JPH05342676A - Test device for magnetic-optical disk - Google Patents

Test device for magnetic-optical disk

Info

Publication number
JPH05342676A
JPH05342676A JP16819892A JP16819892A JPH05342676A JP H05342676 A JPH05342676 A JP H05342676A JP 16819892 A JP16819892 A JP 16819892A JP 16819892 A JP16819892 A JP 16819892A JP H05342676 A JPH05342676 A JP H05342676A
Authority
JP
Japan
Prior art keywords
magneto
optical
phase difference
optical disk
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16819892A
Other languages
Japanese (ja)
Inventor
Masayuki Usui
正幸 臼井
Nobuo Yamamoto
信夫 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP16819892A priority Critical patent/JPH05342676A/en
Publication of JPH05342676A publication Critical patent/JPH05342676A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a small-sized test device for a magneto-optical disk which can easily test defects of the magneto-optical disk in a short time. CONSTITUTION:A test device for a magneto-optical disk irradiates a recording medium in which information is magnetically recorded with a light flux polarized in a prescribed direction, divides reflected or transmitted light flux from the above medium modulated in a polarized state in accordance with the above information by the magnetic optical effect into two light flux polarized in the direction of being orthogonally crossed each other, detects the divided two light flux with a detecting means respectively, and detects a magneto-optical signal with differential output of the detected signal. This device is provided with means 10, 15 which are provided in a light path through which the light flux passes through and causes two different variations of phase difference, and a means for detecting defects accompanying variation of phase difference in the recorded medium by processing arithmetically the magneto-optical signal corresponding to those two different variations of phase difference obtained by this means.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気光学効果を利用し
て記録媒体に情報を記録、再生する光磁気ディスク内に
存在する局所的な複屈折の異常、異物の存在による反射
光量の変化、等を検出するのに好適な検査装置に関し、
特に位相差の変化から欠陥を検出する光磁気ディスク検
査装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a local birefringence abnormality existing in a magneto-optical disk for recording and reproducing information on a recording medium by utilizing a magneto-optical effect, and a change in reflected light quantity due to the presence of foreign matter. Regarding inspection equipment suitable for detecting,
In particular, the present invention relates to a magneto-optical disk inspection apparatus that detects defects from changes in phase difference.

【0002】[0002]

【従来の技術】製品レベルの光磁気ディスクの欠陥等の
検査装置としては、ディスクドライブ装置を用いて、信
号未記録状態のディスクの記録領域をトレースし、ディ
スクの反射率の変化により欠陥等の異常部を検出するも
の、あるいはディスクに光磁気信号を記録し、記録した
信号を再生、2値化して異常の有無を判定するもの等が
ある。また、ディスク基板の複屈折や光磁気膜の局所的
な異常に起因する位相差の変化を検出する装置としては
偏光状態の変化を検出する種々の位相差測定装置が用い
られる。
2. Description of the Related Art A disk drive device is used as a device for inspecting defects of a magneto-optical disk at a product level, and a recording area of a disk in which a signal is not recorded is traced to detect defects such as a change in reflectance of the disk. There is a method of detecting an abnormal portion, or a method of recording a magneto-optical signal on a disc and reproducing the recorded signal and binarizing the signal to determine whether or not there is an abnormality. Further, as a device for detecting a change in phase difference due to birefringence of a disk substrate or a local abnormality in a magneto-optical film, various phase difference measuring devices for detecting a change in polarization state are used.

【0003】図5は従来の位相差測定装置の一例を示す
構成図である。図中、61で示される半導体レーザから
出射した直線偏光状態の光束はコリメーターレンズ62
で平行光化された後、ビーム整形プリズム63、ビーム
スプリッタ64、ビームスプリッタ65を経て対物レン
ズ66で光磁気ディスク67の媒体面に絞り込まれる。
媒体面で反射した光束は、対物レンズ66を通り、ビー
ムスプリッタ65でその一部が反射され、1/2波長板
68及び位相補償板69を通過した後、集光レンズ70
を経て偏光ビームスプリッタ71で互いに直交する2つ
の偏光光束に分離し夫々検出器72,73に入る。1/
2波長板68は通過する直線偏光光束の偏光面を偏光ビ
ームスプリッタ71の入射面に対し45°回転させる方
位に設置する。位相補償板69には、バビネソレイユの
補償板が一般に用いられる。媒体面で反射した光束のう
ちビームスプリッタ65を透過した光束は、ビームスプ
リッタ64で反射され、集光レンズ74を経て検出器7
5に至る。検出器75はサーボ信号を検出するための検
出器であり、ここから得られた信号を用いて対物レンズ
66で絞り込まれた光束を光磁気ディスク67の媒体面
に合焦させ、またトラッキング制御を行なう。
FIG. 5 is a block diagram showing an example of a conventional phase difference measuring apparatus. In the figure, a linearly polarized light beam emitted from the semiconductor laser denoted by 61 is a collimator lens 62.
After being collimated by the laser beam, the beam is passed through the beam shaping prism 63, the beam splitter 64, and the beam splitter 65, and then narrowed down to the medium surface of the magneto-optical disk 67 by the objective lens 66.
The light flux reflected by the medium surface passes through the objective lens 66, a part of it is reflected by the beam splitter 65, and after passing through the ½ wavelength plate 68 and the phase compensation plate 69, the condenser lens 70.
Then, the polarized beam splitter 71 separates the two polarized light beams orthogonal to each other and enters the detectors 72 and 73, respectively. 1 /
The two-wave plate 68 is installed in a direction in which the plane of polarization of the linearly polarized light passing therethrough is rotated by 45 ° with respect to the plane of incidence of the polarization beam splitter 71. A Babinet Soleil compensator is generally used as the phase compensator 69. Of the light flux reflected by the medium surface, the light flux transmitted through the beam splitter 65 is reflected by the beam splitter 64, passes through the condenser lens 74, and then the detector 7
Up to 5. The detector 75 is a detector for detecting a servo signal, and uses the signal obtained from the detector 75 to focus the light flux narrowed down by the objective lens 66 on the medium surface of the magneto-optical disk 67 and to perform tracking control. To do.

【0004】この装置を用いて光磁気ディスクの位相差
を測定するには、一定の周波数の信号を記録した被測定
ディスクから得られる、差動増幅器76の出力としての
光磁気信号の振幅をモニターしながら、位相補償器69
を用いて位相を変化させる。被測定ディスクによって発
生した位相差が位相補償器69で打消された状態におい
て光磁気信号の振幅は最大になるので、このときの位相
補償器69の補償量が被測定ディスクの位相差をあらわ
す。
In order to measure the phase difference of a magneto-optical disk using this device, the amplitude of the magneto-optical signal as the output of the differential amplifier 76 obtained from the disk under test on which a signal of a constant frequency is recorded is monitored. Meanwhile, the phase compensator 69
Use to change the phase. Since the amplitude of the magneto-optical signal is maximized when the phase difference generated by the measured disk is canceled by the phase compensator 69, the compensation amount of the phase compensator 69 at this time represents the phase difference of the measured disk.

【0005】また、図10はバビネ・ソレイユ位相補償
器を用いた光磁気ディスクの位相差測定装置の概略を示
すものである。図10に示すように、光磁気信号が記録
された光磁気ディスク82にレーザ光を照射して光磁気
信号を再生する光学系の光路に、バビネ・ソレイユ位相
補償器95を挿入して、光ビームに与える位相差を少し
づつ変化させながら光磁気信号の振幅変化を読み取り、
振幅が最大となる点の位相差を最小2乗法等の数値解析
手段により推定していた。
FIG. 10 schematically shows a phase difference measuring device for a magneto-optical disk using a Babinet-Soleil phase compensator. As shown in FIG. 10, a Babinet-Soleil phase compensator 95 is inserted in the optical path of an optical system for reproducing a magneto-optical signal by irradiating the magneto-optical disk 82 on which the magneto-optical signal is recorded with laser light, Read the amplitude change of the magneto-optical signal while changing the phase difference given to the beam little by little,
The phase difference at the point where the amplitude is maximum is estimated by a numerical analysis means such as the least square method.

【0006】[0006]

【発明が解決しようとしている課題】かかる従来技術に
おいて、反射率の変化のみで欠陥部を検出する装置で
は、異物等の反射光量を低下させる欠陥は検出できる
が、複屈折に起因する異常のような偏光状態の変化は検
出できない。また光磁気信号を再生、2値化する方法で
は単純な反射光量の変化と偏光状態の変化の区別がつか
ない。
In such a prior art, a device for detecting a defective portion only by changing the reflectance can detect a defect such as a foreign substance that reduces the amount of reflected light, but it does not seem to be an abnormality caused by birefringence. No change in the polarization state can be detected. Further, in the method of reproducing and binarizing the magneto-optical signal, it is impossible to distinguish between a simple change in the amount of reflected light and a change in the polarization state.

【0007】図5で説明した位相差測定装置を用いて偏
光状態の変化を検出する場合には、補償位置を検出する
ために補償器を用いて位相を変化させながら正常部と異
常部両方について多数回測定を行なう必要があり手間を
要するという問題がある。
When detecting the change in the polarization state using the phase difference measuring device described in FIG. 5, both the normal part and the abnormal part are changed while changing the phase using the compensator to detect the compensation position. There is a problem that it is necessary to carry out the measurement a large number of times, which is troublesome.

【0008】特に、従来例では、バビネ・ソレイユ位相
補償器を用いるため、次のような欠点があった。
Particularly, in the conventional example, since the Babinet-Soleil phase compensator is used, there are the following drawbacks.

【0009】(1)位相差を少しづつずらしながら光磁
気信号振幅を測定するため、測定点数が多く測定時間が
長かった。
(1) Since the magneto-optical signal amplitude is measured while slightly shifting the phase difference, the number of measurement points is large and the measurement time is long.

【0010】(2)位相差の変化が不連続なため、最小
2乗法等によって真値を推定しており、測定誤差が大き
かった。
(2) Since the change in the phase difference is discontinuous, the true value is estimated by the method of least squares and the measurement error is large.

【0011】(3)バビネ・ソレイユ位相補償器の寸法
が大きいため、装置全体が大がかりなものになってしま
っていた。
(3) Due to the large size of the Babinet-Soleil phase compensator, the entire apparatus has become large-scale.

【0012】また、従来の検出方法及び装置では、位相
差変化を与える手段が1つであるため、1つの再生信号
波形しか同時に得ることができない。そのため、信号振
幅の劣化がゴミ等の異物によって生じる反射率の低下で
あるのか、複屈折の異常によって生じる位相差変化を伴
う偏光状態の変化に起因するものであるのか判別するこ
とができないという解決すべき課題があった。
Further, in the conventional detection method and apparatus, since there is only one means for giving the phase difference change, only one reproduced signal waveform can be obtained at the same time. Therefore, it is impossible to determine whether the deterioration of the signal amplitude is a decrease in reflectance caused by a foreign substance such as dust or a change in the polarization state accompanied by a phase difference change caused by an abnormality in birefringence. There was a task to be done.

【0013】[0013]

【課題を解決するための手段】本発明は、上述した課題
を解決するため、所定の方向に偏光した光束を磁気的に
情報が記録された記録媒体上に照射し、磁気光学効果に
より前記情報に応じて偏光状態に変調を受けた前記媒体
からの反射又は透過光束を、互いに直交する方向に偏光
する2つの光束に分割し、該分割された2つの光束を夫
々検出手段で検出し、検出された信号の差動出力で光磁
気信号を検出する光磁気ディスクの検査装置において、
前記光束の通過する光路中に複数の異なる位相差変化を
与える手段を設け、該手段を介して得られた複数の異な
る位相差変化に対応する光磁気信号を演算処理すること
により前記記録媒体内の位相差変動及び欠陥を検出する
ことを特徴とする光磁気ディスク検査装置をその手段と
するものである。
In order to solve the above problems, the present invention irradiates a recording medium on which information is magnetically recorded with a light beam polarized in a predetermined direction, and the information is recorded by a magneto-optical effect. The reflected or transmitted light beam from the medium whose polarization state has been modulated in accordance with the above is split into two light beams which are polarized in directions orthogonal to each other, and the two divided light beams are respectively detected by the detection means and detected. In the inspection device of the magneto-optical disk that detects the magneto-optical signal with the differential output of the signal,
In the recording medium, means for providing a plurality of different phase difference changes is provided in the optical path through which the light flux passes, and a magneto-optical signal corresponding to the plurality of different phase difference changes obtained through the means is arithmetically processed. The magneto-optical disk inspecting device is characterized by detecting the phase difference fluctuation and the defect.

【0014】また、本発明によれば、位相板を光磁気信
号記録再生光学系の光路に挿入して、光磁気ディスクと
同時に回転させる手段を設けることにより、光ビーム
に、ディスクの回転に同期した連続的な位相差の変化を
与えるようにしたものである。
Further, according to the present invention, by inserting a phase plate into the optical path of the magneto-optical signal recording / reproducing optical system and providing means for rotating the magneto-optical disk at the same time, the light beam is synchronized with the rotation of the disk. The continuous phase difference is continuously changed.

【作用】上記異なる複数の位相差を与えられた状態に対
して、局所的な複屈折の変化を有する箇所は、周囲の正
常部とは一定のずれをもって光磁気信号振幅が増減す
る。一方、単なる反射強度の低下をもたらす欠陥は、周
囲の正常部に対し常に一定の比率で振幅が低下する。従
ってこの2つの状態の信号振幅を比較演算することで欠
陥の弁別が可能となる。
With respect to the above-mentioned state where a plurality of different phase differences are given, the amplitude of the magneto-optical signal increases and decreases at a portion having a local change in birefringence with a constant deviation from the surrounding normal portion. On the other hand, a defect that merely causes a decrease in reflection intensity has a constant decrease in amplitude with respect to the surrounding normal part. Therefore, the defect can be discriminated by comparing and calculating the signal amplitudes of these two states.

【0015】[0015]

【実施例】【Example】

(実施例1)図1は本発明に用いられる検査装置の光学
系部の構成図をあらわす。図中、1は半導体レーザ、2
はコリメーターレンズ、3はビーム整形プリズム、4及
び5はビームスプリッタ、6は対物レンズ、7は被測定
物である光磁気ディスク、8は1/2波長板、9はビー
ムスプリッタ、10及び15は互いに異なる位相差を有
する位相板、11及び16は集光レンズ、12及び17
は偏光ビームスプリッタ、13,14,18,19は光
検出器、20及び21は検出器、をあらわす。
(Embodiment 1) FIG. 1 shows a configuration diagram of an optical system portion of an inspection apparatus used in the present invention. In the figure, 1 is a semiconductor laser, 2
Is a collimator lens, 3 is a beam shaping prism, 4 and 5 are beam splitters, 6 is an objective lens, 7 is a magneto-optical disk which is an object to be measured, 8 is a half-wave plate, 9 is a beam splitter, and 10 and 15. Are phase plates having different phase differences from each other, 11 and 16 are condenser lenses, and 12 and 17
Is a polarization beam splitter, 13, 14, 18, and 19 are photodetectors, and 20 and 21 are detectors.

【0016】図1において、半導体レーザ1から出射し
た光束が光磁気ディスク7に至り、該光磁気ディスクの
媒体面で反射された光束は、ビームスプリッタ5でその
一部が反射されて1/2波長板8に入射し、ビームスプ
リッタ5を透過した光束はビームスプリッタ4で反射さ
れて集光レンズ22を経たのちサーボ信号検出用の検出
器23に入射する。以上説明した部分は図5の従来例と
同様の構成及び機能を有するので更なる説明は省略す
る。
In FIG. 1, the light flux emitted from the semiconductor laser 1 reaches the magneto-optical disk 7, and the light flux reflected by the medium surface of the magneto-optical disk is partially reflected by the beam splitter 5 to be 1/2. The light beam that has entered the wave plate 8 and transmitted through the beam splitter 5 is reflected by the beam splitter 4, passes through a condenser lens 22, and then enters a detector 23 for detecting a servo signal. The part described above has the same configuration and function as the conventional example of FIG.

【0017】さて、1/2波長板8を通過した光束はビ
ームスプリッタ9によってほぼ等分に反射及び透過する
2つの光束に分割される。反射した光束は位相板10の
作用により、互いに直交する偏光成分間に一定の位相
差、例えば15°の位相差を与えられた後、集光レンズ
11を経て偏光ビームスプリッタ12で互いに直交する
偏光成分を有する2つの光束に分かれ、夫々検出器13
及び14に入射する。検出器13及び14の出力は差動
増幅器20で差動増幅され、第1の光磁気信号RF−1
となる。
The light beam that has passed through the half-wave plate 8 is split by the beam splitter 9 into two light beams that are reflected and transmitted substantially equally. The reflected light beam is given a constant phase difference, for example, a phase difference of 15 °, between polarization components orthogonal to each other by the action of the phase plate 10, and then passes through the condenser lens 11 and is polarized by the polarization beam splitter 12 to be orthogonal to each other. It is divided into two luminous fluxes each having a component
And 14 are incident. The outputs of the detectors 13 and 14 are differentially amplified by the differential amplifier 20, and the first magneto-optical signal RF-1
Becomes

【0018】同様に、ビームスプリッタ9を透過した光
束は、位相板15で位相板10とは異なる位相差、例え
ば−15°、を互いに直交する偏光成分間に与えられた
後、集光レンズ16、偏光ビームスプリッタ17、光検
出器18,19を経て差動増幅器21に第2の光磁気信
号RF−2を与える。
Similarly, the light beam that has passed through the beam splitter 9 is given a phase difference different from that of the phase plate 10 by the phase plate 15, for example, −15 °, between polarization components orthogonal to each other, and then the condenser lens 16 is provided. The second magneto-optical signal RF-2 is given to the differential amplifier 21 via the polarization beam splitter 17 and the photo detectors 18 and 19.

【0019】図2(a),(b)は夫々光磁気信号RF
−1及びRF−2の波形をあらわす図である。光磁気信
号は予め光磁気ディスク7に一定の周波数で記録されて
いるものとすれば、その再生信号の振幅は一定の値とな
り、従って図中に破線で示すエンベロープ波形も一定と
なるはずである。ところが、もし光磁気ディスクに局所
的な欠陥や複屈折の異常部が存在すると、図中31,3
2あるいは31’,32’で示すようにエンベロープ波
形にも局部的な変動が現れる。
2 (a) and 2 (b) respectively show a magneto-optical signal RF.
It is a figure showing the waveform of -1 and RF-2. If the magneto-optical signal is recorded beforehand on the magneto-optical disk 7 at a constant frequency, the amplitude of the reproduction signal will have a constant value, and therefore the envelope waveform shown by the broken line in the figure should also be constant. .. However, if the magneto-optical disk has a local defect or an abnormal portion of birefringence, it is 31, 3 in the figure.
As shown by 2 or 31 ', 32', local variations appear in the envelope waveform.

【0020】このような欠陥や複屈折の異常等は信号の
品位を劣化させ、場合によっては信号の2値化再生を妨
げることがあるので、これらの有害な部分を検出して予
め交替処理などの処置をとる必要がある。また検出する
のみでなく、これらの有害部分が製造工程のどの過程で
発生したかを分析し適切な対策を施す必要もある。
Since such defects and abnormalities in birefringence may deteriorate the quality of the signal and interfere with the binarization and reproduction of the signal in some cases, these harmful parts are detected and replacement processing is performed in advance. It is necessary to take action. In addition to detection, it is necessary to analyze at which stage in the manufacturing process these harmful parts occurred and take appropriate measures.

【0021】しかるに従来の検出方法及び装置では図2
の(a)又は(b)いずれか一方の再生信号波形しか同
時には得られず、これから信号振幅の劣化がゴミ等の異
物によって生じる反射率の低下であるか、複屈折の異常
によって生じる偏光状態の変化に起因するものであるか
を判別することは出来なかった。
However, in the conventional detection method and apparatus, FIG.
(A) or (b), only the reproduced signal waveform can be obtained at the same time, and the deterioration of the signal amplitude from this is the decrease in reflectance caused by foreign matter such as dust, or the polarization state caused by abnormal birefringence. It was not possible to determine whether it was due to the change in.

【0022】図3は本発明に係る検査装置の信号処理系
を含む全体のブロック図である。以下同図を用いて上述
の問題を解決する本発明の方法を説明する。図中、40
は図1で説明した検査装置をブロックで表わしたもの、
41は後述する信号処理のためのトリガ信号を発生する
タイミング回路、42及び43はRF平滑回路で、検査
装置40から得られた光磁気信号RF−1,RF−2を
AC結合後、平滑回路によってプラス側、マイナス側そ
れぞれ低周波の包絡線信号に変換する機能を有する。4
4,45はA/D変換回路で、包絡線信号をタイミング
回路から発生したトリガ信号のタイミングでA/D変換
し演算回路46に送り込む。演算回路46は2種類の包
絡線信号に対し後述する演算を行ない、その結果をCP
U47に送り込む。CPU47はこれら信号処理系全体
の制御を行なうとともに、演算回路46から得られた情
報を用いて、局所的な欠陥のレベル判定、欠陥の種類判
別等の処理を行なう。
FIG. 3 is an overall block diagram including a signal processing system of the inspection apparatus according to the present invention. The method of the present invention for solving the above problems will be described below with reference to FIG. 40 in the figure
Is a block diagram of the inspection device described in FIG.
Reference numeral 41 is a timing circuit for generating a trigger signal for signal processing, which will be described later, and 42 and 43 are RF smoothing circuits. After the magneto-optical signals RF-1 and RF-2 obtained from the inspection device 40 are AC-coupled, a smoothing circuit is provided. Has a function of converting into a low-frequency envelope signal for each of the plus side and the minus side. Four
Reference numerals 4 and 45 are A / D conversion circuits, which perform A / D conversion of the envelope signal at the timing of the trigger signal generated from the timing circuit and send it to the arithmetic circuit 46. The arithmetic circuit 46 performs the operation described later on the two types of envelope signals, and outputs the result to the CP.
Send to U47. The CPU 47 controls the entire signal processing system, and uses the information obtained from the arithmetic circuit 46 to perform processing such as local defect level determination and defect type determination.

【0023】図4はRF平滑回路42,43および演算
回路46の出力波形を示す図である。図中(a)は、図
2(a)で示した光磁気信号RF−1の片波包絡線、
(b)は同じく図2(b)の光磁気信号RF−2の片波
包絡線をあらわす。これらの波形には前述の欠陥部に相
当する箇所51,51’,52,52’も含まれてい
る。欠陥の存在しない部分の包絡線は一定の出力V1及
びV2となる。図1の光学系部分の位相が0で、ビーム
スプリッタ9の透過光と反射光の分割比が等しく、かつ
位相板10及び15の与える位相差が前述の例の如く互
いに異符号で等しい量である場合にはV1とV2は光磁
気ディスクの位相差のみに比例する。(a),(b)で
示される波形を夫々A/D変換した後、演算回路46に
より以下に述べる演算を行なった結果が(c)で表わさ
れる。
FIG. 4 is a diagram showing output waveforms of the RF smoothing circuits 42 and 43 and the arithmetic circuit 46. In the figure, (a) is a single-wave envelope of the magneto-optical signal RF-1 shown in (a) of FIG.
Similarly, FIG. 2B shows a single-wave envelope of the magneto-optical signal RF-2 shown in FIG. These waveforms also include locations 51, 51 ', 52, 52' corresponding to the above-mentioned defective portions. The envelope of the part where there is no defect has constant outputs V1 and V2. When the phase of the optical system portion of FIG. 1 is 0, the transmitted light of the beam splitter 9 and the reflected light have the same division ratio, and the phase differences provided by the phase plates 10 and 15 are equal to each other with different signs as in the above example. In some cases V1 and V2 are proportional only to the phase difference of the magneto-optical disk. After the waveforms shown in (a) and (b) are A / D converted, respectively, the result of the following calculation by the calculation circuit 46 is shown in (c).

【0024】演算回路46において行なう演算は、まず
(a)の波形のA/D変換信号の平均値を求め、これを
正常部の光磁気信号V10とする。同様に(b)の波形
から求めた平均値をV20とし、A/D変換された
(a),(b)の波形の各々のデータV1,V2に対
し、 なる演算処理を行なう。
In the calculation performed by the calculation circuit 46, first, the average value of the A / D converted signals having the waveform of (a) is obtained, and this is used as the magneto-optical signal V10 of the normal portion. Similarly, the average value obtained from the waveform of (b) is set to V20, and for each data V1 and V2 of the A / D converted waveforms of (a) and (b), Is performed.

【0025】その結果、平均的な振幅値を示す正常部
は、演算結果がほぼゼロとなる。一方図4(a),
(b)で51,51’で示される複屈折の異常部は周囲
の正常部とは一定値だけずれて振幅が増加あるいは減少
するので、上記の演算により一定の差分が発生する(図
4(c)の53)。またゴミ等に起因する位相差変化を
伴わない欠陥部では、平均値に対し常に一定の割合で反
射率が低下するので、上記演算結果はほぼゼロとなる。
(図4(c)の54)。従って、図4(c)に破線で示
すような判定レベルを設ければ、これによって複屈折等
の位相差異常に起因する欠陥と、その程度を検知するこ
とができる。位相変化を伴わない欠陥は図(a),
(b)の波形の加算から、あるいは従来行われているよ
うに光検出器の和信号を直接モニターすることによって
検出することができる。
As a result, the calculation result of the normal part showing an average amplitude value becomes almost zero. On the other hand, FIG.
The abnormal portion of birefringence indicated by 51, 51 'in (b) shifts from the surrounding normal portion by a constant value and the amplitude increases or decreases, so a constant difference is generated by the above calculation (Fig. 4 ( 53) of c). Further, in the defect portion which is not accompanied by the phase difference change due to dust or the like, the reflectance is always reduced at a constant rate with respect to the average value, and therefore the above calculation result is almost zero.
(54 in FIG. 4 (c)). Therefore, by providing the determination level as shown by the broken line in FIG. 4C, it is possible to detect the defect that is always caused by the phase difference such as birefringence and the degree thereof. The defect without phase change is shown in Figure (a),
It can be detected by adding the waveforms shown in (b) or by directly monitoring the sum signal of the photodetector as is conventionally done.

【0026】前述の演算回路においては、平均値V1
0,V20の代りに中央値(メジアン)や最多値(モー
ド)を採用することも可能で、予測される欠陥の種類や
頻度に応じて種々の演算上の工夫が可能である。
In the arithmetic circuit described above, the average value V1
It is also possible to adopt a median value (median) or a maximum value (mode) instead of 0 and V20, and various arithmetic devices can be devised in accordance with the predicted defect type and frequency.

【0027】また、図1に示した装置の光学系の位相板
を除く位相差が既知(例えば0°)であれば、信号の振
幅から被測定ディスクの平均的な位相差を知ることもで
きる。前出の例の如く、位相板にプラスマイナス等量の
位相差を与えたとき、信号の平均値がV10,V20で
あれば信号振幅は位相差のコサインに比例するから、こ
れらの平均値を用いて内挿あるいは外挿することにより
ディスクの平均的な位相差が求められる。
If the phase difference of the optical system of the apparatus shown in FIG. 1 excluding the phase plate is known (for example, 0 °), the average phase difference of the measured disk can be known from the amplitude of the signal. .. As in the above-mentioned example, when the plus and minus equal amounts of phase difference are given to the phase plate, if the signal average values are V10 and V20, the signal amplitude is proportional to the cosine of the phase difference. The average phase difference of the disk can be obtained by using the interpolation or the extrapolation.

【0028】位相板の位相差は既知であればどのような
値でも良く、また必ずしも2枚使う必要もない。1枚だ
け用いるとすれば、位相板のない光路は位相差ゼロであ
り、他方に位相差がゼロ以外の既知のものを設けること
になる。
The phase difference of the phase plate may be any value as long as it is known, and it is not always necessary to use two plates. If only one sheet is used, the optical path without the phase plate has a zero phase difference, and the other optical path has a known phase difference other than zero.

【0029】また、図1の装置においては2枚の位相板
を用いる2つの光路に光束を分割したが、より多くの光
路に分割しても良い。
Further, in the apparatus of FIG. 1, the light beam is divided into two optical paths using two phase plates, but it may be divided into more optical paths.

【0030】本実施例においては光磁気ディスクを用い
て説明を行なったが、本発明の対象とする範囲はもちろ
ん光磁気ディスクに限定されることはなく、CD等の再
生専用ディスク、ライトワンス型の光ディスク、相変化
型の光ディスクにも適用可能である。
Although a magneto-optical disk has been used in the description of this embodiment, the scope of the present invention is not limited to the magneto-optical disk, and a read-only disk such as a CD or a write-once type disk is not limited. The present invention can also be applied to the above optical discs and phase change type optical discs.

【0031】(実施例2)図6は本発明の他の実施例を
表わす図面であり、同図において81は一軸異方性を有
する位相板、82は光磁気ディスク、83は位相板81
及び光磁気ディスク82を同時に回転させるスピンドル
モータ、84は半導体レーザ、85は半導体レーザ84
から発した放射光を平行光線に変換するコリメータレン
ズ、86は光磁気ディスク82に反射されて戻って来た
光を検出光学系に導く偏光ビームスプリッタ、87は戻
り光を光検出器に集光させる集光レンズ、88は戻り光
のP偏光成分とS偏光成分を分離する偏光ビームスプリ
ッタ、89及び90は光検出器、91は各偏光成分の差
から光磁気信号を出力する差動増幅器、92はレーザ光
を光磁気ディスク82の記録膜上に集光させる対物レン
ズ、93はレーザの偏光方向を変える1/2波長板、9
4はレーザの進行方向を変える全反射ミラーである。
(Embodiment 2) FIG. 6 is a view showing another embodiment of the present invention, in which 81 is a phase plate having uniaxial anisotropy, 82 is a magneto-optical disk, and 83 is a phase plate 81.
And a spindle motor for simultaneously rotating the magneto-optical disk 82, a semiconductor laser 84, and a semiconductor laser 84.
The collimator lens for converting the emitted light emitted from the light into parallel rays, 86 is a polarization beam splitter for guiding the light reflected by the magneto-optical disk 82 and returned to the detection optical system, and 87 is the return light focused on the photodetector. A condensing lens, 88 is a polarization beam splitter that separates the P-polarized component and the S-polarized component of the return light, 89 and 90 are photodetectors, and 91 is a differential amplifier that outputs a magneto-optical signal from the difference between the polarized components. Reference numeral 92 designates an objective lens for condensing the laser light on the recording film of the magneto-optical disk 82, 93 designates a ½ wavelength plate for changing the polarization direction of the laser, 9
Reference numeral 4 denotes a total reflection mirror that changes the traveling direction of the laser.

【0032】半導体レーザ84は、図示されていない制
御手段により、その出力パワーを再生レベルに固定され
ており、放射されたレーザ光は、コリメータレンズ85
によって平行光線に変換された後、偏光ビームスプリッ
タ86、全反射ミラー94を経由し、対物レンズ92に
よって、回転している光磁気ディスク82の記録膜上に
焦点を結ぶ。光磁気ディスク82にはあらかじめ光磁気
信号を記録しておき、図示されていないフォーカス及び
トラッキング制御手段により、該光磁気信号上にレーザ
光を集光させることにより、再生信号を得ることができ
る。
The output power of the semiconductor laser 84 is fixed at the reproduction level by a control means (not shown), and the emitted laser light is collimated by a collimator lens 85.
After being converted into parallel rays by, the light passes through the polarization beam splitter 86 and the total reflection mirror 94, and is focused on the recording film of the rotating magneto-optical disk 82 by the objective lens 92. A magneto-optical signal is recorded in advance on the magneto-optical disk 82, and a reproduction signal can be obtained by focusing laser light on the magneto-optical signal by a focus and tracking control means (not shown).

【0033】このようにして得られた再生光は、対物レ
ンズ92、全反射ミラー94を経由し、偏光ビームスプ
リッタ86によって位相板81へ導かれる。位相板81
は、旋光方向の異なる2枚の水晶板を光軸が直交するよ
うに貼り合わせたもので、直径約8cm、位相差90°
のものを得た。位相板81はスピンドルモータ83によ
って光磁気ディスク82と同時に回転しており、回転角
に応じて図8に示すような位相差を再生光に与える。こ
うして、位相板81を通過した再生光は、集光レンズ8
7、偏光ビームスプリッタ88によってP偏光成分及び
S偏光成分に分けられて光検出器89,90上に集光さ
れ電気信号に変換された後、差動増幅器91によって光
磁気信号となる。
The reproduced light thus obtained is guided to the phase plate 81 by the polarization beam splitter 86 via the objective lens 92 and the total reflection mirror 94. Phase plate 81
Is a structure in which two crystal plates with different optical rotation directions are attached so that their optical axes are orthogonal to each other. The diameter is about 8 cm and the phase difference is 90 °.
Got one. The phase plate 81 is rotated simultaneously with the magneto-optical disk 82 by the spindle motor 83, and gives the reproduction light a phase difference as shown in FIG. 8 according to the rotation angle. Thus, the reproduction light that has passed through the phase plate 81 is collected by the condenser lens 8.
7. The polarization beam splitter 88 divides the P-polarized component and the S-polarized component into light components, which are collected on the photodetectors 89 and 90 and converted into electric signals, which are then converted into magneto-optical signals by the differential amplifier 91.

【0034】光磁気ディスクの位相差が円周方向に均一
で、例えば−30°の位相差を持つ場合、位相板81の
回転角が約20.6°のとき、カー回転角に無関係にP
偏光成分及びS偏光成分は直流分だけとなり、光磁気信
号振幅が極小(ゼロ)となる。この様子を図9に示す。
逆に、光磁気信号振幅が極小値を示すところの位相板の
回転角θを検出することにより、光磁気ディスクの位相
差δを次式で逆算することが可能となる。 δ=−tan-1(sin2 2θ/cos2θ) 光磁気信号の測定には、デジタルオシロスコープを用
い、位相板の回転に同期して信号を取り込むようにすれ
ば、光磁気ディスクが1回転する間に位相差を測定する
ことができ、測定時間は大幅に短縮される。しかも位相
差の変化が連続的であるため、正確な測定が可能とな
る。
When the phase difference of the magneto-optical disk is uniform in the circumferential direction and has a phase difference of, for example, -30 °, when the rotation angle of the phase plate 81 is about 20.6 °, P is independent of the Kerr rotation angle.
The polarized component and the S polarized component are only the direct current component, and the amplitude of the magneto-optical signal becomes minimum (zero). This state is shown in FIG.
On the contrary, by detecting the rotation angle θ of the phase plate at which the amplitude of the magneto-optical signal exhibits the minimum value, the phase difference δ of the magneto-optical disk can be calculated back by the following equation. δ = −tan −1 (sin 2 2θ / cos 2θ) A digital oscilloscope is used to measure the magneto-optical signal, and if the signal is taken in in synchronization with the rotation of the phase plate, the magneto-optical disk can be rotated once. Since the phase difference can be measured, the measurement time is greatly shortened. Moreover, since the change in phase difference is continuous, accurate measurement is possible.

【0035】また、光磁気ディスクが1回転する間に光
磁気信号振幅が4つの極小値を持つことから、各極小値
の位置に対応する位相差が一致しなければ、ディスク円
周方向の位相差にバラツキがあることがわかる。
Further, since the magneto-optical signal amplitude has four minimum values during one rotation of the magneto-optical disk, if the phase difference corresponding to the position of each minimum value does not match, the position in the circumferential direction of the disk. It can be seen that there are variations in the phase difference.

【0036】さらに、バビネ・ソレイユ位相補償器を用
いる場合に比べて装置の大きさを半分以下にすることが
可能となった。
Furthermore, the size of the device can be reduced to half or less as compared with the case where the Babinet-Soleil phase compensator is used.

【0037】尚、位相板81は、一軸異方性を与える物
質であればよく、雲母等の複屈折性を示す天然結晶及び
人工結晶、あるいは高分子の一軸延伸フィルム等を用い
てもよい。与える位相差も90°に限ることなく、測定
対象の持つ位相差より大きい値であればよい。
The phase plate 81 may be any substance that gives uniaxial anisotropy, and natural crystals and artificial crystals showing birefringence such as mica, or uniaxially stretched polymer film may be used. The applied phase difference is not limited to 90 ° and may be any value larger than the phase difference of the measurement target.

【0038】また、1/2波長板93は光磁気ディスク
に入射する光の偏光方向を変えたい場合に光路に挿入す
るものであり、基板と膜の位相差を分離したい場合等に
用いる。
The half-wave plate 93 is inserted in the optical path when it is desired to change the polarization direction of the light incident on the magneto-optical disk, and is used when it is desired to separate the phase difference between the substrate and the film.

【0039】(実施例3)図7は本発明の他の実施例を
示す図面である。これは、前述の実施例を、光磁気ディ
スクの内周部、あるいは、直径が比較的小さな光磁気デ
ィスクの測定に適するように改造したものであり、図7
の偏光ビームスプリッタ86に反射ミラーの機能を持た
せることにより、対物レンズ92を光磁気ディスク82
の内周部に位置させることが可能となった。全反射ミラ
ー94を省略したことを除いて、他の構成は前述の実施
例と同様である。
(Embodiment 3) FIG. 7 is a view showing another embodiment of the present invention. This is a modification of the above-described embodiment so as to be suitable for the measurement of the inner peripheral portion of the magneto-optical disk or the magneto-optical disk having a relatively small diameter.
The objective lens 92 is moved to the magneto-optical disk 82 by making the polarized beam splitter 86 of the above have a function of a reflection mirror.
It has become possible to locate it on the inner circumference of the. Except that the total reflection mirror 94 is omitted, the other structure is the same as that of the above-described embodiment.

【0040】[0040]

【発明の効果】以上説明したように、本発明の検査装置
によれば、比較的簡単で小型化された構成により、複屈
折等に起因する位相差変化を伴なう欠陥と一様な反射率
低下を生じる欠陥を容易に弁別することが可能となり、
更には平均的な位相差も知ることができる等、従来にな
い効果を生むものである。従って光磁気ディスクの検査
工程に本発明の装置を導入すれば、工程の管理、不良原
因の解析や予防に多大なる効果を及ぼす。
As described above, according to the inspection apparatus of the present invention, a defect accompanied by a phase difference change caused by birefringence or the like and a uniform reflection can be obtained by a relatively simple and compact structure. It becomes possible to easily discriminate defects that cause a decrease in
Furthermore, it is possible to obtain an effect that has not been obtained in the past such that the average phase difference can be known. Therefore, if the apparatus of the present invention is introduced into the magneto-optical disk inspection process, it has a great effect on the process control, the analysis of the cause of the defect, and the prevention.

【0041】また、一軸異方性の位相板を光磁気信号記
録再生光学系の光路に挿入し、光磁気ディスクと同時に
回転させることにより、光磁気ディスクの位相差を短時
間で正確に測定でき、さらに装置を小型化することがで
きるという効果がある。
By inserting a uniaxially anisotropic phase plate into the optical path of the magneto-optical signal recording / reproducing optical system and rotating it simultaneously with the magneto-optical disk, the phase difference of the magneto-optical disk can be accurately measured in a short time. Further, there is an effect that the device can be further downsized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る検査装置の光学系部の構成図、FIG. 1 is a configuration diagram of an optical system section of an inspection device according to the present invention,

【図2】図1の装置で得られる光磁気信号の波形をあら
わす図、
2 is a diagram showing a waveform of a magneto-optical signal obtained by the apparatus of FIG.

【図3】本発明に係る検査装置の全体を表わすブロック
図、
FIG. 3 is a block diagram showing the entire inspection apparatus according to the present invention,

【図4】本発明の検査装置による信号波形の演算処理過
程を説明する図、
FIG. 4 is a diagram for explaining a calculation process of a signal waveform by the inspection device of the present invention;

【図5】従来の位相差測定装置の構成をあらわす図。FIG. 5 is a diagram showing a configuration of a conventional phase difference measuring device.

【図6】本発明の他の実施例を示す図、FIG. 6 is a view showing another embodiment of the present invention,

【図7】本発明の他の実施例を示す図、FIG. 7 is a view showing another embodiment of the present invention,

【図8】位相板によって与えられる光ビームの位相差を
示す図、
FIG. 8 is a diagram showing a phase difference of a light beam provided by a phase plate,

【図9】光磁気ディスクの信号振幅を示す図、FIG. 9 is a diagram showing a signal amplitude of a magneto-optical disk,

【図10】従来の技術を説明するための図である。FIG. 10 is a diagram for explaining a conventional technique.

【符号の説明】[Explanation of symbols]

1 半導体レーザ 5 ビームスプリッタ 7 光磁気ディスク 8 1/2波長板 9,17 偏光ビームスプリッタ 10,16 位相板 81 位相板、 82 光磁気ディスク、 83 スピンドルモータ、 84 半導体レーザ、 85 コリメータレンズ、 86 偏光ビームスプリッタ、 87 集光レンズ、 88 偏光ビームスプリッタ、 89,90 光検出器、 91 差動増幅器、 92 対物レンズ、 93 1/2波長板、 94 全反射ミラー、 95 バビネ・ソレイユ位相補償器。 DESCRIPTION OF SYMBOLS 1 semiconductor laser 5 beam splitter 7 magneto-optical disk 8 1/2 wavelength plate 9,17 polarization beam splitter 10, 16 phase plate 81 phase plate, 82 magneto-optical disk, 83 spindle motor, 84 semiconductor laser, 85 collimator lens, 86 polarization Beam splitter, 87 condensing lens, 88 polarizing beam splitter, 89, 90 photodetector, 91 differential amplifier, 92 objective lens, 93 1/2 wavelength plate, 94 total reflection mirror, 95 Babinet-Soleil phase compensator.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 所定の方向に偏光した光束を、磁気的に
情報が記録された記録媒体上に照射し、磁気光学効果に
より前記情報に応じて偏光状態に変調を受けた前記媒体
からの反射又は透過光束を、互いに直交する方向に偏光
する2つの光束に分割し、該分割された2つの光束を夫
々検出手段で検出し、検出された信号の差動出力で光磁
気信号を検出する光磁気ディスクの検査装置において、 前記光束の通過する光路中に設けられた2つの異なる位
相差変化を与える手段と、 該手段を介して得られた2つの異なる位相差変化に対応
する光磁気信号を演算処理することにより、前記記録媒
体内の位相差変動を伴う欠陥を検出する手段とを有する
ことを特徴とする光磁気ディスク検査装置。
1. A reflection from a medium, which is polarized in a predetermined direction, is irradiated onto a recording medium on which information is magnetically recorded, and the polarization state is modulated according to the information by a magneto-optical effect. Alternatively, the transmitted light flux is divided into two light fluxes polarized in directions orthogonal to each other, the two divided light fluxes are respectively detected by the detection means, and the magneto-optical signal is detected by the differential output of the detected signals. In a magnetic disk inspecting apparatus, means for providing two different phase difference changes provided in an optical path through which the light flux passes, and magneto-optical signals corresponding to the two different phase difference changes obtained through the means. A magneto-optical disk inspecting device, comprising means for detecting a defect accompanied by a phase difference variation in the recording medium by performing arithmetic processing.
【請求項2】 前記演算処理する手段が、前記2つの異
なる位相差変化を与える手段の一方の手段により得られ
る波形のA/D変換信号の平均値をV10,他方の前記
手段により得られる波形の平均値をV20,またそれぞ
れの波形の欠陥の存在しない部分の包絡線の一定の出力
をV1,V2としたとき、 V1,V2に対し、V1−(V10/V20)×V2な
る演算を行なうことを特徴とする請求項1に記載の光磁
気ディスク検査装置。
2. An arithmetic mean of the A / D conversion signal of the waveform obtained by one of the means for giving the two different phase difference changes, and the waveform obtained by the other means. When V1 is the average value of V1 and V1 and V2 are constant outputs of the envelopes of the portions where there is no defect in each waveform, the calculation of V1− (V10 / V20) × V2 is performed on V1 and V2. The magneto-optical disk inspection apparatus according to claim 1, wherein
【請求項3】 前記位相差変化を与える手段が、複数の
位相差変化を与えることを特徴とする請求項1に記載の
光磁気ディスク検査装置。
3. The magneto-optical disk inspection apparatus according to claim 1, wherein the means for applying the phase difference change provides a plurality of phase difference changes.
【請求項4】 光磁気ディスクの検査装置において、 光磁気信号記録再生光学系の光路に挿入された一軸異方
性の位相板と、 該位相板を光磁気ディスクと同時に回転させる手段と、 該位相板により位相変化された信号から、前記光磁気デ
ィスクの欠陥を検査する手段とを有することを特徴とす
る光磁気ディスク検査装置。
4. A magneto-optical disc inspection apparatus, a uniaxially anisotropic phase plate inserted in the optical path of a magneto-optical signal recording / reproducing optical system, means for rotating the phase plate simultaneously with the magneto-optical disc, A magneto-optical disk inspecting apparatus, comprising means for inspecting a defect of the magneto-optical disk from a signal whose phase has been changed by a phase plate.
JP16819892A 1992-06-04 1992-06-04 Test device for magnetic-optical disk Pending JPH05342676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16819892A JPH05342676A (en) 1992-06-04 1992-06-04 Test device for magnetic-optical disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16819892A JPH05342676A (en) 1992-06-04 1992-06-04 Test device for magnetic-optical disk

Publications (1)

Publication Number Publication Date
JPH05342676A true JPH05342676A (en) 1993-12-24

Family

ID=15863610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16819892A Pending JPH05342676A (en) 1992-06-04 1992-06-04 Test device for magnetic-optical disk

Country Status (1)

Country Link
JP (1) JPH05342676A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7397752B2 (en) 2003-05-14 2008-07-08 Sharp Kabushiki Kaisha Pickup for magneto-optical recording medium
JP2014082272A (en) * 2012-10-15 2014-05-08 Sharp Corp Inspection device and inspection method for solar cell module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7397752B2 (en) 2003-05-14 2008-07-08 Sharp Kabushiki Kaisha Pickup for magneto-optical recording medium
JP2014082272A (en) * 2012-10-15 2014-05-08 Sharp Corp Inspection device and inspection method for solar cell module

Similar Documents

Publication Publication Date Title
US6134011A (en) Optical measurement system using polarized light
JPS6367549A (en) Defect inspecting and film thickness measuring instrument for resist original disk
JP2531626B2 (en) Optical characteristic measuring device for optical recording medium substrate
JPS63100644A (en) Magneto-optical information reproducing device
US7542401B2 (en) Birefringence characteristic measuring method, optical recording medium and optical information recording/reproducing apparatus
US5432760A (en) Method of measuring phase difference of opto-magnetic record medium and apparatus for carrying out said method
JPH05342676A (en) Test device for magnetic-optical disk
US6236056B1 (en) Defect evaluation apparatus for evaluating defects and shape information thereof in an object or on the surface of an object
JPS61149846A (en) Method and device for measuring birefringence of plate type member
US7092100B2 (en) Quadrature phase shift interferometer (QPSI) decoder and method of decoding
JP2768798B2 (en) Optical disk inspection device
JPS62291550A (en) Apparatus for inspecting optical disk
JPH09257444A (en) Disk tester
JPS6071903A (en) Device for inspecting optical disc
JP2005283552A (en) Birefringence measurement device and birefringence measurement method
JP2671437B2 (en) Measuring method of track pitch unevenness
JP2869589B2 (en) Method for measuring condensed beam diameter using magneto-optical signal and method for inspecting optical system of optical disk apparatus using the method
JPH0569374B2 (en)
JPS63103927A (en) Mueller matrix measuring instrument
JPH05258381A (en) Kerr ellipticity measurement device
JPH0366737B2 (en)
JPH02183446A (en) Inspecting device for optical recording medium
JPH01155223A (en) Method for measuring optical anisotropy of transparent disk
JPH0556572B2 (en)
JPS63103938A (en) Optical pickup device