JPH029180A - Infrared ray detecting device - Google Patents

Infrared ray detecting device

Info

Publication number
JPH029180A
JPH029180A JP63160273A JP16027388A JPH029180A JP H029180 A JPH029180 A JP H029180A JP 63160273 A JP63160273 A JP 63160273A JP 16027388 A JP16027388 A JP 16027388A JP H029180 A JPH029180 A JP H029180A
Authority
JP
Japan
Prior art keywords
semiconductor layer
electrode
infrared
wavelength
infrared rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63160273A
Other languages
Japanese (ja)
Inventor
Yasuaki Yoshida
保明 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63160273A priority Critical patent/JPH029180A/en
Publication of JPH029180A publication Critical patent/JPH029180A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To obtain a compact infrared ray detecting device which allows high performance wavelength separation by a method wherein a first semiconductor layer and a second semiconductor layer whose forbidden band width is narrow are formed on a transparent insulation layer and PN junction is provided on each of the first and second semiconductors. CONSTITUTION:A carrier excited by infrared rays in a wavelength band of 3 to 5mum absorbed in a first semiconductor layer 11 below an N-electrode 19 is detected between the electrode 19 and a common P-electrode 17. A carrier excited by infrared rays in a wavelength band of 10mum absorbed in a second semiconductor layer 12 below the electrode 19 is detected between the electrode 19 and the electrode 17. A carrier excited by infrared rays in a wavelength band of 3 to 5mum absorbed in the semiconductor layer 11 below an N-electrode 18 is detected between the electrode 18 and the electrode 17. Infrared light of wavelength of 10mum which has injected below the electrode 18 transmits the semiconductor 11 and is not detected. This realizes a compact infrared rays detecting element which permits wavelength separation with high performance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は赤外線検知素子の構造に関し、特に複数の波
長域、たとえば3〜5μm帯、および10μm帯の波長
分離が可能なフォトダイオード・アレイ型の赤外線検知
素子の構造に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to the structure of an infrared sensing element, and in particular to a photodiode array type device capable of wavelength separation in a plurality of wavelength ranges, for example, a 3 to 5 μm band and a 10 μm band. The present invention relates to the structure of an infrared sensing element.

〔従来の技術〕[Conventional technology]

第3図(alは従来のフォトダイオード・アレイ型の赤
外線検知素子の構造を示す平面図、第3図(b)はその
断面図であり、第4図は従来の波長分離が可能な赤外線
検知素子の断面図である。
Figure 3 (al is a plan view showing the structure of a conventional photodiode array type infrared detection element, Figure 3 (b) is a cross-sectional view thereof, and Figure 4 is a conventional infrared detection element capable of wavelength separation. FIG. 3 is a cross-sectional view of the element.

図において、1はCdTeよりなる高抵抗の基板、2は
Cd、Hg+−+c Teよりなる半導体層、3は不純
物ドープ層、4はpn接合、5はp電極、6はn電極、
7は赤外線、8はシッートパス・フィルタである。
In the figure, 1 is a high-resistance substrate made of CdTe, 2 is a semiconductor layer made of Cd, Hg+-+cTe, 3 is an impurity doped layer, 4 is a pn junction, 5 is a p electrode, 6 is an n electrode,
7 is an infrared ray, and 8 is a sheet-pass filter.

次に図を用いて従来のフォトダイオード・アレイ型の赤
外線検知素子について説明する。
Next, a conventional photodiode array type infrared sensing element will be explained using figures.

Cdx Hg+−x T eはII−Vl族の化合物半
導体で、組成Xにより禁制帯幅が変化し、特にXl−0
゜2のものは波長10μm帯の、x =0.3のものは
波長3〜5μm帯の赤外線検知素子材料として広く利用
されている。Cd)I Hg +−w T eを用イた
赤外線検知素子の構造としては、第3図のようなフォト
ダイオ、−ド型のものが公知で、CdTeよりなる高抵
抗の基板1上にp型のCdo、t Hgo、sTeより
なる半導体層2を10〜20μmエピタキシャル成長し
、その後、通常の写真製版技術を用いてn型の不純物を
ドープし、pn接合4を形成していた。pn接合の大き
さは50μm角〜200μm角程度であり、pn接合の
数(画素数)は32X32画素、あるいはそれ以上の画
素数のものが用いられる。
Cdx Hg+-x Te is a II-Vl group compound semiconductor, and the forbidden band width changes depending on the composition
The material with x = 0.3 is widely used as an infrared sensing element material for the wavelength band of 3 to 5 μm. As a structure of an infrared detecting element using Cd) I Hg +-w Te, a photodiode type as shown in FIG. A semiconductor layer 2 made of Cdo, t Hgo, or sTe is epitaxially grown to a thickness of 10 to 20 μm, and then an n-type impurity is doped using ordinary photolithography to form a pn junction 4 . The size of the pn junction is approximately 50 μm square to 200 μm square, and the number of pn junctions (number of pixels) used is 32×32 pixels or more.

このような赤外線検知素子は、これをStの電荷結合素
子(COD)と組合わせてハイブリッド型の固体撮像素
子を作製し、赤外画像追尾装置に利用される。ところで
赤外画像追尾に対する回避策として第5図のように囮の
高温発熱体を放出する方法がある。第5図において9は
目標、10は囮である。第6図はブランクの放射側から
計算される黒体の放射発散度を示す図で、この図より常
温付近(約300”K)の物体も、高温発熱体くたとえ
ば1000”K)も波長10μm帯の赤外線を放射して
いることがわかる。従ってCd0.。
Such an infrared sensing element is combined with an St charge-coupled device (COD) to produce a hybrid solid-state image sensor, which is used in an infrared image tracking device. By the way, as a workaround for infrared image tracking, there is a method of emitting a decoy high-temperature heating element as shown in FIG. In FIG. 5, 9 is a target and 10 is a decoy. Figure 6 shows the radiant emittance of a blackbody calculated from the radiation side of the blank.This figure shows that objects near room temperature (approximately 300"K) and high-temperature heating objects (e.g. 1000"K) have a wavelength of 10μ. It can be seen that it emits infrared rays in the band. Therefore, Cd0. .

Hgo、eTeから作製した波長10μm帯の赤外線検
知素子を用いた場合、目標9と囮10の区別をつけるこ
とができなかった。ここで第6図より、たとえば300
’にの目標では波長5μmの赤外線強度二波長10μm
の赤外線強度=1=3であるのに対し、1000”Kの
囮では波長5μmの赤外線強度:波長10μm帯の赤外
線強度−10:1であるので、波長3〜5μm帯と波長
10μm帯の赤外線検知素子の出力信号の比をとること
により、目標9と囮10の区別ができる。
When using an infrared detection element with a wavelength of 10 μm made of Hgo or eTe, it was not possible to distinguish between the target 9 and the decoy 10. From Figure 6, for example, 300
The target of
The infrared intensity of the 1000"K decoy is: infrared intensity of 5 μm wavelength: infrared intensity of 10 μm wavelength band - 10:1. The target 9 and the decoy 10 can be distinguished by taking the ratio of the output signals of the detection elements.

そこで波長3〜5μm帯と波長10μm帯の赤外線を分
離して検知するために、従来は波長3〜5μm帯と波長
10μm帯の2つの赤外線検知素子が併用する方法、可
視のカラーイメージセンサIJLm4図のようにショー
トパスフィルタ8を使用して波長分離を行なう方法、あ
るいは第7図に示す波長多重通信用フォトダイオードの
如く、バッファ層を介してpn接合を順次結晶成長によ
り形成した赤外線検知素子を用いる方法が採られていた
Therefore, in order to separate and detect the infrared rays in the 3-5 μm wavelength band and the 10 μm wavelength band, the conventional method is to use two infrared detection elements in the 3-5 μm wavelength band and the 10 μm wavelength band in combination.Visible color image sensor IJLm4 A method of performing wavelength separation using a short-pass filter 8 as shown in FIG. 7, or an infrared sensing element in which a pn junction is successively formed by crystal growth via a buffer layer, as in the photodiode for wavelength multiplexing communication shown in FIG. The method used was adopted.

第4図のようにショートパスフィルタ8を使用して波長
分離を行なう方法は、Cdo、z Hgo、gTeより
なる半導体1ij2は波長10μmに最大感度を有する
が、波長5μmの赤外光に対してもその約2分の1の感
度を有するので、このようにCdo、z Hgo、s 
Teとフィルタを用いることにより波長分離が可能とな
るものである。
The method of performing wavelength separation using a short-pass filter 8 as shown in FIG. has about half the sensitivity, so Cdo, z Hgo, s
Wavelength separation is possible by using Te and a filter.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の赤外′!FfA検知素子では以上のような方法で
複数の赤外線を検知しているので、2つの赤外線検知素
子が併用する方法では装置が大型で重くなり実用的でな
いという問題点があり、ショートパスフィルタを使用し
て波長分離を行なう方法では波長に比例して干渉膜が厚
くなるため、赤外域のフィルタの形成には多大の時間を
必要とし、又、干渉膜形成中に赤外線検知素子の温度が
上昇し特性が劣化してしまうという問題点があり、バッ
ファ層を介してpn接合を順次結晶成長により形成した
赤外線検知素子を用いる方法ではCd、Hg、−、Te
の導電型はストイキメトリにより制御しているためこの
ような結晶成長によるpn接合形成は難しく、又、第7
図の構造ではアレイ化が困難であるという問題点があっ
た。
Conventional infrared′! Since the FfA detection element detects multiple infrared rays using the method described above, the method of using two infrared detection elements together has the problem that the device becomes large and heavy, making it impractical, so a short-pass filter is used. In the method of wavelength separation, the interference film becomes thick in proportion to the wavelength, so it takes a lot of time to form a filter in the infrared region, and the temperature of the infrared sensing element increases during the formation of the interference film. There is a problem that the characteristics deteriorate, and the method using an infrared sensing element in which a pn junction is formed by successive crystal growth via a buffer layer uses Cd, Hg, -, Te.
Since the conductivity type of the seventh
The structure shown in the figure had a problem in that it was difficult to form an array.

この発明は上記のような問題点を解消するためなされた
もので、小型・軽量であるとともに、作製が容易で特性
の良い複数の波長域の赤外線を検知できる赤外′fI!
A検知素子を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and is small and lightweight, easy to manufacture, and capable of detecting infrared rays in multiple wavelength ranges with good characteristics.
The purpose is to obtain a sensing element A.

〔課題を解決するための手段〕 この発明に係る赤外線検知素子は、裏面より赤外線が入
射する赤外線に対し透明な絶縁基板上の全面に形成され
た第1の半導体層と、該第1の半導体層上の所定領域に
形成された該第1の半導体層と同一の導電型を有しかつ
該第1の半導体層より狭い禁制帯幅を有する第2の半導
体層と、該第2の半導体層の表面部分の所定9■域及び
該第2の半導体層が形成された領域以外の上記第1の半
導体層の表面部分の所定領域に形成された、上記第1、
第2の半導体層と異なる導電型の不純物ドープ層とを備
えたものである。
[Means for Solving the Problems] An infrared sensing element according to the present invention includes: a first semiconductor layer formed on the entire surface of an insulating substrate that is transparent to infrared rays and in which the infrared rays enter from the back surface; a second semiconductor layer formed in a predetermined region on the layer and having the same conductivity type as the first semiconductor layer and having a narrower forbidden band width than the first semiconductor layer; The first,
It includes a second semiconductor layer and an impurity doped layer of a different conductivity type.

〔作用〕[Effect]

この発明においては、透明な絶縁基板上に第1の半導体
層を形成し、さらに該半導体層上の所定領域に該第1の
半導体層と同一導電型で禁制帯幅の狭い第2の半導体層
を形成して、これら第1゜第2の半導体層の各々にpn
接合を備えた構成としたから、2層の結晶成長により極
めて容易に製造でき、また製造過程において特性の劣化
のない、小型で高性能な波長分離が可能な赤外線検知素
子−を得ることができる。
In this invention, a first semiconductor layer is formed on a transparent insulating substrate, and a second semiconductor layer having the same conductivity type as the first semiconductor layer and having a narrow band gap is formed in a predetermined region on the semiconductor layer. A pn layer is formed in each of these first and second semiconductor layers.
Because of the structure with a junction, it is possible to obtain an infrared sensing element that is extremely easy to manufacture by two-layer crystal growth, and that does not deteriorate in characteristics during the manufacturing process and is capable of wavelength separation with a small size and high performance. .

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図(alはこの発明の赤外線検知素子の平面図、第1図
(b)はそのA−A ’断面図である。第1図において
1はCdTeよりなる高抵抗の基板、11はP型のCd
6.I Hgo、q T 8よりなる第1の半導体層、
12はp型のCdo、z Hgo、e T 6よりなる
第2の半導体層、13はN型の不純物ドープ層、14は
第1の半導体層におけるPN接合、15はn型の不純物
ドープ層、16は第2の半導体層におけるpn接合、1
7は共通p電極、18はN[極、19はn11t極であ
る。
An embodiment of the present invention will be described below with reference to the drawings. 1st
Figure (al) is a plan view of the infrared sensing element of the present invention, and Figure 1 (b) is its AA' sectional view. In Figure 1, 1 is a high resistance substrate made of CdTe, 11 is a P-type substrate. Cd
6. a first semiconductor layer consisting of I Hgo, q T 8;
12 is a second semiconductor layer made of p-type Cdo, z Hgo, eT 6, 13 is an N-type impurity doped layer, 14 is a PN junction in the first semiconductor layer, 15 is an n-type impurity doped layer, 16 is a pn junction in the second semiconductor layer, 1
7 is a common p electrode, 18 is an N[pole, and 19 is an n11t pole.

第2図はこの発明の赤外線検知素子中のへテロ接合のバ
ンド図で、第2図(a)はn型の不純物ドープ層15と
第2の半導体層12間のバンド図、第2図(blはn型
の不純物ドープl115と第2の半導体層12と第1の
半導体層11と第2の半導体層12の間のバンド図、第
2図(C1はN型の不純物ドープ層13と第1の半導体
層11と第2の半導体層12の間のバンド図である。
FIG. 2 is a band diagram of the heterojunction in the infrared sensing element of the present invention, FIG. 2(a) is a band diagram between the n-type impurity doped layer 15 and the second semiconductor layer 12, and FIG. bl is a band diagram between the n-type impurity doped layer 115, the second semiconductor layer 12, the first semiconductor layer 11, and the second semiconductor layer 12; FIG. 1 is a band diagram between a first semiconductor layer 11 and a second semiconductor layer 12. FIG.

このような構造の赤外線検知素子に入射した赤外線の内
、波長3〜5μm帯のものは禁制帯幅の広い第1の半導
体層11で吸収され、波長10μm帯のものは第1の半
導体層11を透過し、禁制帯幅の狭い第2の半導体層1
2吸収される。n電極19の下の第1の半導体1’ll
lで吸収された波長3〜5μm帯の赤外線によって励起
されたキャリアは、第2図(b)に示す経路を通りn電
極19と共通p電極17の間で検出される。n電極19
の下の第2の半導体層12で吸収された波長10μm帯
の赤外線によって励起されたキャリアは、第2図(al
に示す経路を通りn′r!4極19と共通p電極17の
間で検出される。N電極18の下の第1の半m体層11
で吸収された波長3〜5μm帯の赤外線によって励起さ
れたキャリアは、第2図(C)に示す経路を通りN電極
18と共通pffi橿17の間で検出される。N電極1
8の下に入射した波長10μm帯の赤外光は第1の半導
体層11を透過し検出されない。
Of the infrared rays incident on the infrared sensing element having such a structure, those in the wavelength range of 3 to 5 μm are absorbed by the first semiconductor layer 11, which has a wide forbidden band width, and those in the wavelength band of 10 μm are absorbed by the first semiconductor layer 11. The second semiconductor layer 1 is transparent and has a narrow forbidden band width.
2 is absorbed. First semiconductor 1'll under the n-electrode 19
Carriers excited by the infrared rays in the wavelength band of 3 to 5 μm absorbed by the carriers are detected between the n-electrode 19 and the common p-electrode 17 through the path shown in FIG. 2(b). n-electrode 19
The carriers excited by the infrared rays in the 10 μm wavelength band absorbed by the second semiconductor layer 12 under the
Follow the route shown in n'r! It is detected between the quadrupole 19 and the common p-electrode 17. First half-layer 11 under N electrode 18
Carriers excited by the infrared rays in the 3-5 μm wavelength band absorbed by the carriers are detected between the N electrode 18 and the common PFFI rod 17 through the path shown in FIG. 2(C). N electrode 1
Infrared light with a wavelength of 10 μm that is incident below 8 is transmitted through the first semiconductor layer 11 and is not detected.

以上のことがらn電極19の下では従来の赤外線検知素
子と同様、波長10μm帯と波長3〜5μm帯の赤外線
が検出され、N電極18の下では波長3〜5μm帯の赤
外線のみが検出されることになる。
As described above, under the N-electrode 19, infrared rays in the 10 μm wavelength band and in the 3-5 μm wavelength band are detected, as with conventional infrared sensing elements, and under the N-electrode 18, only infrared rays in the 3-5 μm wavelength band are detected. That will happen.

従って本実施例の赤外線検知素子を用いれば、赤外画像
を得ると同時に、波長3〜5μm帯の赤外線と波長10
μm帯の赤外線の強度の比を得ることができ、目標の識
別能力が大幅に向上する。
Therefore, if the infrared sensing element of this embodiment is used, at the same time an infrared image can be obtained, an infrared image with a wavelength of 3 to 5 μm and an infrared image with a wavelength of 10 μm can be obtained.
It is possible to obtain the intensity ratio of infrared rays in the μm band, and the target identification ability is greatly improved.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば赤外線検出素子におい
て、透明な絶83基板上に第1の半導体層を形成し、さ
らに該半導体層上の所定21域に該第1の半導体層と同
一導電型で禁制帯幅の狭い第2の半導体層を形成して、
これら第1.第2の半導体層の各々にpn接合を備えた
構成としたから、2層の結晶成長により極めて容易に製
造でき、また製造過程において特性の劣化のない、小型
で高性能な波長分離が可能な赤外線検知素子を得ること
ができる効果がある。
As described above, in the infrared detecting element according to the present invention, a first semiconductor layer is formed on a transparent substrate, and a predetermined area on the semiconductor layer has the same conductivity as the first semiconductor layer. forming a second semiconductor layer with a narrow forbidden band width in a mold;
These first. Since each of the second semiconductor layers has a pn junction, it is extremely easy to manufacture by growing two-layer crystals, and it is possible to perform compact and high-performance wavelength separation without deterioration of characteristics during the manufacturing process. This has the effect of making it possible to obtain an infrared sensing element.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図[a)はこの発明の一実施例による赤外線検知素
子の構造を示す平面図、第1図(b)は第1図(alの
A−A ’断面図、第2図は本発明の詳細な説明するた
めのバンド図、第3図(a)は従来の赤外線検知素子の
構造を示す平面図、第3図(′b)は第3図(alの断
面図、第4図は従来の波長分離が可能な赤外線検知素子
の断面図、第5図は赤外画像追尾に対する回避策を示す
図、第6図は黒体の放射発散度を示す図、第7図は波長
多重通信用フォトダイオードを示す図である。 1は高抵抗の基板、7は赤外線、11は第1の半導体層
、12は第2の半導体層、13はN型不純物ドープ層、
14はPN接合、15はn型不純物ドープ層、16はp
n接合、17は共通p電極、18はNlj、19はn1
1極。 なお図中同一符号は同−又は相当部分を示す。
Fig. 1 [a] is a plan view showing the structure of an infrared detection element according to an embodiment of the present invention, Fig. 1 (b) is a sectional view taken along line A-A' of Fig. 3(a) is a plan view showing the structure of a conventional infrared sensing element, FIG. 3('b) is a sectional view of FIG. A cross-sectional view of a conventional infrared sensing element capable of wavelength separation, Fig. 5 is a diagram showing a workaround for infrared image tracking, Fig. 6 is a diagram showing the radiant emittance of a black body, and Fig. 7 is a diagram showing wavelength division multiplexing communication. 1 is a diagram showing a photodiode for use. 1 is a high-resistance substrate, 7 is an infrared ray, 11 is a first semiconductor layer, 12 is a second semiconductor layer, 13 is an N-type impurity doped layer,
14 is a PN junction, 15 is an n-type impurity doped layer, and 16 is a p-n junction.
n junction, 17 is common p electrode, 18 is Nlj, 19 is n1
1 pole. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] (1)フォトダイオード・アレイ型の赤外線検知素子に
おいて、 その裏面より赤外線が入射する赤外線に対し透明な絶縁
基板と 該絶縁基板上の全面に形成された第1の半導体層と、 該第1の半導体層上の所定領域に形成された該第1の半
導体層と同一の導電型を有しかつ該第1の半導体層より
狭い禁制帯幅を有する第2の半導体層と、 該第2の半導体層の表面部分の所定領域及び該第2の半
導体層が形成された領域以外の上記第1の半導体層の表
面部分の所定領域に形成された、上記第1、第2の半導
体層と異なる導電型の不純物ドープ層とを備えたことを
特徴とする赤外線検知素子。
(1) A photodiode array type infrared sensing element, comprising an insulating substrate that is transparent to infrared rays that enters from the back surface thereof, a first semiconductor layer formed on the entire surface of the insulating substrate, and the first semiconductor layer. a second semiconductor layer formed in a predetermined region on the semiconductor layer and having the same conductivity type as the first semiconductor layer and having a narrower forbidden band width than the first semiconductor layer; A conductive material different from the first and second semiconductor layers formed in a predetermined region of the surface portion of the layer and a predetermined region of the surface portion of the first semiconductor layer other than the region where the second semiconductor layer is formed. An infrared sensing element characterized by comprising a type impurity doped layer.
JP63160273A 1988-06-28 1988-06-28 Infrared ray detecting device Pending JPH029180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63160273A JPH029180A (en) 1988-06-28 1988-06-28 Infrared ray detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63160273A JPH029180A (en) 1988-06-28 1988-06-28 Infrared ray detecting device

Publications (1)

Publication Number Publication Date
JPH029180A true JPH029180A (en) 1990-01-12

Family

ID=15711431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63160273A Pending JPH029180A (en) 1988-06-28 1988-06-28 Infrared ray detecting device

Country Status (1)

Country Link
JP (1) JPH029180A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5115295A (en) * 1989-10-31 1992-05-19 Mitsubishi Denki Kabushiki Kaisha Photodetector device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5115295A (en) * 1989-10-31 1992-05-19 Mitsubishi Denki Kabushiki Kaisha Photodetector device

Similar Documents

Publication Publication Date Title
US5149956A (en) Two-color radiation detector array and methods of fabricating same
EP1961048B1 (en) Multi colour photon detectors
US5751049A (en) Two-color infrared detector
JPS63128677A (en) Mamufacture of semiconductor photodetector
JPS60143668A (en) Color image sensor
US4646120A (en) Photodiode array
JP3108528B2 (en) Optical position detection semiconductor device
JPS61139061A (en) Semiconductor photodetector
JPS6343366A (en) Infrared detector
JPH029180A (en) Infrared ray detecting device
JPH03145763A (en) Photoetching device
CA2197295A1 (en) Compounds and infrared devices including in1-xtlxq, where q is as1-ypy and 0 <= y <= 1
GB2206447A (en) Lensed photodetector
JPS63273365A (en) Infrared-ray detector
JPH07105522B2 (en) Semiconductor device
JP2848345B2 (en) Infrared detector
JPS6222474A (en) Infrared solid-state image pickup device
JPS63305568A (en) Photodetector
JPS6271270A (en) Infrared ray detector and manufacturing the same
JP2020205339A (en) Infrared detector, and imaging apparatus using the same
JPS61234072A (en) Solid-state image sensor
JPH05343727A (en) Infrared detector and its manufacture
JPH01147875A (en) Infra-red ray detector
JPS62169376A (en) Photodiode
JPH0196968A (en) Infrared ray detector