JPH0291836A - Device and method for recording and reproducing - Google Patents

Device and method for recording and reproducing

Info

Publication number
JPH0291836A
JPH0291836A JP24556088A JP24556088A JPH0291836A JP H0291836 A JPH0291836 A JP H0291836A JP 24556088 A JP24556088 A JP 24556088A JP 24556088 A JP24556088 A JP 24556088A JP H0291836 A JPH0291836 A JP H0291836A
Authority
JP
Japan
Prior art keywords
recording
probe electrode
reproducing
film
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24556088A
Other languages
Japanese (ja)
Inventor
Isaaki Kawade
河出一 佐哲
Kunihiro Sakai
酒井 邦裕
Yoshihiro Yanagisawa
芳浩 柳沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP24556088A priority Critical patent/JPH0291836A/en
Publication of JPH0291836A publication Critical patent/JPH0291836A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B9/00Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
    • G11B9/12Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor
    • G11B9/14Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor using microscopic probe means, i.e. recording or reproducing by means directly associated with the tip of a microscopic electrical probe as used in Scanning Tunneling Microscopy [STM] or Atomic Force Microscopy [AFM] for inducing physical or electrical perturbations in a recording medium; Record carriers or media specially adapted for such transducing of information
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B9/00Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
    • G11B9/12Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor
    • G11B9/14Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor using microscopic probe means, i.e. recording or reproducing by means directly associated with the tip of a microscopic electrical probe as used in Scanning Tunneling Microscopy [STM] or Atomic Force Microscopy [AFM] for inducing physical or electrical perturbations in a recording medium; Record carriers or media specially adapted for such transducing of information
    • G11B9/1418Disposition or mounting of heads or record carriers
    • G11B9/1427Disposition or mounting of heads or record carriers with provision for moving the heads or record carriers relatively to each other or for access to indexed parts without effectively imparting a relative movement
    • G11B9/1436Disposition or mounting of heads or record carriers with provision for moving the heads or record carriers relatively to each other or for access to indexed parts without effectively imparting a relative movement with provision for moving the heads or record carriers relatively to each other

Abstract

PURPOSE:To remove the noise component caused by vibration by impressing a voltage on a recording medium having an electric memory effect from a probe electrode which is driven in a circular motion and performing recording and reproducing. CONSTITUTION:Electric power from a pulse power source 108 is supplied to the probe electrode 102 whose distance with the recording layer 101 of a recording medium 1 is kept constant by a piezo-electric element and whose movement in X, Y and Z directions is controlled by an XY scanning driving circuit 109 and a fine adjustment control mechanism 107 to perform a spiral motion and a counter substrate electrode 103 on the layer 101 opposed to the electrode 102. Thus, the voltage is impressed on the layer 101 having the electric memory effect made of monomolecular film and monomolecular layer built-up film being an organic compound from the electrode 102, and recording and reproducing are performed. Since the probe electrode is so constituted that it does not perform reciprocating motion but the circular motion, the vibration of the probe electrode can be prevented from occurring and the noise component caused by the vibration can be removed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は記録再生装置及び記録再生方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a recording/reproducing apparatus and a recording/reproducing method.

更に詳しくは、一方をプローブ電極とした一対の電極間
に有機化合物の層構造を有し、電圧電流のスイッチング
特性に対してメモリー効果をもつ記録媒体を用いた記録
再生装置及び記録再生方法に関する。
More specifically, the present invention relates to a recording/reproducing apparatus and a recording/reproducing method using a recording medium that has a layered structure of an organic compound between a pair of electrodes, one of which is a probe electrode, and has a memory effect on voltage and current switching characteristics.

〔従来の技術〕[Conventional technology]

近年、メモリ材料の用途は、コンピュータおよびその関
連機器、ビデオディスク、ディジタルオーディオディス
ク等のエレクトロニクス産業の中核をなすものであり、
その材料開発も極めて活発に進んでいる。メモリ材料に
要求される性能は用途により異なるが、−船釣には、 ■高密度で記録容量が大きい、 ■記録再生の応答速度が速い、 ■消費電力が少ない、 ■生産性が高く、価格が安い、 等が挙げられる。
In recent years, the use of memory materials has become a core part of the electronics industry, such as computers and related equipment, video disks, digital audio disks, etc.
The development of these materials is also progressing very actively. The performance required of memory materials varies depending on the application, but for boat fishing, there are the following: - High density and large storage capacity - Fast response speed for recording and playback - Low power consumption - High productivity and price is cheap, etc.

従来までは磁性体や半導体を素材とした半導体メモリや
磁気メモリが主であったが、近年レーザー技術の進展に
ともない、有機色素、フォトポリマーなどの有機薄膜を
用いた光メモリによる安価で高密度な記録媒体が登場し
てきた。
Until now, semiconductor memories and magnetic memories were mainly made of magnetic materials and semiconductors, but with the recent advances in laser technology, inexpensive and high-density optical memories using organic thin films such as organic dyes and photopolymers have been developed. Recording media have appeared.

また、1個の有機分子に論理素子やメモリ素子等の機能
を持たせた分子電子デバイスの提案が発表され、分子電
子デバイスの構築技術の一つとみられるラングミュア−
プロジェット膜(以下LB膜と略す)についての研究も
活発化している。
In addition, a proposal for a molecular electronic device in which a single organic molecule has functions such as a logic element or a memory element was announced, and Langmuir's technology, which is considered to be one of the construction techniques for molecular electronic devices, was announced.
Research on Projet membranes (hereinafter abbreviated as LB membranes) is also becoming more active.

LB膜は有機分子を規則正しく1分子層ずつ積層したも
ので膜厚の制御は分子長の単位で行うことができ、−様
で均質な超薄膜を形成できる。この特徴を十分に活した
デバイス作成としてLB膜を絶縁膜として使う多(の試
みが行われてきている。
The LB film is made by laminating organic molecules one molecular layer at a time, and the film thickness can be controlled in units of molecular length, making it possible to form a -like, homogeneous ultra-thin film. Many attempts have been made to use the LB film as an insulating film to create devices that fully take advantage of this feature.

例えば金属・絶縁体・金属(MIM)構造のトンネル接
合素子[G、L、Larkins et al、、 T
h1n SolidFilms、 99.  (198
3)]や金属・絶縁体・半導体(MIS)構造に発光素
子[G、G、Roberts  etat、、 Ele
ctronics Letters、 20.489 
(1984)]あるいはスイッチング素子[N、J、T
homsa  etal、、 Electronics
 Letters、 20.838 (1984)]が
ある。これら一連の研究によって素子特性の検討がされ
ているが、未だ素子ごとの特性のバラツキ、経時変化な
ど再現性と安定性の欠如は未解決の問題として残った。
For example, tunnel junction devices with metal-insulator-metal (MIM) structures [G, L, Larkins et al., T
h1n Solid Films, 99. (198
3)] and metal-insulator-semiconductor (MIS) structures with light-emitting devices [G, Roberts, Ele.
ctronics Letters, 20.489
(1984)] or switching elements [N, J, T
homsa etal,, Electronics
Letters, 20.838 (1984)]. Although device characteristics have been investigated through a series of these studies, the lack of reproducibility and stability, such as variations in characteristics between devices and changes over time, remain unsolved problems.

従来、上記の如き検討は取扱いが比較的容易な脂肪酸の
LB膜を中心に進められてきた。しかし最近、これまで
劣るとされていた耐熱性2機械強度に対してもこれを克
服した有機材料が次々に生まれている。
Conventionally, the above studies have focused on fatty acid LB membranes, which are relatively easy to handle. Recently, however, organic materials have been created one after another that overcome heat resistance and mechanical strength, which were considered to be inferior until now.

我々は研究を進める中で従来にな(薄く均一な色素絶縁
膜を作製できるようになった。又、その結果全(新しい
メモリ機能を有するスイッチング現象を発現するMIM
素子をも発見するに至っている。
As we progressed with our research, we became able to fabricate a thin and uniform dye insulating film.
They have even discovered elements.

一方、最近、導体の表面原子の電子構造を直接観察でき
る走査型トンネル顕微鏡(以後、STMと略す)が開発
され、[G、B1nn1g et al、、He1ve
ticaPhysica  Acta、55,726 
(1982)]単結晶。
On the other hand, recently, a scanning tunneling microscope (hereinafter abbreviated as STM) that can directly observe the electronic structure of surface atoms of a conductor has been developed.
ticaPhysica Acta, 55,726
(1982)] single crystal.

非晶質を問わず実空間像の高い分解能の測定ができるよ
うになり、しかも媒体に電流による損傷を与えずに低電
力で観測できる利点をも有し、さらに大気中でも動作し
、種々の材料に対して用いることができるため広範囲な
応用が期待されている。
It is now possible to measure real space images with high resolution regardless of the amorphous material, and it also has the advantage of being able to observe with low power without damaging the medium due to current.Furthermore, it can operate even in the atmosphere, and can be used for various materials. Since it can be used for a wide range of purposes, it is expected to have a wide range of applications.

STMは金属の探針(プローブ電極)と導電性物質の間
に電圧を加えてlnm程度の距離まで近づけるとトンネ
ル電流が流れることを利用している。
STM utilizes the fact that a tunnel current flows when a voltage is applied between a metal probe (probe electrode) and a conductive substance and the probe is brought close to a distance of about 1 nm.

この電流は両者の距離変化に非常に敏感である、トンネ
ル電流を一定に保つように探針を走査することにより実
空間の表面構造を描(ことができると同時に表面原子の
全電子雲に関する種々の情報をも読み取ることができる
。この際、面内方向の分解能は1人種度である。従って
、STMの原理を応用すれば十分に原子オーダー(数人
)での高密度記録再生を行うことが可能である。この際
の記録再生方法としては、粒子線(電子線、イオン線)
或いはX線等の高エネルギー電磁波及び可視・紫外光等
のエネルギー線を用いて適当な記録層の表面状態を変化
させて記録を行い、STMで再生する方法や、記録層と
して電圧電流のスイッチング特性に対してメモリ効果を
もつ材料、例えばπ電子系有機化合物やカルコゲン化物
類の薄膜層を用いて、記録・再生をSTMを用いて行う
方法等が提案されている。(特開昭63−161552
、特開昭63−161553)〔発明が解決しようとし
ている問題点〕しかしながら、STMを応用した方法に
おいて従来ではプローブ電極をX方向またはY方向へ直
線往復運動させて記録・再生を行っていたため、プロー
ブ電極が反転する場所で発生する振動のため記録・再生
信号のノイズが増加するという問題点があった。また、
プローブ電極が反転する付近では、プローブ電極の速度
が減少するため記録・再生速度が低下してしまい、一定
速度で連続に記録・再生することが困難であるという問
題点もあった。
This current is very sensitive to changes in the distance between the two. By scanning the probe while keeping the tunneling current constant, it is possible to draw the surface structure in real space (at the same time, it is possible to draw various information about the total electron cloud of surface atoms). In this case, the resolution in the in-plane direction is 1 degree.Therefore, by applying the STM principle, it is sufficient to perform high-density recording and reproduction on the atomic order (several people). In this case, the recording and reproducing method is particle beam (electron beam, ion beam).
Alternatively, a method of recording by changing the surface state of an appropriate recording layer using high-energy electromagnetic waves such as X-rays and energy rays such as visible and ultraviolet light, and reproducing it with STM, and a method of changing the voltage-current switching characteristics of the recording layer. A method has been proposed in which recording and reproduction are performed using STM using a thin film layer of a material having a memory effect, such as a π-electron based organic compound or a chalcogenide. (Unexamined Japanese Patent Publication No. 63-161552
, Japanese Unexamined Patent Publication No. 63-161553) [Problem to be solved by the invention] However, in the conventional method applying STM, recording and reproduction were performed by linearly reciprocating the probe electrode in the X direction or the Y direction. There was a problem in that noise in recording/reproduction signals increased due to vibrations generated at the location where the probe electrode was reversed. Also,
There is also a problem in that near the point where the probe electrode reverses, the speed of the probe electrode decreases, so the recording/reproducing speed decreases, making it difficult to continuously record/reproduce at a constant speed.

〔問題点を解決するための手段(及び作用)〕本発明に
よれば記録・再生用のプローブ電極を円運動させながら
記録媒体に電圧を印加して記録・再生を行うため直線往
復運動時にプローブ電極の反転時に発生する振動を除去
でき、この振動によるノイズ成分を排除することが可能
となる。なおかつ、プローブ電極を一定の速さで動作さ
せることができるため、一定速度で連続に記録・再生す
ることも可能となる。
[Means for Solving the Problems (and Effects)] According to the present invention, since recording and reproduction are performed by applying a voltage to the recording medium while moving the probe electrode for recording and reproduction in a circular motion, the probe electrode is moved during linear reciprocating motion. It is possible to eliminate vibrations that occur when the electrodes are reversed, and it is possible to eliminate noise components caused by this vibration. Furthermore, since the probe electrode can be operated at a constant speed, it is also possible to record and reproduce continuously at a constant speed.

つまり、本発明はプローブ電極と電気メモリー効果をも
つ記録媒体を有し、前記プローブ電極を円運動させなが
ら記録媒体に電圧を印加して同心円状または旋状に記録
・再生を行うことを特徴とする記録再生装置を提供する
ものである。
In other words, the present invention is characterized by having a probe electrode and a recording medium having an electric memory effect, and recording and reproducing in a concentric or spiral manner by applying a voltage to the recording medium while moving the probe electrode in a circular manner. The purpose of the present invention is to provide a recording and reproducing device that can perform

〔発明の態様の詳細な説明〕[Detailed description of aspects of the invention]

本発明で用いる記録媒体は、π電子準位をもつ群とび電
子準位のみを有する群を併有する分子を電極上に積層し
た有機累積膜において、膜面に垂直な方向にプローブ電
極を用いて電流を流すことにより、従来とは異なる非線
型電流電圧特性を発現することができる。
The recording medium used in the present invention is an organic cumulative film in which molecules having both a group with a π electron level and a group with only an electron level are stacked on an electrode, and a probe electrode is used in a direction perpendicular to the film surface. By flowing current, it is possible to exhibit nonlinear current-voltage characteristics that are different from conventional ones.

一般に有機材料のほとんどは絶縁性若しくは半絶縁性を
示すことから係る本発明に於いて、適用可能なπ電子準
位をもつ群を有する有機材料は著しく多岐にわたる。
Since most organic materials generally exhibit insulating or semi-insulating properties, there is a wide variety of organic materials having a group having a π-electron level that can be applied to the present invention.

本発明に好適なπ電子系を有する色素の構造としては例
えば、フタロシアニン、テトラフェニルポルフィン等の
ポルフィリン骨格を有する色素、スクアリリウム基及び
クロコニックメチン基を結合鎖としてもつアズレン系色
素及びキノリン。
Examples of structures of dyes having a π-electron system suitable for the present invention include phthalocyanine, dyes having a porphyrin skeleton such as tetraphenylporphine, azulene dyes having squarylium groups and croconic methine groups as bonding chains, and quinoline.

ベンゾチアゾール、ベンゾオキサゾール等の2ケの含窒
素複素環をスクアリリウム基及びクロコニックメチン基
により結合したシアニン系類似の色素、またはシアニン
色素、アントラセン及びピレン等の縮合多感芳香族、及
び芳香環及び複素環化合物が重合した鎖状化合物及びジ
アセチレン基の重合体、さらにはテトラキノジメタンま
たはテトラチアフルバレンの誘導体およびその類縁体お
よび その電荷移動錯体また更にはフェロセン、トリス
ビピリジンルテニウム錯体等の金属錯体化合物が挙げら
れる。
Cyanine-based similar dyes in which two nitrogen-containing heterocycles such as benzothiazole and benzoxazole are bonded through squarylium groups and croconic methine groups, or cyanine dyes, fused polysensitive aromatics such as anthracene and pyrene, and aromatic rings and Chain compounds of polymerized heterocyclic compounds and polymers of diacetylene groups, derivatives of tetraquinodimethane or tetrathiafulvalene, their analogs and charge transfer complexes thereof, and metals such as ferrocene and trisbipyridine ruthenium complexes. Examples include complex compounds.

本発明に好適な高分子材料としては、例えばポリアクリ
ル酸誘導体等の付加重合体、ポリイミド等の縮合重合体
、ナイロン等の開環重合体、バクテリオロドプシン等の
生体高分子が挙げられる。
Examples of polymeric materials suitable for the present invention include addition polymers such as polyacrylic acid derivatives, condensation polymers such as polyimide, ring-opening polymers such as nylon, and biopolymers such as bacteriorhodopsin.

有機記録媒体の形成に関しては、具体的には蒸着法やク
ライスターイオンビーム法等の適用も可能であるが、制
御性、容易性そして再現性から公知の従来技術の中では
LB法が極めて好適である。
Regarding the formation of an organic recording medium, it is possible to specifically apply the vapor deposition method, the Kleister ion beam method, etc., but the LB method is extremely suitable among the known conventional techniques due to its controllability, ease, and reproducibility. It is.

このLB法によれば、1分子中に疎水性部位と親水性部
位とを有する有機化合物の単分子膜またはその累積膜を
基板上に容易に形成することができ、分子オーダの厚み
を有し、かつ大面積にわたって均一、均質な有機超薄膜
を安定に供給することができる。
According to this LB method, a monomolecular film of an organic compound having a hydrophobic site and a hydrophilic site in one molecule or a cumulative film thereof can be easily formed on a substrate, and has a thickness on the order of a molecule. , and can stably supply a uniform and homogeneous ultra-thin organic film over a large area.

LB法は分子内に親水性部位と疎水性部位とを有する構
造の分子において、両者のバランス(両親媒性のバラン
ス)が適度に保たれている時、分子は水面上で親水性基
を下に向けて単分子の層になることを利用して単分子膜
またはその累積膜を作製する方法である。
The LB method is a molecule with a structure that has a hydrophilic site and a hydrophobic site, and when the balance between the two (amphiphilic balance) is maintained appropriately, the molecule lowers the hydrophilic group on the water surface. This is a method of producing a monomolecular film or a cumulative film thereof by utilizing the fact that it becomes a monomolecular layer toward.

疎水性部位を構成する基としては、一般に広く知られて
いる飽和及び不飽和炭化水素基や縮合多環芳香族基及び
鎖状多環フェニル基等の各種疎水基が挙げられる。これ
らは各々単独又はその複数が組み合わされて疎水性部位
を構成する。一方、親水性部分の構成要素として最も代
表的なものは、例えばカルボキシル基、エステル基、酸
アミド基。
Examples of the group constituting the hydrophobic moiety include various hydrophobic groups such as generally widely known saturated and unsaturated hydrocarbon groups, fused polycyclic aromatic groups, and chain polycyclic phenyl groups. These each constitute a hydrophobic site singly or in combination. On the other hand, the most typical constituent elements of the hydrophilic moiety are, for example, carboxyl groups, ester groups, and acid amide groups.

イミド基、ヒドロキシル基、更にはアミノ基(1゜2.
3級及び4級)等の親水性基等が挙げられる。
Imide groups, hydroxyl groups, and even amino groups (1°2.
Examples include hydrophilic groups such as tertiary and quaternary).

これら、も各々単独又はその複数が組み合わされて上記
分子の親水性部分を構成する。
These also constitute the hydrophilic portion of the above molecule either singly or in combination.

これらの疎水性基と親水性基をバランス良く併有してい
れば、水面上で単分子膜を形成することが可能であり、
本発明に対して極めて好適な材料となる。
If it has both these hydrophobic groups and hydrophilic groups in a well-balanced manner, it is possible to form a monomolecular film on the water surface.
This is an extremely suitable material for the present invention.

具体例としては、例えば下記の如き分子等が挙げられる
Specific examples include the following molecules.

〈有機材料〉 [11クロコニックメチン色素 [11]  スクアリリウム色素 [I]で挙げた化合物のクロコニックメチン基を下記の
構造を持つスクアリリウム基で置き換えた化合物。
<Organic materials> [11 Croconic methine dye [11] A compound in which the croconic methine group of the compound listed in squarylium dye [I] is replaced with a squarylium group having the following structure.

[III 1 ポルフィリ ン系色素化合物 ここでR,は前述のσ電子準位をもつ群に相当したもの
で、しかも水面上で単分子膜を形成しやすくするために
導入された長鎖アルキル基で、その炭素数nは5<n<
30が好適である。
[III 1 Porphyrin dye compound Here, R corresponds to the group having the above-mentioned σ electron level, and is a long-chain alkyl group introduced to facilitate the formation of a monomolecular film on the water surface. The number of carbon atoms n is 5<n<
30 is preferred.

希土類金属イオン [Tvコ 縮合多環芳香族化合物 (CH2) OOH Br− Rは単分子膜を形成しゃす(するために導入されたもの
で、ここで挙げた置換基に限るものではない。
Rare earth metal ion [Tv co-fused polycyclic aromatic compound (CH2) OOH Br- R is introduced to form a monomolecular film, and is not limited to the substituents listed here.

又、R1−R4,Rは前述したσ電子準位をもつ群に[
V] ジアセチレン化合物 CH3(−CH2矢。
In addition, R1-R4,R are in the group with the above-mentioned σ electron level [
V] Diacetylene compound CH3 (-CH2 arrow.

CミC−(、:C(−CH2)、X 0≦n。CmiC-(,:C(-CH2),X 0≦n.

! ≦−20 但し n+1 〉 O Xは親水基で一般的には一〇〇OHが用いられるが−O
H。
! ≦-20 However, n+1 〉 O X is a hydrophilic group, and 100OH is generally used, but -O
H.

−CONH2等も使用できる。-CONH2 etc. can also be used.

[VI] その他 く 有機高分子材料 〉 6)酢酸ビニルコポリマー [I]付加重合体 1)ポリアクリル酸 R。[VI] others Ku organic polymer materials 〉 6) Vinyl acetate copolymer [I] Addition polymer 1) Polyacrylic acid R.

ポリアクリル酸エステル ポリイミド Co 2R。polyacrylic acid ester polyimide Co2R.

アクリル酸コポリマー アクリル酸エステルコポリマー ÷0CO−CH−CH2÷ ポリビニルアセテート [m]開環重合体 l)ポリエチレンオキシド ÷ 0−CH−CH2 ± すしすし1″i3 ここで、R1は水面上で単分子膜を形成しやすくするた
めに導入された長鎖アルキル基で、その炭素数nは5≦
n≦30が好適である。
Acrylic acid copolymer Acrylic acid ester copolymer ÷ 0CO-CH-CH2 ÷ Polyvinyl acetate [m] Ring-opening polymer l) Polyethylene oxide ÷ 0-CH-CH2 ± Sushi Sushi 1"i3 Here, R1 is the monomolecular film on the water surface A long-chain alkyl group introduced to facilitate the formation of a carbon number n of 5≦
It is preferable that n≦30.

また、R5は短鎖アルキル基であり、炭素数nは1≦n
≦4が好適である。重合度mは100≦m≦5000が
好適である。
Further, R5 is a short-chain alkyl group, and the number of carbon atoms n is 1≦n
≦4 is suitable. The degree of polymerization m is preferably 100≦m≦5000.

以上、具体例として挙げた化合物は基本構造のみであり
、これら化合物の種々の置換体も本発明に於いて好適で
あることは言うにおよばない。
The compounds mentioned above as specific examples are only basic structures, and it goes without saying that various substituted products of these compounds are also suitable in the present invention.

尚、上記以外でもLB法に適している有機材料。In addition, organic materials other than those mentioned above are also suitable for the LB method.

有機高分子材料であれば、本発明に好適なのは言うまで
もない。例えば近年研究が盛んになりつつある生体材料
(例えばバタテリオロドブシンやチトクロームC)や合
成ポリペプチド(PBLGなど)等も適用が可能である
Needless to say, any organic polymer material is suitable for the present invention. For example, biomaterials (eg, batatteriorhodobuscin and cytochrome C) and synthetic polypeptides (PBLG, etc.), which have been actively studied in recent years, can also be applied.

係る両親媒性の分子は、水面上で親水基を下に向けて単
分子の層を形成する。このとき、水面上の単分子層は二
次元系の特徴を有し、分子がまばらに散゛開していると
きは、一分子当り面積Aと表面圧πとの間に二次元理想
気体の式、π A=kT が成り立ち、“気体膜”となる。ここに、kはボルツマ
ン定数、Tは絶対温度である。Aを十分小さくすれば分
子間相互作用が強まり、二次元固体の“凝縮膜(または
固体膜)”になる。凝縮膜はガラスや樹脂の如き種々の
材質や形状を有する任意の物体の表面へ一層ずつ移すこ
とができる。この方法を用いて、単分子膜またはその累
積膜を形成し、記録層として使用することができる。
Such amphiphilic molecules form a monomolecular layer on the water surface with the hydrophilic groups facing downward. At this time, the monomolecular layer on the water surface has the characteristics of a two-dimensional system, and when the molecules are sparsely spread, there is a two-dimensional ideal gas between the area A per molecule and the surface pressure π. The formula π A=kT holds true, resulting in a "gas film". Here, k is Boltzmann's constant and T is absolute temperature. If A is made sufficiently small, the intermolecular interaction becomes stronger, resulting in a two-dimensional solid "condensation film (or solid film)." The condensed film can be transferred layer by layer onto the surface of arbitrary objects having various materials and shapes, such as glass and resin. Using this method, a monomolecular film or a cumulative film thereof can be formed and used as a recording layer.

具体的な製法としては、例えば以下に示す方法を挙げる
ことができる。
As a specific manufacturing method, for example, the method shown below can be mentioned.

所望の有機化合物をクロロホルム、ベンゼン。Chloroform and benzene for the desired organic compound.

アセトニトリル等の溶剤に溶解させる。次に添付図面の
第7図に示す如き適当な装置を用いて、係る溶液を水相
81上に展開させて有機化合物を膜状に形成させる。
Dissolve in a solvent such as acetonitrile. Next, using a suitable apparatus as shown in FIG. 7 of the accompanying drawings, the solution is spread on the aqueous phase 81 to form an organic compound in the form of a film.

次に、この展開層82が水相81上を自由に拡散して広
がりすぎないように仕切板(または浮子)83を設け、
展開膜82の展開面積を制限して膜物質の集合状態を制
御し、その集合状態に比例した表面圧πを得る。この仕
切板83を動かし、展開面積を縮小して膜物質の集合状
態を制御し、表面圧を徐々に上昇させ、膜の製造に適す
る表面圧πを設定することができる。この表面圧を維持
しながら、静かに清浄な基板84を垂直に上昇又は下降
させることにより有機化合物の単分子膜が基板84上に
移し取られる。このような単分子膜91は第8a図また
は第8b図に模式的に示す如(分子が秩序正しく配列し
た膜である。
Next, a partition plate (or float) 83 is provided to prevent this spread layer 82 from freely diffusing and spreading too much on the aqueous phase 81.
The expanded area of the expanded membrane 82 is limited to control the aggregated state of the membrane material, and a surface pressure π proportional to the aggregated state is obtained. By moving the partition plate 83, the developed area can be reduced to control the aggregation state of the membrane material, and the surface pressure can be gradually increased to set the surface pressure π suitable for membrane production. While maintaining this surface pressure, the monomolecular film of the organic compound is transferred onto the substrate 84 by gently raising or lowering the clean substrate 84 vertically. Such a monomolecular film 91 is a film in which molecules are arranged in an orderly manner, as schematically shown in FIG. 8a or 8b.

単分子膜91は以上で製造されるが、前記の操作を繰り
返すことにより所望の累積数の累積膜が形成される。単
分子膜91を基板84上に移すには、上述した垂直浸漬
法の他、水平付着法、回転円筒法等の方法でも可能であ
る。尚、水平付着法は、基板を水面に水平に接触させて
単分子膜を移し取る方法であり、回転円筒法は円筒形の
基板を水面上を回転させて単分子膜を基板表面に移し取
る方法である。
The monomolecular film 91 is manufactured as described above, and by repeating the above operations, a desired number of cumulative films can be formed. To transfer the monomolecular film 91 onto the substrate 84, in addition to the above-mentioned vertical dipping method, methods such as a horizontal adhesion method and a rotating cylinder method can also be used. The horizontal deposition method is a method in which a monomolecular film is transferred by bringing the substrate into horizontal contact with the water surface, and the rotating cylinder method is a method in which a cylindrical substrate is rotated above the water surface to transfer the monomolecular film onto the substrate surface. It's a method.

前述した垂直浸漬法では、表面が親水性である基板を水
面を横切る方向に水中から引き上げると有機化合物の親
水性部位92が基板84側に向いた有機化合物の単分子
膜91が基板84上に形成される(第8b図)。前述の
ように基板84を上下させると、各行程毎に一枚ずつ単
分子膜91が積み重なって累積膜101が形成される。
In the vertical immersion method described above, when a substrate with a hydrophilic surface is lifted out of water in a direction across the water surface, a monomolecular film 91 of an organic compound with the hydrophilic portion 92 of the organic compound facing the substrate 84 is formed on the substrate 84. (Fig. 8b). When the substrate 84 is moved up and down as described above, the monomolecular films 91 are stacked one by one in each step, forming a cumulative film 101.

成膜分子の向きが引上行程と浸漬行程で逆になるので、
この方法によると単分子膜の各層間は有機化合物の疎水
性部位93iiと93bが向かいあうY型膜が形成され
る(第9a図)。これに対し、水平付着法は、有機化合
物の疎水性部位93が基板84側に向いた単分子膜91
が基板84上に形成される(第8a図)。この方法では
、単分子膜91を累積しても成膜分子の向きの交代はな
く全ての層において、疎水性部位93aと93bが基板
84側に向いたX型膜が形成される(第9b図)。反対
に全ての層において親水性部位92a、  92bが基
板84側に向いた累積膜101は2型膜と呼ばれる(第
9C図)。
Since the direction of the film-forming molecules is reversed during the pulling process and the dipping process,
According to this method, a Y-shaped film is formed between each layer of the monomolecular film in which the hydrophobic sites 93ii and 93b of the organic compound face each other (FIG. 9a). On the other hand, in the horizontal deposition method, a monomolecular film 91 with the hydrophobic portion 93 of the organic compound facing the substrate 84 side is used.
is formed on substrate 84 (FIG. 8a). In this method, even if the monomolecular film 91 is accumulated, the direction of the film-forming molecules does not change, and an X-shaped film is formed in which the hydrophobic parts 93a and 93b face the substrate 84 in all layers (No. 9b figure). On the other hand, the cumulative film 101 in which the hydrophilic portions 92a and 92b of all the layers face the substrate 84 is called a type 2 film (FIG. 9C).

単分子膜91を基板84上に移す方法は、上記方法に限
定されるわけではなく、大面積基板を用いる時にはロー
ルから水相中に基板を押し出していく方法なども採り得
る。また、前述した親水性基および疎水性基の基板への
向きは原則であり、基板の表面処理等によって変えるこ
ともできる。
The method of transferring the monomolecular film 91 onto the substrate 84 is not limited to the above method, and when a large-area substrate is used, a method of extruding the substrate from a roll into an aqueous phase may also be adopted. Further, the directions of the hydrophilic groups and hydrophobic groups described above toward the substrate are in principle, and can be changed by surface treatment of the substrate, etc.

以上の如くして有機化合物の単分子膜91またはその累
積膜101からなるポテンシャル障壁層が基板84上に
形成される。
As described above, a potential barrier layer consisting of the organic compound monomolecular film 91 or its cumulative film 101 is formed on the substrate 84.

本発明において、上記の如き無材及び有機材料が積層さ
れた薄膜を支持するための基板84は、金属、ガラス、
セラミックス、プラスチック材料等いずれの材料でもよ
く、更に耐熱性の著しく低い生体材料も使用できる。
In the present invention, the substrate 84 for supporting the thin film in which the above-mentioned inorganic and organic materials are laminated may be metal, glass,
Any material such as ceramics or plastic material may be used, and biomaterials with extremely low heat resistance may also be used.

上記の如き基板84は任意の形状でよ(平板状であるの
が好ましいが、平板に何ら限定されない。
The substrate 84 as described above may have any shape (preferably a flat plate, but is not limited to a flat plate at all).

すなわち前記成膜法においては、基板の表面がいかなる
形状であってもその形状通りに膜を形成し得る利点を有
するからである。
That is, the above film forming method has the advantage that a film can be formed in accordance with the shape of the surface of the substrate, no matter what shape it is.

一方、本発明で用いられる電極材料も高い伝導性を有す
るものであれば良(、例えばAu、 Pt。
On the other hand, the electrode material used in the present invention may be any material as long as it has high conductivity (for example, Au, Pt, etc.).

Ag、Pd、Af、In、Sn、Pb、Wなどの金属や
これらの合金、さらにはグラファイトやシリサイド、ま
たさらにはITOなどの導電性酸化物を始めとして数多
(の材料が挙げられ、これらの本発明への適用が考えら
れる。係る材料を用いた電極形成法としても従来公知の
薄膜技術で十分である。但し、基板上に直接形成される
電極材料は表面がLB膜形成の際、絶縁性の酸化膜をつ
くらない導電材料、例えば貴金属やITOなどの酸化物
導電体を用いることが好ましい。
There are many materials, including metals such as Ag, Pd, Af, In, Sn, Pb, and W, and their alloys, as well as graphite, silicide, and even conductive oxides such as ITO. can be applied to the present invention.As a method for forming electrodes using such materials, conventionally known thin film techniques are sufficient.However, when electrode materials are formed directly on a substrate, the surface is It is preferable to use a conductive material that does not form an insulating oxide film, such as a noble metal or an oxide conductor such as ITO.

なお、記録媒体の金属電極は、本発明となる記録層が絶
縁性のため必要となるが、該記録層がMΩ以下の半導体
的性質を示すものであれば該金属電極は不必要となる。
Note that the metal electrode of the recording medium is necessary because the recording layer of the present invention is insulative, but if the recording layer exhibits semiconductor properties of MΩ or less, the metal electrode is unnecessary.

すなわち、記録層そのものをプローブ電極の対向電極と
して用いることができる。
That is, the recording layer itself can be used as a counter electrode to the probe electrode.

また、プローブ電極の先端は記録/再生/消去の分解能
を上げるためできるだけ尖らせる必要がある。本発明で
は、SiO□基板上にSiをフォーカスト・イオンビー
ムで打ち込み、Siの上に選択的にStを結晶成長させ
、Auを蒸着して導電性の処理を行なつたプローブを用
いているが、プローブの形状や処理方法は何らこれに限
定するものではない。
Further, the tip of the probe electrode needs to be as sharp as possible in order to improve recording/reproducing/erasing resolution. In the present invention, a probe is used in which Si is implanted onto a SiO□ substrate using a focused ion beam, St is selectively grown on the Si, and Au is evaporated to make it conductive. However, the shape of the probe and the processing method are not limited thereto.

以上述べてきた材料および成膜方法を用いて第4図に示
したMIM構造の素子を作成したとき、第5図と第6図
に示すような電流電圧特性を示すメモリースイッチング
素子が得られ、2つの状態(ON状態とOFF状態)が
それぞれメモリ性を有することがすでに見い出されてい
る。これらのメモリースイッチング特性は数λ〜数1,
000人の層厚のものに発現されているが、本発明にお
ける記録媒体としては数Å〜500人の範囲の層厚のも
のが良(、最も好ましくはlOλ〜200人の層厚をも
つものが良い。
When an element with the MIM structure shown in FIG. 4 is created using the materials and film formation method described above, a memory switching element exhibiting current-voltage characteristics as shown in FIGS. 5 and 6 is obtained. It has already been found that two states (ON state and OFF state) each have memory properties. These memory switching characteristics range from several λ to several 1,
However, as a recording medium in the present invention, a layer thickness in the range of several Å to 500 layers is preferable (most preferably one with a layer thickness in the range of lOλ to 200 layers). is good.

第4図中84は基板、41はAu電極、42はAi電極
、43は前述した単分子累積膜を表わしている。
In FIG. 4, reference numeral 84 represents a substrate, 41 an Au electrode, 42 an Ai electrode, and 43 the aforementioned monomolecular cumulative film.

第1図は本発明の記録・再生装置を示すブロック構成図
である。第1図中、105はプローブ電流増巾器で、1
06はプローブ電流が一定になるようにすなわち記録層
101とプローブ電極102間の距離を一定に保つよう
に圧電素子を用いた微動機構107を制御するサーボ回
路である。108はプローブ電極102と基板電極10
3の間の記録層101に記録/消去用のパルス電圧を印
加するための電源である。
FIG. 1 is a block diagram showing a recording/reproducing apparatus of the present invention. In Fig. 1, 105 is a probe current amplifier;
06 is a servo circuit that controls the fine movement mechanism 107 using a piezoelectric element so that the probe current becomes constant, that is, the distance between the recording layer 101 and the probe electrode 102 is kept constant. 108 is the probe electrode 102 and the substrate electrode 10
This is a power supply for applying a pulse voltage for recording/erasing to the recording layer 101 between 3 and 3.

パルス電圧を印加するときプローブ電流が急激に変化す
るためサーボ回路106は、その間出力電圧が一定にな
るようにHOLD回路をONにするように制御している
Since the probe current changes rapidly when applying the pulse voltage, the servo circuit 106 controls the HOLD circuit to be turned on so that the output voltage remains constant during that time.

110と111は、あらかじめ10−’A程度のプロー
ブ電流が得られるようにプローブ電極102と記録媒体
101との距離を粗動制御するものである。
110 and 111 are used to coarsely control the distance between the probe electrode 102 and the recording medium 101 so that a probe current of about 10-'A is obtained in advance.

109はXY力方向プローブ電極102を移動制御する
ためのxY走査駆動回路である。本発明ではX方向およ
びY方向へ走査駆動させるために印加する電圧Vx、V
yの大きさおよび位相を調節することにより、プローブ
電極102を円運動するように制御している。
109 is an xY scan drive circuit for controlling the movement of the probe electrode 102 in the XY force directions. In the present invention, the voltages Vx and V applied for scanning drive in the X direction and the Y direction are
By adjusting the magnitude and phase of y, the probe electrode 102 is controlled to move circularly.

これらの各機器は、すべてマイクロコンピュータ112
により中央制御されている。また113は表示機器を表
している。
Each of these devices is all controlled by a microcomputer 112.
Centrally controlled by Further, 113 represents a display device.

また、圧電素子を用いた移動制御における機械曲性能を
下記に示す。
Furthermore, the mechanical bending performance in movement control using piezoelectric elements is shown below.

Z方向微動制御範囲 : 0.lnm−1μmZ方向粗
動制御範囲 :10nm 〜10mmXY方向走査範囲
  : 0.1層m 〜I p m計測・制御許容誤差
  : <0.1層m以下、本発明を実施例に従って説
明する。
Z direction fine movement control range: 0. lnm-1 μm Z-direction coarse movement control range: 10 nm to 10 mm XY-direction scanning range: 0.1 layer m to I p m Measurement/control tolerance: <0.1 layer m or less The present invention will be described according to examples.

[実施例1コ 第1図に示す記録再生装置を用いた。プローブ電極10
2として白金/ロジウム製のプローブ電極を用いた。こ
のプローブ電極102は記録層101の表面との距離(
Z)を制御するためのもので電流を一定に保つように圧
電素子により、その距離(Z)が微動制御されている。
[Example 1] A recording and reproducing apparatus shown in FIG. 1 was used. Probe electrode 10
As No. 2, a platinum/rhodium probe electrode was used. The distance between this probe electrode 102 and the surface of the recording layer 101 (
The distance (Z) is controlled by a piezoelectric element to keep the current constant.

更に微動制御機構107は距離Zを一定に保ったまま、
面内(x、 y)方向にも微動制御できるように設計さ
れている。
Furthermore, the fine movement control mechanism 107 keeps the distance Z constant,
It is designed to allow fine movement control in the in-plane (x, y) directions as well.

第2a図に微動制御機構107とプローブ電極102、
記録媒体の模式図を示す。微動制御機構107は、円筒
型圧電素子とX方向、Y方向、Z方向への微動制御用電
圧を印加する電極をそれぞれもっており、例えば第2b
図の様に+X、  −Xに電圧を印加することによりX
方向へ走査することができる。
FIG. 2a shows a fine movement control mechanism 107 and a probe electrode 102,
A schematic diagram of a recording medium is shown. The fine movement control mechanism 107 has a cylindrical piezoelectric element and electrodes for applying fine movement control voltages in the X direction, Y direction, and Z direction.
By applying voltage to +X and -X as shown in the figure,
It is possible to scan in the direction.

またプローブ電極102は直接記録・再生・消去を行う
ことができる。また記録媒体は高精度のxyステージ1
14の上に置かれ、任意の位置に移動させることができ
る。
Further, the probe electrode 102 can directly perform recording, reproduction, and erasing. In addition, the recording medium is a high-precision xy stage 1
14 and can be moved to any position.

次に、Auで形成した電極103の上に形成されたスク
アリリュウムービス−6−才りチルアズレン(以下5O
AZと略す)のLB膜(8層)を用いた記録・再生・消
去の実験についてその詳細を記す。
Next, squaryryum bis-6-year-old thylazulene (hereinafter 5O
The details of the recording/reproducing/erasing experiment using the LB film (8 layers) of AZ (abbreviated as AZ) are described below.

5OAZ8層を累積した記録層101をもつ記録媒体1
をXYステージ114の上に置き、まず目視によりプロ
ーブ電極102の位置を決め、しっがりと固定した。A
u電極(アース側)1o3とプローブ電極102の間に
+3.OVの電圧を印加し、電流をモニターしながらプ
ローブ電極102と記録層101表面との距離(Z)を
調整した。この時、プローブ電極102と記録層101
表面との距離Zを制御するためのプローブ電流1pを1
O−IIA≧Ip≧10弔Aになるように設定した。プ
ローブ電極102とAu電極103との間に電気メモリ
ー効果を生じる閾値電圧を越えていない電圧である1、
5Vの読み取り用電圧を印加して電流値を測定したとこ
ろ、μA以下でOFF状態を示した。次にON状態を生
じる閾値電圧Vth、ON以上の電圧である第3図に示
した波形をもつ三角波パルス電圧を印加したのち、再び
1.5vの電圧を電極間に印加して電流を測定したとこ
ろ0.7mA程度の電流が流れON状態となっていたこ
とを示した。すなわち、ON状態が記録された。
Recording medium 1 having a recording layer 101 in which 5 OAZ 8 layers are accumulated
was placed on the XY stage 114, and the position of the probe electrode 102 was first determined visually and firmly fixed. A
+3. between u electrode (earth side) 1o3 and probe electrode 102. A voltage of OV was applied, and the distance (Z) between the probe electrode 102 and the surface of the recording layer 101 was adjusted while monitoring the current. At this time, the probe electrode 102 and the recording layer 101
The probe current 1p for controlling the distance Z to the surface is 1
It was set so that O-IIA≧Ip≧10A. 1, which is a voltage that does not exceed a threshold voltage that causes an electrical memory effect between the probe electrode 102 and the Au electrode 103;
When a reading voltage of 5V was applied and the current value was measured, an OFF state was indicated at less than μA. Next, after applying a triangular wave pulse voltage having the waveform shown in Figure 3, which is a voltage higher than the threshold voltage Vth that causes an ON state, a voltage of 1.5 V was applied between the electrodes again and the current was measured. However, a current of about 0.7 mA flowed, indicating that it was in an ON state. That is, an ON state was recorded.

次にON状態からOFF状態へ変化する閾値電圧Vth
、OFF以上の電圧であるピーク電圧5V、パルス巾1
μsの三角波パルス電圧を印加したのち、再び1.5v
を印加したところ、この時の電流値はμへ以下でOFF
状態に戻ることが確認された。
Next, the threshold voltage Vth that changes from the ON state to the OFF state
, peak voltage 5V that is higher than OFF, pulse width 1
After applying a triangular wave pulse voltage of μs, 1.5V is applied again.
When applied, the current value at this time is OFF below μ
It was confirmed that the condition has returned.

第2a図に示した微動制御機構107のX方向およびY
方向の電極にXY走査駆動回路からそれぞれ電圧Vx、
Vyを印加してプローブ電極102を動かす。この時の
印加電圧Vx、Vyを下記に示した。
The X direction and Y direction of the fine movement control mechanism 107 shown in FIG. 2a
A voltage Vx is applied to the electrodes in each direction from the XY scan drive circuit
Vy is applied to move the probe electrode 102. The applied voltages Vx and Vy at this time are shown below.

上記の電圧を円筒型圧電素子に印加することによってプ
ローブ電極をら旋状に動作させながら前述した方法でプ
ローブ電極とAu電極との間に三角波パルス電圧を印加
して、o、ooiμm NO、1μmの間の種々のピッ
チでON状態を書き込み連続したデータをら旋状に記録
した。
By applying the above voltage to the cylindrical piezoelectric element, the probe electrode is moved in a spiral shape, and a triangular wave pulse voltage is applied between the probe electrode and the Au electrode in the above-described manner to obtain o, ooiμm NO, 1μm The ON state was written at various pitches in between, and continuous data was recorded in a spiral pattern.

次に、記録時とまった(同等にプローブ電極をら旋状に
動作させながら、プローブ電極とAu電極の間に1.5
vの電圧を印加して再生を行ったところ、0.01μm
以下の分解能で、かつ一定の速度で連続にデータ信号を
読みだすことができた。また、プローブ電極をX方向ま
たはY方向に直線往復運動して記録・再生した時にみら
れた振動によるノイズは本実験ではみられなかった。
Next, during recording, the distance between the probe electrode and the Au electrode was 1.5 mm, while the probe electrode was moved in a spiral manner.
When reproducing was performed by applying a voltage of 0.01 μm
Data signals could be read out continuously at a constant speed with the following resolution: Further, in this experiment, noise caused by vibration, which was observed when recording and reproducing by moving the probe electrode back and forth linearly in the X direction or the Y direction, was not observed.

以上の実験に用いた5OAZ−LB膜は下記のごと(作
成した。
The 5OAZ-LB film used in the above experiment was prepared as follows.

光学研磨したガラス基板(基板104)を中性洗剤およ
びトリクレンを用いて洗浄した後、下引き層としてCr
を真空蒸着法により厚さ50人堆積させ、更にAuを同
法により400人蒸着口た下地電極(Au電極103)
を形成した。
After cleaning the optically polished glass substrate (substrate 104) using a neutral detergent and Triclean, Cr was applied as an undercoat layer.
A base electrode (Au electrode 103) was made by depositing Au to a thickness of 50 layers using the vacuum evaporation method, and then depositing 400 layers of Au using the same method.
was formed.

次に5OAZを濃度0.2mg/m1で溶かしたクロロ
ホルム溶液を20℃の水相上に展開し、水面上に単分子
膜を形成した。溶媒の蒸発を待ち係る単分子膜の表面圧
を20mN/mまで高め、更にこれを一定に保ちながら
前記電極基板を水面を横切るように速度5 m m 7
分で静かに浸漬し、さらに引上げ2層のY形単分子膜の
累積を行つた。この操作を適当回数繰返すことによって
前記基板上に2.4.8゜12、20.30層の6種類
の累積膜を形成し、記録再生実験を行った。その評価結
果を表1に示す。
Next, a chloroform solution in which 5OAZ was dissolved at a concentration of 0.2 mg/ml was spread on the water phase at 20°C to form a monomolecular film on the water surface. Waiting for the evaporation of the solvent, the surface pressure of the monomolecular film was increased to 20 mN/m, and while keeping this constant, the electrode substrate was moved across the water surface at a speed of 5 mm 7
The film was gently immersed for 1 minute, and then pulled up to accumulate two Y-shaped monolayers. By repeating this operation an appropriate number of times, six types of cumulative films of 2.4.8°12 and 20.30 layers were formed on the substrate, and recording and reproducing experiments were conducted. The evaluation results are shown in Table 1.

評価は記録書き込みパルスおよび消去電圧を印加した後
の記録性および消去性の良否、更に記録状態と消去状態
での電流値の比(ON10FF比)および分解能により
総合的に判定し、特に良好なものを◎、良好なものを○
、他のものと比較していくぶん評価の低いものを△とし
た。
The evaluation is comprehensively judged based on the quality of recording and erasing properties after applying the recording write pulse and erasing voltage, as well as the ratio of current values in the recording state and erasing state (ON10FF ratio) and resolution. ◎、Good item ○
, Items with somewhat lower ratings compared to others were marked △.

[実施例2コ 実施例1で用いた5OAZ記録媒体の代わりにルテチウ
ムシフタロジアニン[LuH(Pc) 2 ]の]t−
ブチル誘導を用いた以外は実施例1と同様にして実験を
行った。記録性、0N10FF比、消去性、分解能の結
果は表1にまとめて示した。5OAZと同様に、一定の
速度で連続にデータ信号の記録・再生ができ、振動によ
るノイズはみられず、S/N比の良い信号が得られた。
[Example 2] In place of the 5OAZ recording medium used in Example 1, lutetium siphthalodianine [LuH(Pc) 2 ]]t-
An experiment was conducted in the same manner as in Example 1 except that butyl induction was used. The results of recording performance, 0N10FF ratio, erasability, and resolution are summarized in Table 1. Similar to 5OAZ, data signals could be recorded and reproduced continuously at a constant speed, no noise due to vibration was observed, and a signal with a good S/N ratio was obtained.

なお、LuH(Pc)2のt−ブチル誘導体の累積条件
は下記の通りである。
Note that the accumulation conditions for the t-butyl derivative of LuH(Pc)2 are as follows.

溶 媒:クロロホルム/トリメチルベンゼン/アセトン
(1/1/2) 濃  度:  0.5mg/mI! 水 相:純粋、水温20℃ 表面圧: 20 m N / m 、基板上下速度3 
m m /公表    1 [実施例3コ 実施例1と同様に、第2a図に示した円筒型圧電素子か
らなる微動制御機構107をもった第1図の記録・再生
装置および5OAZのLB膜(8層)を記録媒体として
用い実験を行った。
Solvent: Chloroform/trimethylbenzene/acetone (1/1/2) Concentration: 0.5mg/mI! Water phase: pure, water temperature 20℃, surface pressure: 20 mN/m, substrate vertical speed 3
m m /Publication 1 [Example 3] Similar to Example 1, the recording/reproducing device shown in FIG. 1 having the fine movement control mechanism 107 consisting of a cylindrical piezoelectric element shown in FIG. 8 layers) as a recording medium.

円筒型圧電素子に印加する微動制御用電圧を下記に示し
た。
The fine movement control voltage applied to the cylindrical piezoelectric element is shown below.

但しω:角速度、v (B :電圧の振幅、C,Dは定
数であり、Int (x)はXの整数部を示す。
However, ω: angular velocity, v (B: voltage amplitude, C and D are constants, and Int (x) indicates the integer part of X.

上記の電圧を印加することによって、プローブ電極を同
心円状に動作させながら実施例1と同様に記録・再生実
験を行ったところ、実施例1とほぼ同等の結果が得られ
た。
Recording and reproducing experiments were conducted in the same manner as in Example 1 while the probe electrodes were operated in concentric circles by applying the above voltage, and results almost the same as in Example 1 were obtained.

以上、実施例では微動制御機構107として円筒型圧電
素子を用いて説明を行ったが、本発明はこれに限定する
ものではなく、例えば平行ヒンジバネ等を利用したもの
でもよく、XY力方向微動制御できるものであればよい
Although the embodiment has been described using a cylindrical piezoelectric element as the fine movement control mechanism 107, the present invention is not limited to this. For example, a parallel hinge spring or the like may be used, and the fine movement control mechanism 107 can be controlled in the XY force direction. It's fine as long as it's possible.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、記録・再生用のプローブ電極を円
運動させながら記録媒体に電圧を印加して記録・再生を
行うことにより往復直線運動時にプローブ電極の反転時
に発生する振動を除去でき、この振動によるノイズ成分
を排除することができ、なおかつ、プローブ電極を一定
の速さで動作させることができるため、一定速度で連続
に記録・再生することも可能となる。
As explained above, by performing recording and reproducing by applying a voltage to the recording medium while moving the probe electrode for recording and reproducing in a circular motion, it is possible to eliminate the vibration that occurs when the probe electrode is reversed during reciprocating linear motion. Since noise components due to vibration can be eliminated and the probe electrode can be operated at a constant speed, it is also possible to record and reproduce continuously at a constant speed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に用いた記録・再生装置図である。 第2a図、第2b図は微動制御機構の模式図および走査
説明図である。 第3図は記録信号波形である。 第4図はMIM素子の構成略図で、第5図と第6図は第
4図の素子で得られる電気的特性を示す特性図である。 第7図は累積膜の成膜装置の模式図である。 第8a図と第8b図は単分子膜の模式図であり、第9a
図、第9b図と第9C図は累積膜の模式図である。 1・・・・・・・・・・・・・・・記録媒体101・・
・・・・・・・・・・・・・・記録層102・・・・・
・・・・・・・・プローブ電極103・・・・・・・・
・・・・・・・基板電極104・・・・・・・・・・・
・・・・・・基板105・・・・・・・・・・プローブ
電流増幅器106・・・・・・・・・・・・・・サーボ
回路107・・・・・・・・・・・・・微動制御機構1
08・・・・・・・・・・・・・・パルス電源109・
・・・・・・・・・・xY走査駆動回路110・・・・
・・・・・・・・・・・粗動機構111・・・・・・・
・・・・・・粗動駆動回路112・・・・・・・・・マ
イクロコンピュータ113・・・・・・・・・・・・・
・・表示装置114・・・・・・・・・・・・・XYス
テージ第2久7 X方向走査 第 ワ 時 聞 集録Z 砲リフ 尭90区
FIG. 1 is a diagram of a recording/reproducing apparatus used in the present invention. FIGS. 2a and 2b are a schematic diagram and a scanning explanatory diagram of the fine movement control mechanism. FIG. 3 shows the recording signal waveform. FIG. 4 is a schematic diagram of the structure of the MIM element, and FIGS. 5 and 6 are characteristic diagrams showing the electrical characteristics obtained with the element of FIG. 4. FIG. 7 is a schematic diagram of a cumulative film forming apparatus. Figures 8a and 8b are schematic diagrams of monolayers;
Figures 9b and 9c are schematic diagrams of cumulative films. 1...... Recording medium 101...
...... Recording layer 102...
......Probe electrode 103...
......Substrate electrode 104...
...... Board 105 ...... Probe current amplifier 106 ...... Servo circuit 107 ...... ...Fine movement control mechanism 1
08・・・・・・・・・・・・Pulse power supply 109・
......xY scan drive circuit 110...
......Coarse movement mechanism 111...
...... Coarse movement drive circuit 112 ...... Microcomputer 113 ......
・・Display device 114・・・・・・・・・XY stage 2nd stage 7

Claims (14)

【特許請求の範囲】[Claims] (1)プローブ電極と電気メモリー効果をもつ記録媒体
及び前記プローブ電極から記録媒体に電圧を印加する記
録及び又は再生手段を有する記録・再生装置であって、
さらに該プローブ電極を円運動させる駆動手段を有する
ことを特徴とする記録・再生装置。
(1) A recording/reproducing device having a probe electrode, a recording medium having an electric memory effect, and a recording and/or reproducing means for applying a voltage from the probe electrode to the recording medium,
A recording/reproducing device further comprising a drive means for circularly moving the probe electrode.
(2)前記記録媒体が前記プローブ電極と、該プローブ
電極に対向配置した対向電極との間に配置されている請
求項1記載の記録・再生装置。
(2) The recording/reproducing apparatus according to claim 1, wherein the recording medium is arranged between the probe electrode and a counter electrode arranged opposite to the probe electrode.
(3)前記記録媒体が有機化合物の単分子膜又は該単分
子層を累積した累積膜を有している請求項1記載の記録
・再生装置。
(3) The recording/reproducing apparatus according to claim 1, wherein the recording medium has a monomolecular film of an organic compound or a cumulative film formed by accumulating the monomolecular layers.
(4)前記単分子膜又は累積膜の膜厚が数Å〜数100
0Åの範囲である請求項3記載の記録・再生装置。
(4) The thickness of the monomolecular film or cumulative film is from several angstroms to several hundred
4. The recording/reproducing apparatus according to claim 3, wherein the recording/reproducing device has a range of 0 Å.
(5)前記単分子膜又は累積膜の膜厚が数Å〜500Å
の範囲である請求項3記載の記録・再生装置。
(5) The thickness of the monomolecular film or cumulative film is several Å to 500 Å
4. The recording/reproducing apparatus according to claim 3, wherein the recording/reproducing apparatus is within the range of .
(6)前記単分子膜又は累積膜の膜厚が10Å〜200
Åの範囲である請求項3記載の記録・再生装置。
(6) The thickness of the monomolecular film or cumulative film is 10 Å to 200 Å.
4. The recording/reproducing apparatus according to claim 3, wherein the recording/reproducing apparatus has a range of .ANG.
(7)前記単分子膜又は累積膜がLB法によって成膜し
た膜である請求項3記載の記録・再生装置。
(7) The recording/reproducing device according to claim 3, wherein the monomolecular film or the cumulative film is a film formed by an LB method.
(8)前記有機化合物が分子中にπ電子準位をもつ群と
σ電子準位をもつ群とを有する請求項3記載の記録・再
生装置。
(8) The recording/reproducing device according to claim 3, wherein the organic compound has a group having a π electron level and a group having a σ electron level in the molecule.
(9)前記有機化合物が有機色素化合物である請求項1
記載の記録・再生装置。
(9) Claim 1, wherein the organic compound is an organic dye compound.
The recording/playback device described.
(10)前記有機化合物がポルフィリン骨格を有する色
素、アズレン系色素、シアニン系色素、スクアリリウム
基をもつ色素、クロコニックメチン基をもつ色素、縮合
多環芳香族化合物、縮合複素環化合物、ジアセチレン重
合体、テトラキノジメタン、テトラチアフルバレン及び
金属錯体化合物からなる群より選択された少なくとも1
種の化合物である請求項3記載の記録・再生装置。
(10) The organic compound is a dye having a porphyrin skeleton, an azulene dye, a cyanine dye, a dye having a squarylium group, a dye having a croconic methine group, a fused polycyclic aromatic compound, a fused heterocyclic compound, a diacetylene polymer. At least one compound selected from the group consisting of tetraquinodimethane, tetrathiafulvalene, and metal complex compounds.
4. The recording/reproducing device according to claim 3, wherein the recording/reproducing device is a seed compound.
(11)前記プローブ電極を円運動させるためのXY走
査駆動装置を有している請求項1記載の記録・再生装置
(11) The recording/reproducing apparatus according to claim 1, further comprising an XY scanning drive device for circularly moving the probe electrode.
(12)前記プローブ電極と記録媒体の相対位置を3次
元的に微動制御する手段を有している請求項1記載の記
録・再生装置。
(12) The recording/reproducing apparatus according to claim 1, further comprising means for finely controlling the relative position of the probe electrode and the recording medium in three dimensions.
(13)電気メモリー効果をもつ記録媒体に、プローブ
電極から電気メモリー効果を生じる閾値電圧を越えた電
圧を印加して書込みを行うかまたは電気メモリー効果を
生じる閾値電圧を越えていない電圧を印加して、前記記
録媒体に流れる電流量の変化を読む記録・再生方法であ
って、さらに書込みまたは読み取りを行う際、該プロー
ブ電極を円運動させる工程を有することを特徴とする記
録・再生方法。
(13) Write to a recording medium that has an electric memory effect by applying a voltage that exceeds the threshold voltage that causes the electric memory effect from the probe electrode, or apply a voltage that does not exceed the threshold voltage that causes the electric memory effect. A recording/reproducing method for reading changes in the amount of current flowing through the recording medium, further comprising the step of circularly moving the probe electrode when writing or reading.
(14)前記円運動が同心円状またはら旋状に移動させ
るものである請求項13記載の記録・再生方法。
(14) The recording/reproducing method according to claim 13, wherein the circular movement is concentric or spiral movement.
JP24556088A 1988-09-28 1988-09-28 Device and method for recording and reproducing Pending JPH0291836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24556088A JPH0291836A (en) 1988-09-28 1988-09-28 Device and method for recording and reproducing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24556088A JPH0291836A (en) 1988-09-28 1988-09-28 Device and method for recording and reproducing

Publications (1)

Publication Number Publication Date
JPH0291836A true JPH0291836A (en) 1990-03-30

Family

ID=17135525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24556088A Pending JPH0291836A (en) 1988-09-28 1988-09-28 Device and method for recording and reproducing

Country Status (1)

Country Link
JP (1) JPH0291836A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04372745A (en) * 1991-06-21 1992-12-25 Canon Inc Recording medium and production thereof, information processor, erasing method
US5321685A (en) * 1990-10-09 1994-06-14 Canon Kabushiki Kaisha Cantilever type probe, scanning tunnel microscope and information processing apparatus using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5321685A (en) * 1990-10-09 1994-06-14 Canon Kabushiki Kaisha Cantilever type probe, scanning tunnel microscope and information processing apparatus using the same
JPH04372745A (en) * 1991-06-21 1992-12-25 Canon Inc Recording medium and production thereof, information processor, erasing method

Similar Documents

Publication Publication Date Title
US5623476A (en) Recording device and reproduction device
JP2556491B2 (en) Recording device and recording method
JP2556492B2 (en) Reproduction device and reproduction method
JP2794348B2 (en) Recording medium, manufacturing method thereof, and information processing apparatus
JP2859715B2 (en) Recording medium substrate and manufacturing method thereof, recording medium, recording method, recording / reproducing method, recording apparatus, recording / reproducing apparatus
JP2756254B2 (en) Recording device and playback device
US5206665A (en) Recording medium, method for preparing the same, recording and reproducing device, and recording, reproducing and erasing method by use of such recording medium
EP0553937B1 (en) Recording device and reproducing device
JP2556520B2 (en) Recording device and recording method
JPH0291836A (en) Device and method for recording and reproducing
JP3044421B2 (en) Recording medium manufacturing method
JPS63204531A (en) Reproducing device
JP2981789B2 (en) Recording medium and information processing device
JP2926522B2 (en) Recording medium, method of manufacturing the same, and information processing apparatus
JP2936290B2 (en) Method for manufacturing recording medium, recording medium, and information processing apparatus having the same
JP2859652B2 (en) Recording / reproducing method and recording / reproducing apparatus
JP3261539B2 (en) Manufacturing method of electrode substrate
JP2866164B2 (en) Recording medium, method of manufacturing the same, information processing method, and information processing apparatus
JP2866165B2 (en) Recording medium, method of manufacturing the same, information processing method, and information processing apparatus
JPH0371447A (en) Recording medium
JPH03295043A (en) Recording medium
JPH03295044A (en) Production of recording medium
JPH03273539A (en) Recording and reproducing device
JPH03295042A (en) Production of recording medium
JPH04143942A (en) Formation of track