JPS63273365A - Infrared-ray detector - Google Patents

Infrared-ray detector

Info

Publication number
JPS63273365A
JPS63273365A JP62108033A JP10803387A JPS63273365A JP S63273365 A JPS63273365 A JP S63273365A JP 62108033 A JP62108033 A JP 62108033A JP 10803387 A JP10803387 A JP 10803387A JP S63273365 A JPS63273365 A JP S63273365A
Authority
JP
Japan
Prior art keywords
infrared
elements
substrate
layer
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62108033A
Other languages
Japanese (ja)
Inventor
Ryoji Okata
大方 亮二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62108033A priority Critical patent/JPS63273365A/en
Publication of JPS63273365A publication Critical patent/JPS63273365A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To obtain a detector having high sensitivity and high resolution by forming an infrared ray opaque film on a substrate exposed by removing a semiconductor layer between a plurality of infrared ray detecting elements when the elements are formed on the layer formed on a semi-insulating substrate, and forming a metal layer for connecting between the elements thereon. CONSTITUTION:A P-type HgCdTe layer 2 is formed on a CdTe substrate 1 by liquid shape epitaxy, and an insular N-type region 3 is formed by selective ion implantation. Then, a groove 9 is opened between the regions 3 by photocomposing and bromine methanol solution to expose the substrate 1, which is covered with an infrared-ray. opaque film 7 made of SiO2 by an electron beam depositing method. Thereafter, bumps 5 are mounted on the isolated regions 3, a surface stabilized film 4 in contact with the regions 3 is formed to surround the outer periphery of the bump 3, the film 7 is covered with an element connecting metal layer 8, and infrared light is incident on the rear face of the substrate 1. Thus, it can prevent an interference due to minority carrier and stray light from generating.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、光起電力型赤外線検出デバイスに関シ、特
に、半絶縁性カドミウムチルライド(CdTe)基板上
に水銀カドミウムチルライド()IgcdTe)層をエ
ピタキシャル成長したウェハを使用して、カドミウムチ
ルライド側から赤外線を入射する(以後、裏面入射型と
呼ぶ)光起電力型赤外線検出デバイスの改良に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to photovoltaic infrared detection devices, and in particular, the invention relates to a photovoltaic infrared detection device, and in particular, to a photovoltaic infrared detection device. This invention relates to the improvement of a photovoltaic infrared detection device that uses a wafer on which a cadmium chillide layer is epitaxially grown and in which infrared rays are incident from the cadmium chillide side (hereinafter referred to as a back-illuminated type).

〔従来の技術〕[Conventional technology]

第3図は例えばIEEE  I−ランザクションズオン
 エレクトロン デバイシーズ 第ED −21(19
82年)  (Transactions on El
ectron DevicesVolJD−29(19
82) )の275ページに示された従来の赤外線検出
デバイスを示す断面図であり、図において、1は半絶縁
性のカドミウムチルライド(CdTe)基板、2はこの
基板1上に例えば液相エピタキシャル成長法(LPE)
、分子線エビタキシャル成長法(MBE)、有機金属化
学堆積法(MOCV D)等によって成長した10μm
程度の厚みのp型HgCdTe層、3はこのp型HgC
dTe[2に例えばホウ素(B)のイオン注入あるいは
水銀()Ig)の拡散によって島状に形成されたn ’
pM域、4は例えば硫化亜鉛(Zn S )から成る表
面安定化膜、5は前記n領域3とシリコン(St)上に
形成された電荷結合素子(CCD)とを電気的1機械的
に結合するための、例えばインジウム(In)で形成さ
れた金属バンプ、6は入射する赤外線である。
Figure 3 shows, for example, the IEEE I-Transactions on Electron Devices No. ED-21 (19
1982) (Transactions on El
ectron DevicesVolJD-29(19
This is a cross-sectional view showing a conventional infrared detection device shown on page 275 of 82) ), in which 1 is a semi-insulating cadmium chillide (CdTe) substrate, 2 is a substrate formed by liquid phase epitaxial growth on this substrate 1, for example. Law (LPE)
, 10 μm grown by molecular beam epitaxy (MBE), metal organic chemical deposition (MOCVD), etc.
3 is a p-type HgCdTe layer with a thickness of about
n' formed in an island shape by ion implantation of boron (B) or diffusion of mercury (Ig) into dTe[2.
pM region, 4 is a surface stabilizing film made of, for example, zinc sulfide (ZnS), and 5 is electrical and mechanical coupling between the n region 3 and a charge coupled device (CCD) formed on silicon (St). A metal bump 6 made of, for example, indium (In) is for incident infrared rays.

HgCdTeはHgTeとCdTeの混晶であり、特に
HgTeが0.8の組成の結晶は、10μm帯の赤外線
検出素子用材料として広く使われている。最近特に多素
子化が進み、64X64程度の画素数を持つ検出素子が
形成され、5i−CODと結合し固体撮像装置として広
範囲の用途が期待されている。このようなHgCdTe
素子とCCDの高密度の結合には、金属バンプを用いて
フェイスダウンボンディングするのが一般的である。そ
の場合、裏面入射方式とする必要があり、赤外光に対し
て透明なCdTe基板上に成長したHgCdTe[が有
効である。
HgCdTe is a mixed crystal of HgTe and CdTe, and in particular, a crystal with a composition of 0.8 HgTe is widely used as a material for infrared detection elements in the 10 μm band. Recently, the number of elements has particularly increased, and detection elements having a pixel count of approximately 64×64 have been formed, and are expected to be used in a wide range of applications as solid-state imaging devices when combined with 5i-COD. Such HgCdTe
Face-down bonding using metal bumps is common for high-density bonding of elements and CCDs. In that case, a back-illuminated method is required, and HgCdTe [grown on a CdTe substrate that is transparent to infrared light] is effective.

このように冑集積度の赤外線検出素子になると、それぞ
れの素子及び素子間に入射される赤外線の検出電流が互
いに干渉して分解能が低下するなどして、検出信号や映
像に悪影響があり、改善が要望されている。
When an infrared detection element with such a high degree of integration is used, the detection currents of the infrared rays incident on each element and between the elements interfere with each other, reducing the resolution, which has a negative effect on the detection signal and image, and it is difficult to improve it. is requested.

第3図には、隣接する2素子の配列を示しているが、C
dTeの基板1の表面にはp型のHgCdTeのエピタ
キシャル層2が10μm程度の厚みで形成される。この
p型のHgCdTeのエピタキシャル層2上に絶縁膜4
が4000人の厚みで形成され、一方n型領域3が図の
ように形成されて、この部分から電極が引き出されバン
プ5で外部に引き出される。
FIG. 3 shows the arrangement of two adjacent elements.
A p-type HgCdTe epitaxial layer 2 with a thickness of about 10 μm is formed on the surface of the dTe substrate 1 . An insulating film 4 is formed on this p-type HgCdTe epitaxial layer 2.
is formed to have a thickness of 4,000 mm, while an n-type region 3 is formed as shown in the figure, and an electrode is drawn out from this portion and drawn out by a bump 5.

このような配置における2個の赤外線検出素子の間隔は
通常50μm程度であり、かなり近接した構造である。
The spacing between two infrared detecting elements in such an arrangement is usually about 50 μm, which is a fairly close structure.

また、このデバイスでは、裏面が赤外線6の入射する部
分であって、ここから入射した赤外線6は基板1を透過
し、HgCdTe層2内で吸収され電子−正孔対が発生
する。p型層2内で発生した少数キャリア、電子は拡散
してpn接合に到達した場合、検出電流として測定され
、その電流の各素子間の分布が2次元画像として取り出
される。
Further, in this device, the back surface is the part where the infrared rays 6 are incident, and the infrared rays 6 incident from here are transmitted through the substrate 1 and absorbed within the HgCdTe layer 2 to generate electron-hole pairs. When the minority carriers and electrons generated in the p-type layer 2 diffuse and reach the pn junction, they are measured as a detection current, and the distribution of the current between each element is taken out as a two-dimensional image.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の赤外線検出デバイスは以上のように構成されてい
るので、素子間の間隔が少数キャリアの拡散長と同等も
しくはより短い場合は、l(gcdTe層が連続してい
るため、互いの素子領域内で発生した少数キャリアが拡
散し干渉し合い分解能が落ちるという問題があった。
Conventional infrared detection devices are configured as described above, so if the spacing between elements is equal to or shorter than the diffusion length of minority carriers, l(gcdTe layers are continuous, There was a problem in that the minority carriers generated in this process diffused and interfered with each other, reducing resolution.

また、素子間のHgCdTe層を除去して少数キャリア
の拡散による分解能の低下を防ごうとすると、CdTe
基板は半絶縁性で電気的接続ができない、及びCdTe
は赤外光に対して透明であり、素子間即ちHgCdTe
を除去した部分に入射した赤外光は大部分透過し、赤外
線検出デバイスをフェイスダウンボンディングした対象
、例えば5i−CCD上で反射し、再び赤外線検出デバ
イスに信号光以外の一光(迷光)として入射し、分解能
の低下を招くという問題があった。
In addition, when attempting to prevent resolution degradation due to diffusion of minority carriers by removing the HgCdTe layer between elements, CdTe
The substrate is semi-insulating and cannot be electrically connected, and CdTe
is transparent to infrared light, and between the elements, that is, HgCdTe
Most of the infrared light that enters the removed area is transmitted, is reflected on the object to which the infrared detection device is face-down bonded, such as a 5i-CCD, and is returned to the infrared detection device as light other than signal light (stray light). There was a problem that the incident light caused a drop in resolution.

この発明は上記、のような問題点を解消するためになさ
れたもので、素子間の電気的接続を確保し、分解能の低
下を防ぐことのできる裏面入射型赤外線検出デバイスを
得ることを目的とする。
This invention was made to solve the above problems, and its purpose is to obtain a back-illuminated infrared detection device that can ensure electrical connection between elements and prevent a decrease in resolution. do.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る赤外線検出デバイスは、各素子間に半絶
縁性基板まで達する溝を掘り、この溝の底部を赤外線を
透過しない膜で覆うとともに、上記各素子の第1導電層
間を金属層で結合したものである。
In the infrared detection device according to the present invention, a groove is dug between each element reaching the semi-insulating substrate, the bottom of the groove is covered with a film that does not transmit infrared rays, and the first conductive layer of each element is bonded with a metal layer. This is what I did.

〔作用〕[Effect]

この発明においては、各素子間に形成した半絶縁性基板
まで達する溝の底部を不透明膜で覆うことにより、少数
キャリアによる隣接素子相互の干渉を防止でき、迷光の
発生を防止することができる。
In this invention, by covering the bottom of the groove extending to the semi-insulating substrate formed between each element with an opaque film, it is possible to prevent interference between adjacent elements due to minority carriers, and to prevent the generation of stray light.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図において、7は対象波長の赤外光に対して不透明な膜
、8は素子間を結合する金属層、9は素子間分離のため
に設けられたCdTe基板1まで届いた分離溝である。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, 7 is a film that is opaque to infrared light of the target wavelength, 8 is a metal layer that connects elements, and 9 is a separation groove that reaches the CdTe substrate 1 provided for isolation between elements.

次に、この図に示すデバイスの作製法を説明する。Next, a method for manufacturing the device shown in this figure will be explained.

CdTe基板1上に例えば液相エピタキシャル法等で成
長したp型HgCdTe層2上に、例えばボロンのイオ
ン注入を選択的に行なうことにより、島状にn領域3を
形成する。壱′の後、写真製版及び臭素のメタノール溶
液を用いて各n eTJTaO2に溝9を形成する。写
真製版を行い、5iOt 7を例えば電子ビーム蒸着等
で形成し、リフトオフ法で溝の底部だけに残す。同様な
方法で、金3.’ZnS4゜Inバンプ5の順に形成を
行う。
An island-shaped n region 3 is formed on a p-type HgCdTe layer 2 grown on a CdTe substrate 1 by, for example, a liquid phase epitaxial method by selectively implanting boron ions, for example. After step 1, grooves 9 are formed in each neTJTaO2 using photolithography and a methanol solution of bromine. Photolithography is performed, and 5iOt 7 is formed by, for example, electron beam evaporation, and is left only at the bottom of the groove by a lift-off method. In the same way, gold 3. 'ZnS4°In bumps 5 are formed in this order.

このようにして作製されたデバイスでは、素子間にCd
Te基板1まで届く分離溝9を設けたことにより、隣接
した素子のp領域2に発生した少数キャリア(電子)が
相互に干渉し合うことがなくなる。また、この分離溝9
により従来素子間の電気的接続を取っていたHgCdT
e層2が分離されるが、この部分に例えば金からなる金
属層8を設けることにより、素子間の電気的接続を取る
ことができる。なお、HgCdTe 2と金8の界面で
は少数キャリアは再結合し、他素子へ影響を及ぼすこと
はない。
In the device manufactured in this way, Cd
By providing the separation groove 9 that reaches the Te substrate 1, the minority carriers (electrons) generated in the p regions 2 of adjacent elements do not interfere with each other. In addition, this separation groove 9
HgCdT, which conventionally made electrical connections between elements,
Although the e-layer 2 is separated, electrical connection between the elements can be established by providing a metal layer 8 made of, for example, gold in this portion. Note that minority carriers recombine at the interface between HgCdTe 2 and gold 8, and do not affect other elements.

また、分離溝9の部分、つまり素子間に入゛射する赤外
光、例えば波長10μm帯の光を分解能の低下を招く迷
光としないために、分離溝9の底部を例えば10μm帯
の光に対して不透明な二酸化シリコン(Stoり約1μ
mで覆い、赤外光の侵入を防いでいるので、迷光による
分解能の低下が防止される。
In addition, in order to prevent the infrared light that enters the separation groove 9 between the elements, such as light in the 10 μm wavelength band, from becoming stray light that causes a decrease in resolution, the bottom of the separation groove 9 is exposed to light in the 10 μm band, for example. Opaque silicon dioxide (about 1μ
Since it is covered with m and prevents infrared light from entering, deterioration of resolution due to stray light is prevented.

なお、上記実施例では不透明膜7は分離溝9の底面のC
dTe基板1に直接つけたが、膜7の下にZnS等の赤
外光に透明な膜を設けてもよく、また、膜7の下が一部
分金属層8であってもよく、不透明膜7の効果は上記実
施例と同様である。
In the above embodiment, the opaque film 7 covers the bottom surface of the separation groove 9.
Although it is directly attached to the dTe substrate 1, a film transparent to infrared light such as ZnS may be provided under the film 7. Also, a part of the bottom of the film 7 may be a metal layer 8, and the opaque film 7 The effect is similar to that of the above embodiment.

また、上記実施例ではプレーナ型の素子について説明し
たが、本発明は第2図に示すようなメサ型の素子につい
ても上記実施例と同様の効果を奏する。
Furthermore, although the above embodiment has been described with respect to a planar type element, the present invention can also produce effects similar to those of the above embodiment with respect to a mesa type element as shown in FIG.

さらに、上記実施例では第1導電層2をp型。Furthermore, in the above embodiment, the first conductive layer 2 is p-type.

第2導電層3をn型として説明したが、これは逆であっ
てもよく、効果は上記実施例と同様である。
Although the second conductive layer 3 has been described as an n-type, it may be reversed and the effect is the same as in the above embodiment.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明に係る赤外vA検出デバイスに
よれば、各素子間を半絶縁性基板まで達する溝で分離し
、この溝の底部に赤外光に不透明な膜を設け、各素子の
第1導電層間を金属層で接続するように構成したので、
少数キャリアによる干渉、迷光の発生を防止でき、高感
度で分解能の高いものが得られる効果がある。
As described above, according to the infrared vA detection device of the present invention, each element is separated by a groove that reaches the semi-insulating substrate, a film opaque to infrared light is provided at the bottom of this groove, and each element is separated by a groove that reaches the semi-insulating substrate. Since the first conductive layers are connected by a metal layer,
Interference due to minority carriers and generation of stray light can be prevented, and high sensitivity and high resolution can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による赤外線検出デバイス
を示す断面図、第2図はこの発明の他の実施例による赤
外線検出デバイスを示す断面図、第3図は従来の赤外線
検出デバイスを示す断面図である。 1はCdTe基板、2はp型11gcdTe層、3はn
型HgCdTe?J域、4は表面安定化膜、5はバンブ
、6は赤外線、7は不透明膜、8は金属層、9は分離溝
である。 なお、図中同一符号は同一、又は相当部分を示す。
FIG. 1 is a sectional view showing an infrared detection device according to an embodiment of the present invention, FIG. 2 is a sectional view showing an infrared detection device according to another embodiment of the invention, and FIG. 3 is a sectional view showing a conventional infrared detection device. FIG. 1 is a CdTe substrate, 2 is a p-type 11gcdTe layer, 3 is an n
Type HgCdTe? J region, 4 is a surface stabilizing film, 5 is a bump, 6 is an infrared ray, 7 is an opaque film, 8 is a metal layer, and 9 is a separation groove. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (3)

【特許請求の範囲】[Claims] (1)半絶縁性基板上に第1導電層を形成し、該第1導
電層上に導電性の異なる第2導電層を島状に配列して各
素子を形成して成り、上記半絶縁性基板側から赤外線を
入射する光起電力型赤外線検出デバイスにおいて、 上記各素子間に形成された上記半絶縁性基板まで達する
溝と、 上記溝の底部に形成された赤外線を透過しない膜と、 上記各素子の第1導電層間を結合するための金属層とを
備えたことを特徴とする赤外線検出デバイス。
(1) A first conductive layer is formed on a semi-insulating substrate, and a second conductive layer having a different conductivity is arranged in an island shape on the first conductive layer to form each element, and In a photovoltaic infrared detection device in which infrared rays are incident from a transparent substrate side, a groove reaching the semi-insulating substrate formed between each of the elements, a film formed at the bottom of the groove that does not transmit infrared rays, An infrared detection device comprising: a metal layer for coupling the first conductive layers of each of the elements.
(2)上記各素子はプレーナ型であることを特徴とする
特許請求の範囲第1項記載の赤外線検出デバイス。
(2) The infrared detection device according to claim 1, wherein each of the elements is of a planar type.
(3)上記各素子はメサ型であることを特徴とする特許
請求の範囲第1項記載の赤外線検出デバイス。
(3) The infrared detection device according to claim 1, wherein each of the elements is mesa-shaped.
JP62108033A 1987-04-30 1987-04-30 Infrared-ray detector Pending JPS63273365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62108033A JPS63273365A (en) 1987-04-30 1987-04-30 Infrared-ray detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62108033A JPS63273365A (en) 1987-04-30 1987-04-30 Infrared-ray detector

Publications (1)

Publication Number Publication Date
JPS63273365A true JPS63273365A (en) 1988-11-10

Family

ID=14474247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62108033A Pending JPS63273365A (en) 1987-04-30 1987-04-30 Infrared-ray detector

Country Status (1)

Country Link
JP (1) JPS63273365A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5075748A (en) * 1989-03-10 1991-12-24 Mitsubishi Denki Kabushiki Kaisha Photodetector device
US5115295A (en) * 1989-10-31 1992-05-19 Mitsubishi Denki Kabushiki Kaisha Photodetector device
US5156980A (en) * 1989-03-10 1992-10-20 Mitsubishi Denki Kabushiki Kaisha Method of making a rear surface incident type photodetector
WO2009004376A2 (en) * 2007-06-29 2009-01-08 Durham Scientific Crystals Ltd Semiconductor device structure and method of manufacture thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5075748A (en) * 1989-03-10 1991-12-24 Mitsubishi Denki Kabushiki Kaisha Photodetector device
US5156980A (en) * 1989-03-10 1992-10-20 Mitsubishi Denki Kabushiki Kaisha Method of making a rear surface incident type photodetector
US5115295A (en) * 1989-10-31 1992-05-19 Mitsubishi Denki Kabushiki Kaisha Photodetector device
WO2009004376A2 (en) * 2007-06-29 2009-01-08 Durham Scientific Crystals Ltd Semiconductor device structure and method of manufacture thereof
WO2009004376A3 (en) * 2007-06-29 2009-02-26 Durham Scient Crystals Ltd Semiconductor device structure and method of manufacture thereof

Similar Documents

Publication Publication Date Title
US4875084A (en) Optoelectric transducer
US5149956A (en) Two-color radiation detector array and methods of fabricating same
JPH027417B2 (en)
US4104674A (en) Double sided hybrid mosaic focal plane
US10636818B2 (en) Semiconductor device and sensor including a single photon avalanche diode (SPAD) structure
KR100670828B1 (en) Photo-detector for image signal of infrared laser radar and method of manufacturing the same
JPH0346279A (en) Hetero junction photodiode
GB2372630A (en) Epitaxial passivation of group 2-6 infrared photodetectors
JPH05267695A (en) Infrared image sensing device
JP3049015B2 (en) Active pixel cell with bandgap design
JPS63273365A (en) Infrared-ray detector
JPH0828493B2 (en) Light detector
US3633077A (en) Semiconductor photoelectric converting device having spaced elements for decreasing surface recombination of minority carriers
US5187378A (en) Photodetector
US4751560A (en) Infrared photodiode array
GB2100511A (en) Detector for responding to light at a predetermined wavelength, and method of making the detector
JP7109718B2 (en) Compound semiconductor photodiode array
JPH0964402A (en) Hybrid infrared detector
JPS60182764A (en) Semiconductor light receiving device
JPS5833373A (en) Semiconductor image pickup device
JPH07105522B2 (en) Semiconductor device
JPH05182909A (en) Semiconductor integrated circuit device
JPH02159761A (en) Infrared detector
JPH02226777A (en) Semiconductor light receiving element and manufacture thereof
GB2239555A (en) Infrared image-sensing devices and their manufacture