28 1988-09-28 Magneto-optical detector

Publications (1)

Publication Number Publication Date
JPH0291840A true JPH0291840A (en) 1990-03-30

Family

ID=17068550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24104988A Pending JPH0291840A (en) 1988-09-28 1988-09-28 Magneto-optical detector

Country Status (1)

Country Link
JP (1) JPH0291840A (en)

Similar Documents

Publication Publication Date Title
US4410277A (en) Apparatus for detecting magneto-optical anisotropy
EP0295572B1 (en) Magneto-optical disk reading apparatus and method
EP0638896A1 (en) An optical pickup apparatus for a magneto-optical recording medium
KR0162266B1 (en) Magneto-optic characteristic measuring device
JPH0291840A (en) Magneto-optical detector
US4993012A (en) Record face identifying device for magneto-optic record medium
JP3194838B2 (en) Magnetic field measuring method and magnetic field measuring device
US5694384A (en) Method and system for measuring Kerr rotation of magneto-optical medium
JPH02310446A (en) Magneto-optical detecting device and detecting method
JP2847546B2 (en) Method for measuring magnetization characteristics of magnetic media
JPH03218440A (en) Birefringence measuring device
JPH07181211A (en) Surface potential measuring apparatus
JPH03276050A (en) Magneto-optical flaw detecting device
JP2574915B2 (en) Optical device for reproducing magneto-optical recording media
JPS61946A (en) Optical disc evaluating device
JPH05342676A (en) Test device for magnetic-optical disk
JPH05258381A (en) Kerr ellipticity measurement device
JPH07334887A (en) Positioning method for magnetic head
JP2862024B2 (en) Magneto-optical signal reproducing device
CN1071896C (en) Magnetic CD performance test equipment
JPH01172737A (en) Apparatus for analyzing defect in magneto-optical recording medium
JPH025222A (en) Optical memory device
JP2892544B2 (en) Optical head inspection method
Abe et al. H/sub c/measurement of microscopic regions on thin film magnetic disc using longitudinal Kerr effect
JPH0477687A (en) Magnetization state estimation method of magnetization head polefilm