JPH0290916A - Electric apparatus - Google Patents

Electric apparatus

Info

Publication number
JPH0290916A
JPH0290916A JP63243209A JP24320988A JPH0290916A JP H0290916 A JPH0290916 A JP H0290916A JP 63243209 A JP63243209 A JP 63243209A JP 24320988 A JP24320988 A JP 24320988A JP H0290916 A JPH0290916 A JP H0290916A
Authority
JP
Japan
Prior art keywords
dehumidifier
electrodes
housing
electrode
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63243209A
Other languages
Japanese (ja)
Inventor
Norihiko Inuzuka
犬塚 敬彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63243209A priority Critical patent/JPH0290916A/en
Publication of JPH0290916A publication Critical patent/JPH0290916A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Gases (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

PURPOSE:To contrive the interior dehumidification of a housing of a large volume with a relatively small amount of electric power by setting a dehumidifier consisting of a proton conductive solid membrane and porous electrodes on the wall surfaces of the hermetically sealed housing and supplying direct current to the netlike electricity supplying electrodes formed by overlapping the porous electrodes. CONSTITUTION:A hermetically sealed housing 1 has an electric part 2 in its interior. A dehumidifier 9 consisting of a proton conductive solid membrane 11 and porous electrodes 12a and 12b provided on each side thereof is set on the wall surfaces of the housing 1 with one side thereof in contact with the external air and the other in contact with the internal air. Furthermore, the netlike electricity supplying electrodes 13a and 13b overlapping the porous electrodes 12a and 12b constitute current conducting passageways parallel to the surfaces of the electrodes to provide a uniform current distribution of the dehumidifier 9. A direct current electric source 10 supplies direct current to the dehumidifier 9 through the electrodes 13a and 13b. As a result, this device makes possible the interior dehumidification of the housing of a large volume with a relatively small amount of electric power as well as the maintenance-free or semipermanent usage.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は例えば制御盤や集電盤のような密閉筐体に電
気部品を収容してなる電気装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an electrical device such as a control board or a current collector board in which electrical components are housed in a sealed casing.

〔従来の技術〕[Conventional technology]

第4図は例えば特開昭57−49305号公報に開示さ
れた従来の電気装置としての密閉制御盤を示す断面図で
ある。図において、(1)は内部に電気部品(2)を収
容する筐体、(1a)は篩体(1)の−面に設けられた
扉、(3)は扉(1a)の全周に互って取付けられた気
密パツキン、(4)は内部にガス吸着剤および吸湿剤を
収容した吸着吸湿器、+51 (61はエアーポンプお
よびその駆動電源で、この吸着吸湿器(4)とエアーポ
ンプ(5)とは、配管(7a)(7b)によりバルブ(
8)を介して一体(1)の内部と連通するように構成さ
れている。そして、この筐体(1)は、外気中の湿気や
腐食性成分の侵入を防ぐため換気口を設けず密閉構造に
なっている。
FIG. 4 is a sectional view showing a closed control panel as a conventional electrical device disclosed in, for example, Japanese Patent Application Laid-Open No. 57-49305. In the figure, (1) is a casing that houses electrical components (2) inside, (1a) is a door provided on the - side of the sieve body (1), and (3) is a door provided all around the door (1a). Airtight gaskets attached to each other, (4) is an adsorption/humidity absorber containing a gas adsorbent and a moisture absorbent inside, +51 (61 is an air pump and its driving power supply; this adsorption/humidity absorber (4) and the air pump (5) means valves (
8) to communicate with the inside of the unit (1). The casing (1) has a sealed structure without a ventilation opening to prevent moisture and corrosive components from entering the outside air.

次に動作について説明する。電源(6)によってエアー
ポンプ(5)を駆動させ、筐体(1)内の空気を配管(
7a)から吹い込み、吸着吸湿器(4)を通過させて配
管(7b)から再び筐体(1)内に戻す。これにより、
吸着吸湿器(4)内に収容されたガス吸着剤が通過する
空気中の腐食性成分を吸着し、吸湿剤は空気中の水分を
吸着する。この動作を所定時間継続することによって、
筐体(1)内の湿気や腐食性ガスは十分に除去されるこ
とになる。
Next, the operation will be explained. The air pump (5) is driven by the power source (6), and the air inside the housing (1) is pumped through the piping (
7a), passes through the adsorption/humidity absorber (4), and returns to the housing (1) through the piping (7b). This results in
The gas adsorbent housed in the adsorption/hygroscopic device (4) adsorbs corrosive components in the air passing through it, and the moisture absorbent adsorbs moisture in the air. By continuing this operation for a predetermined time,
Moisture and corrosive gas within the housing (1) will be sufficiently removed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の密閉制御盤は以上のように構成されているので、
吸着吸湿器(4)内の吸着剤や吸湿剤は長期間使用する
と腐食性ガスや水分を吸着してその濃度が増し、次第に
その吸着、吸湿能力が低下していくので、定期的にこれ
ら吸着剤、吸湿剤を新しいものと交換する必要がある。
Conventional sealed control panels are configured as described above.
If the adsorbent or moisture absorbent in the adsorption/moisture absorber (4) is used for a long period of time, it will adsorb corrosive gases and moisture, increasing their concentration, and gradually decreasing their adsorption and moisture absorption ability, so they should be periodically removed. It is necessary to replace the moisture absorbent with a new one.

また、筐体(1)内の空気を吸着吸湿器(4)に強制的
に循環させるためエアーポンプ(5)のような回転機構
部を有する部品を使用しているので、その保守管理も必
要となり省力化の要請に反するという問題点があった。
In addition, since parts with rotating mechanisms such as the air pump (5) are used to forcefully circulate the air inside the housing (1) to the moisture absorption device (4), maintenance of these components is also required. Therefore, there was a problem that it went against the demand for labor saving.

上記した吸湿能力の低下を補う意味で、筐体(1)内に
スペースヒータを設置し、筐体(1)内の温度を外気温
より5℃前後高く保つことによって筐体(1]内の相対
湿度を下げ、筐体(υ内での結露の発生を抑制する方法
が採用される場合がある。しかし、こ)場合、スペース
ヒーターの容量としては、筐体(1]内の容積1 m 
3に対し約Q、5kw程度のものが必要となる。従って
、変電所のように、多数の密閉制御盤が設置されるよう
な場合には、このスペースヒーターのために大量の電力
が消費されるという問題点があった。
In order to compensate for the above-mentioned decrease in moisture absorption capacity, a space heater is installed inside the housing (1) to maintain the temperature inside the housing (1) about 5°C higher than the outside temperature. In some cases, a method is adopted to lower the relative humidity and suppress the occurrence of condensation inside the housing (υ). However, in this case, the capacity of the space heater is the volume of 1 m inside the housing (1).
For 3, approximately Q, 5kw is required. Therefore, in a case where a large number of closed control panels are installed, such as in a substation, there is a problem in that a large amount of electric power is consumed for this space heater.

更にまた最近、例えば小型の固定礎気ディスク装置のよ
うに、内容積が数百(16程度の比較的小容積の装置内
の除湿を行うため、固体電解質を用いた除湿器を適用し
ようとする試みがなされている。
Furthermore, recently, attempts have been made to apply dehumidifiers using solid electrolytes to dehumidify devices with relatively small internal volumes of several hundred (16 or so), such as small fixed basic air disk devices. Attempts are being made.

しかし、これらの装置に使用される固体電解質は表面積
がせいぜい1〜数am’であり除湿できる装置の内容積
も数百06程度が限度である。従って、変電所や発電所
内に設置される制御盤や集電盤のように、内容積が数十
2以上もある筐体の内部の除湿を行うには、100個程
度の上記除湿器を一つの筐体に並設する必要がありその
取付スペースや配線が極めて複雑になり信頼性も低下せ
ざるを得ない。
However, the solid electrolyte used in these devices has a surface area of 1 to several am' at most, and the internal volume of the device that can dehumidify is limited to about several hundred square meters. Therefore, in order to dehumidify the inside of a case with an internal volume of several dozen or more, such as a control panel or current collector board installed in a substation or power plant, approximately 100 of the above dehumidifiers are required at once. They must be installed in parallel in one housing, making the installation space and wiring extremely complicated, and inevitably lowering reliability.

この弊害を防止するため、必要な除湿能力に合わせて個
々の除湿器における固体電解質の表面積を大幅に増大さ
せることが一応考えられる。しかし、固体電解質の表面
に形成される多孔性電極は通常数μm程度の厚さに過ぎ
ず、その表面抵抗が大きいため電流分布が極めて悪く所
望の除湿能力が得られないという問題点があった。
In order to prevent this problem, it is conceivable to significantly increase the surface area of the solid electrolyte in each dehumidifier in accordance with the required dehumidification capacity. However, the porous electrode formed on the surface of the solid electrolyte is usually only a few micrometers thick and has a large surface resistance, resulting in extremely poor current distribution and the inability to obtain the desired dehumidifying ability. .

この発明は、上記のような種々の問題点を解消するため
になされたもので、大容積の筐体内の除湿を比較的小電
力で行うことができると共に、保守が不要でかつ半永久
的に使用可能な除湿機構を備えた電気装置を得ることを
目的とする。
This invention was made to solve the various problems mentioned above, and it is possible to dehumidify a large-volume case with relatively low power, and it can be used semi-permanently without maintenance. The aim is to obtain an electrical device with a possible dehumidification mechanism.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る電気装置は、プロトン導電性固体膜とそ
の表裏に形成された多孔性電極とからなり、それぞれ一
方の面が外部の空気に他方の面が内部の空気に接するよ
うに、密閉筐体の壁面に設置された除湿器と、上記多孔
性電極に重ねて設けられ、電極面と平行な方向の電流路
を形成して上記除湿器の電流分布を均等化する網状の給
電極と、この給電極を介して上記除湿器に直流電流を供
給する直流W!源とを備えたものである。
The electrical device according to the present invention is comprised of a proton conductive solid membrane and porous electrodes formed on the front and back surfaces of the membrane, each of which is housed in a sealed casing such that one surface is in contact with the outside air and the other surface is in contact with the inside air. a dehumidifier installed on a wall surface of the body; a net-shaped feeding electrode provided overlapping the porous electrode and forming a current path in a direction parallel to the electrode surface to equalize the current distribution of the dehumidifier; Direct current W! supplies direct current to the dehumidifier through this supply electrode! It has a source.

〔作用〕[Effect]

直流wl源から内側の給電極の端部に流入した電流は、
−旦、当該給電極の全面積部分に拡散し、しかる後、多
孔性電極にその厚さ方向から流入する。従って、当該多
孔性電極とプロトン導電性固体膜との界面で下記に示す
水分の分解反応が生じる。
The current flowing into the end of the inner feeding electrode from the DC wl source is
- first diffuses over the entire surface area of the feed electrode, and then flows into the porous electrode from the direction of its thickness. Therefore, the following water decomposition reaction occurs at the interface between the porous electrode and the proton conductive solid membrane.

HxO−2H++ ” 02 + 2 e分解で生じた
水素イオンはプロトン導電性固体膜を通過し、外側の多
孔性電極との界面で下記のように再び水の分子となって
筐体外へ放散される。
HxO-2H++ ” 02 + 2 eHydrogen ions generated by decomposition pass through the proton-conductive solid membrane, become water molecules again at the interface with the outer porous electrode, and are diffused out of the casing as shown below. .

2 H++10! + 2 e−→H!0外側の多孔性
電極を流れる電流はそれと接して設けられた給電極に一
旦流入し、ここでその一端に集中されて直流電源に戻る
2 H++10! + 2 e-→H! The current flowing through the outer porous electrode flows once into the feeding electrode provided in contact with it, where it is concentrated at one end and returns to the DC power source.

給電極の存在により、除湿器に流れる電流の分布は、そ
の電極面積にわたってほぼ均等分布となる。従って、上
記した除湿の反応は除湿器の全域でほぼ均等に行われ、
効率のよい除湿が達成される。
Due to the presence of the feed electrode, the distribution of current flowing through the dehumidifier is approximately evenly distributed over the area of the electrode. Therefore, the dehumidification reaction described above takes place almost uniformly throughout the entire area of the dehumidifier.
Efficient dehumidification is achieved.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図において、(1) (11L )+21 (31は従
来の場合と同一である。(9)は筐体(1)または扉(
1a)の壁面に設置された除湿器で、第2図にその詳細
構成を示す。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, (1) (11L) + 21 (31 is the same as the conventional case. (9) is the case (1) or the door (
1a) is a dehumidifier installed on the wall, and its detailed configuration is shown in Figure 2.

αOは除湿器(9)に直流電流を供給する直流電源であ
る。第2図において、(ロ)はプロトン導電性固体膜で
、例えばイオン交換膜の一種であるI″NAFION」
(米、デュポン社商品名)を使用している。(12m 
)(12b)はプロトン導電性固体膜(ロ)の表裏両面
に無電圧メツキによって形成した白金またはニッケルの
多孔性電極で、その膜厚は1〜3μm程度が適している
。この膜厚が薄すぎると電気抵抗が大きくなり通電を十
分に行うことができない。また、メツキの膜厚が厚すぎ
ると多孔度が低下して、プロトン導電性固体膜(ロ)と
空気との接触が十分行われず除湿能力が低下する。そし
て、プロトン導電性固体膜(ロ)と多孔性電極(12m
)(12b)とにより除湿器(9)を構成する。(13
11M 13b)は多孔性電極(12a)(12b)に
重ねて設けられた給電極で、白金または金を網状に形成
したものである。aくαGはそれぞれ給電極(13a 
)および(13b)の一端から引き出されたリード線で
ある。αQは除湿器(9)と給電極(13IL)(13
b)とを一体止成形するモールド枠、Q7)は一体止し
た除湿器(9)と給電極(13a)(13b)とを篩体
(1)ノ壁面に気密に取付けるためのシール材である。
αO is a DC power supply that supplies DC current to the dehumidifier (9). In Fig. 2, (b) is a proton conductive solid membrane, for example I"NAFION" which is a type of ion exchange membrane.
(trade name of DuPont, USA) is used. (12m
) (12b) is a porous electrode of platinum or nickel formed by voltageless plating on both the front and back surfaces of the proton conductive solid membrane (b), and the film thickness is suitably about 1 to 3 μm. If this film thickness is too thin, the electrical resistance will increase and it will not be possible to conduct electricity sufficiently. Furthermore, if the thickness of the plating film is too thick, the porosity will decrease, and the proton conductive solid membrane (b) will not come into sufficient contact with air, resulting in a decrease in dehumidifying ability. Then, a proton conductive solid membrane (b) and a porous electrode (12 m
) (12b) constitute a dehumidifier (9). (13
11M 13b) is a feeding electrode provided overlapping the porous electrodes (12a) and (12b), and is made of platinum or gold in the form of a mesh. a and αG are the feeding electrodes (13a
) and (13b) are lead wires drawn out from one end. αQ is the dehumidifier (9) and the supply electrode (13IL) (13
The mold frame Q7) for integrally molding the dehumidifier (9) and the feeding electrodes (13a, 13b) is a sealing material for airtightly attaching the dehumidifier (9) and the feeding electrodes (13a) (13b) to the wall surface of the sieve body (1). .

次に動作について説明する。筐体(1〕の内部の空気と
接する多孔性電極(12a)から導出されたリード線0
4には直流電源αGの正電位の端子が接続され、外部の
空気と接する多孔性電極(12b)から導出されたリー
ド線(至)には直流N源aOの負電位の端子が接続され
る。従って、直流jlE源α0から供給される直流電流
は、直流電源αO−リード線04−給電極(13a )
−多孔性電極(12a)−プロトン導電性固体膜(IE
−多孔性電極(12b’l−給電極(13b’l−リー
ド線(至)−直流電源00の方向に流れる。ここで、直
流電源QQから給電極(13a)への電流は、リード線
αくを経て集中的に送り込まれるが、給電極(13a)
はその面と平行な方向に十分高い導電性を有するので、
上記電流は給電極(13a)の電極面全体にほぼ均等に
拡散し、この状態から多孔性電極(12m)−プロトン
導電性固体膜αの一多孔性電極(12b)へとそれらの
厚さ方向に流れ、給iii (13b)に至る。
Next, the operation will be explained. Lead wire 0 led out from the porous electrode (12a) in contact with the air inside the housing (1)
4 is connected to a positive potential terminal of a DC power source αG, and a negative potential terminal of a DC N source aO is connected to a lead wire (to) derived from a porous electrode (12b) in contact with external air. . Therefore, the DC current supplied from the DC jlE source α0 is
- Porous electrode (12a) - Proton conductive solid membrane (IE
- Porous electrode (12b'l) - Feeding electrode (13b'l - Lead wire (to) - Flows in the direction of DC power supply 00. Here, the current from DC power supply QQ to the feeding electrode (13a) flows through lead wire α The feeding electrode (13a)
has sufficiently high conductivity in the direction parallel to its surface, so
The above current is almost uniformly diffused over the entire electrode surface of the feeding electrode (13a), and from this state it spreads between the porous electrode (12m) and the proton conductive solid film α to the porous electrode (12b). direction and reaches supply iii (13b).

ここで再び面と平行な方向に流れ、リード線(至)に集
められて直流電源αOに戻る。
Here, it flows again in a direction parallel to the surface, is collected at the lead wire (to), and returns to the DC power supply αO.

また、給電極(13a)(13b)は網状に形成されて
いるので、筐体(1)の内外の空気は容易にこれを通過
して多孔性電極(12aM12b)に至る。
Moreover, since the feeding electrodes (13a) and (13b) are formed in a net shape, air inside and outside the housing (1) easily passes through them and reaches the porous electrodes (12aM12b).

この結果、多孔性電極(12a)とプロトン導電性固体
膜αつとの界面では H2O−2H++ −!−0,+ 26に示す水分の分
解反応が、そして、プロトン導電性固体膜Ql)と多孔
性電極(12b)との界面では2H”+−!−02+2
e  −H2Oに示す水分の結合反応がそれぞれ生じ、
筐体(1〕内の除湿が行われる。多孔性電極(12aM
12t+)はその厚さに比較して極めて広い面積を有し
ており、単独で使用したときの電流分布は極めて悪いが
、ここでは給電極(13a)(13b)を新たに設けて
いるので、上記1ノだ作用により電流は面全体にほぼ均
等に流れ、高い効率の除湿作用が行われる。しかも、こ
の除湿作用は通電を継続する限り半永久的に行われる。
As a result, at the interface between the porous electrode (12a) and the proton conductive solid film α, H2O−2H++ −! -0, + The water decomposition reaction shown in 26 occurs, and at the interface between the proton conductive solid membrane Ql) and the porous electrode (12b), 2H"+-!-02+2
The binding reactions of water shown in e -H2O occur,
The inside of the housing (1) is dehumidified.The porous electrode (12aM
12t+) has an extremely large area compared to its thickness, and the current distribution when used alone is extremely poor, but here, feeding electrodes (13a) (13b) are newly provided, so Due to the above-mentioned single effect, the current flows almost uniformly over the entire surface, resulting in highly efficient dehumidification. Moreover, this dehumidification effect is performed semipermanently as long as the electricity continues.

次に、この発明を特に離島などの海洋性環境下に設置さ
れる太陽光発電設備の計測盤に適用した場合の主な諸元
と性能結果について紹介する。
Next, we will introduce the main specifications and performance results when this invention is applied to the measurement panels of solar power generation equipment installed in marine environments such as remote islands.

即ち、筐体(1)の内容積は約3061除湿器(鑵;面
積は10100o、太陽電池を利用した直流[源QOの
電圧は5Vであった。そして、外気温28℃、筐体(1
)内の初期相対湿度60%、通電電流約5Aで除湿を開
始した。通電により筐体(1)内の相対湿度は急速に低
下し、通電開始後2時間で約30%以下になった。そし
て、筐体(1〕内の相対湿度が低下するにつれて、通電
電流値も大幅に低下した。
That is, the internal volume of the case (1) is about 3061 dehumidifiers (10,100o), the voltage of the direct current [source QO] using solar cells was 5V.
) Dehumidification was started at an initial relative humidity of 60% and a current of about 5A. The relative humidity inside the casing (1) rapidly decreased due to the energization, and fell to about 30% or less within 2 hours after the start of the energization. As the relative humidity inside the housing (1) decreased, the current value also decreased significantly.

このように除湿効率が高く、消費電力が少ないので、特
に離島の太陽光発電設備のように、高湿度下でかつ省エ
ネルギーの運転が要請される場合に利用価値が高い。
As described above, the dehumidification efficiency is high and the power consumption is low, so it has high utility value especially in cases where energy-saving operation is required under high humidity, such as in solar power generation equipment on remote islands.

第3図はこの発明の他の実施例における除湿器(9)お
よび給電極(13a)(13b)の詳細を示す断面図で
ある。ここでは各部を同心状の筒形状に構成し、除湿機
構部を筐体(1)の内部に入り込ませるようにしたので
、筐体(1)の壁面積に制約されず除湿器(9)の表面
積を増大させることができ、また、筐体(υ内に収容さ
れた電気部品(21の特定の個所に除湿器(9)を近接
配置して当該部分の除湿能力を特に増大させることがで
きる。
FIG. 3 is a sectional view showing details of a dehumidifier (9) and supply electrodes (13a) (13b) in another embodiment of the present invention. Here, each part is configured in a concentric cylindrical shape, and the dehumidifying mechanism part is inserted into the interior of the housing (1), so the dehumidifier (9) is not restricted by the wall area of the housing (1). The surface area can be increased, and the dehumidifier (9) can be placed close to a specific location of the electrical component (21) housed in the housing (υ) to particularly increase the dehumidification capacity of that location. .

なお、上記各実施例では、多孔性電極(12m)(12
b)の材質を白金またはニッケルとしたが、これに限ら
ず、金、ロジウム、タンタル、パラジュウムなどの金属
も利用できる。また、給電極(13m)(13b)とし
ては網状に形成した白金または金としたが、この網状金
属としては、この他ロジュウム、タンタル、バラジュウ
ム、チタン、ニッケルまたはその合金などを利用しても
よく、またこれらいずれかの金属ないしはその合金を被
覆した金網としてもよい。更には、上記いずれかの金属
を含む導電性ペーストをスクリーン印刷などの手法によ
り網状または格子状に形成したものであってもよい。
In addition, in each of the above examples, the porous electrode (12 m) (12
Although platinum or nickel is used as the material in b), metals such as gold, rhodium, tantalum, and palladium can also be used. Furthermore, although platinum or gold was used as the feeding electrode (13m) (13b) in the form of a mesh, rhodium, tantalum, baladium, titanium, nickel, or an alloy thereof may also be used as the mesh metal. , or may be a wire mesh coated with any of these metals or alloys thereof. Furthermore, a conductive paste containing any of the metals mentioned above may be formed into a net or lattice shape by a method such as screen printing.

〔発明の効果〕〔Effect of the invention〕

以とのように、この発明ではプロトン導電性固体膜と多
孔性電極とからなる除湿器を密閉筐体の壁面に設置し、
かつ上記多孔性電極に重ねて網状の給WIt極を設け、
これに直流を源を供給するようにしたので、比較的大容
積の筐体の内部の除湿を効率よく行うことが可能となり
、消費電力が少なく保守も不要で、除湿機能を半永久的
に保持させることができる。
As described above, in this invention, a dehumidifier consisting of a proton conductive solid membrane and a porous electrode is installed on the wall of a sealed casing.
and providing a mesh-like supply WIt electrode overlapping the porous electrode,
By supplying a direct current source to this, it is possible to efficiently dehumidify the inside of a relatively large-volume case, with low power consumption and no maintenance required, and the dehumidification function can be maintained semi-permanently. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例における密閉制御盤を示す
断面図、第2図はその除湿器近傍の詳細を示す断面図、
第3図はこの発明の他の実施例における除湿器を示す断
面図、第4図は従来の密閉制御盤を示す断面図である。 図において、(旧よ密閉筐体、(2)は電気部品、(9
)は除湿器、αGは直流It源、(ロ)はプロトン導電
性固体膜、(12a)(12b)は多孔性il!極、(
13a)(13b)は給電極である。 なお、各図中同一符号は同一または相当部分を示す。
FIG. 1 is a sectional view showing a sealed control panel in an embodiment of the present invention, FIG. 2 is a sectional view showing details of the vicinity of the dehumidifier,
FIG. 3 is a sectional view showing a dehumidifier according to another embodiment of the present invention, and FIG. 4 is a sectional view showing a conventional closed control panel. In the figure, (older sealed case, (2) electrical parts, (9)
) is a dehumidifier, αG is a DC It source, (b) is a proton conductive solid membrane, (12a) and (12b) are porous il! very,(
13a) and (13b) are feeding electrodes. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims]  内部に電気部品を収容した密閉筐体、プロトン導電性
固体膜とその表裏両面に形成された多孔性電極とからな
り、それぞれ一方の面が外部の空気に他方の面が内部の
空気に接するように、上記密閉筐体の壁面に設置された
除湿器、上記多孔性電極に重ねて設けられ、電極面と平
行な方向の電流路を形成して上記除湿器の電流分布を均
等化する網状の給電極、およびこの給電極を介して上記
除湿器に直流電流を供給する直流電源を備えた電気装置
It consists of a sealed casing that houses electrical components inside, a proton conductive solid membrane, and porous electrodes formed on both the front and back surfaces, with one side in contact with the outside air and the other side in contact with the inside air. A dehumidifier is installed on the wall of the sealed casing, and a mesh is provided over the porous electrode to form a current path in a direction parallel to the electrode surface to equalize the current distribution of the dehumidifier. An electrical device comprising a feed electrode and a direct current power source for supplying direct current to the dehumidifier via the feed electrode.
JP63243209A 1988-09-28 1988-09-28 Electric apparatus Pending JPH0290916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63243209A JPH0290916A (en) 1988-09-28 1988-09-28 Electric apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63243209A JPH0290916A (en) 1988-09-28 1988-09-28 Electric apparatus

Publications (1)

Publication Number Publication Date
JPH0290916A true JPH0290916A (en) 1990-03-30

Family

ID=17100452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63243209A Pending JPH0290916A (en) 1988-09-28 1988-09-28 Electric apparatus

Country Status (1)

Country Link
JP (1) JPH0290916A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09131509A (en) * 1995-11-09 1997-05-20 Mitsubishi Electric Corp Humidity controller and humidity controlling device
CN107548445A (en) * 2015-05-06 2018-01-05 阿尼托伊株式会社 Control panel dehydrating unit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6168120A (en) * 1984-09-10 1986-04-08 Toyo Soda Mfg Co Ltd Method and apparatus for removing trace oxygen in gas
JPS62277126A (en) * 1986-02-06 1987-12-02 Mitsubishi Electric Corp Water content eliminator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6168120A (en) * 1984-09-10 1986-04-08 Toyo Soda Mfg Co Ltd Method and apparatus for removing trace oxygen in gas
JPS62277126A (en) * 1986-02-06 1987-12-02 Mitsubishi Electric Corp Water content eliminator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09131509A (en) * 1995-11-09 1997-05-20 Mitsubishi Electric Corp Humidity controller and humidity controlling device
CN107548445A (en) * 2015-05-06 2018-01-05 阿尼托伊株式会社 Control panel dehydrating unit

Similar Documents

Publication Publication Date Title
JP7162258B2 (en) Hydrogen supply system and method of operating hydrogen supply system
US5096549A (en) Dehumidifier and method of using
JP3219610B2 (en) Electrochemical element
US20090159456A1 (en) Separating Gas Using Ion Exchange
JPH11315390A (en) Catalyst for gas diffusion electrode
US7785451B2 (en) Portable oxygen maintenance and regulation concentrator apparatus
JPH06267556A (en) Electrochemical device and its manufacture, and fluid passage
US10593372B2 (en) Dehumidifying devices, and data storage devices having one or more dehumidifying devices
CN113097868B (en) Creeping discharge basic unit, ion wind air purifier and ion amount control system
JPH0761414B2 (en) Air conditioning method
JPH0290916A (en) Electric apparatus
JP3556570B2 (en) Fluid flow plate
CN101380542B (en) Organic gas sweeper
KR102470199B1 (en) Hydrogen purification apparatus in hydrogen generating system using water electrolysis
JPS62277126A (en) Water content eliminator
JP2936626B2 (en) Air conditioner
CN201108799Y (en) Organic gas remover
JPH0649129B2 (en) Dehumidifier
JP7229396B2 (en) Dehumidifier, dehumidifier mounting method, and dehumidifier manufacturing method
CN214513676U (en) Series-type flat-plate electrolytic dehumidifier
CN108151191A (en) Gaseous state hydrone trapping electrolysis unit, preparation method and the application in electrochemistry dehumidifying
JPH04126518A (en) Dehumidifier
CN213528059U (en) Electrolytic dehumidifier
CN213790853U (en) Dual-purpose dehumidifier
US20240093387A1 (en) Pump free alkaline electrolyte membrane water electrolytic device