JPH0287519A - Manufacture of single crystal semiconductor thin film - Google Patents

Manufacture of single crystal semiconductor thin film

Info

Publication number
JPH0287519A
JPH0287519A JP24140088A JP24140088A JPH0287519A JP H0287519 A JPH0287519 A JP H0287519A JP 24140088 A JP24140088 A JP 24140088A JP 24140088 A JP24140088 A JP 24140088A JP H0287519 A JPH0287519 A JP H0287519A
Authority
JP
Japan
Prior art keywords
thin film
semiconductor thin
single crystal
film
crystal semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24140088A
Other languages
Japanese (ja)
Other versions
JP2745055B2 (en
Inventor
Toshibumi Asakawa
浅川 俊文
Yoshikazu Ueno
嘉一 上野
Toshihiko Taneda
種田 敏彦
Daisuke Kosaka
小坂 大介
Haruo Nakayama
中山 春夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP24140088A priority Critical patent/JP2745055B2/en
Publication of JPH0287519A publication Critical patent/JPH0287519A/en
Application granted granted Critical
Publication of JP2745055B2 publication Critical patent/JP2745055B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve the heat dissipation from a fusion part in the case of manufacturing a single crystal semiconductor thin film, and form a single crystal semiconductor thin film whose crystallizability is excellent by performing fusion- recrystallization in the state that refrigeration medium is arranged on a semiconductor thin film to be single-crystallized. CONSTITUTION:On a polycrystalline silicon thin film 6 and an insulator 8, a silicon nitride film 10 is deposited by low pressure CVD method; thereon, a silicon oxide film 12 is deposited by low pressure CVD method, on the surface thereof, a polyethylene glycol layer 14 as refrigeration medium is formed: the polyethylene glycol layer 14 is covered with an optical glass plate 16. After that, the polycrystalline silicon thin film 6 is irradiated with argon laser beam 18 converged by a lens. By making the laser beam 18 scan in the right direction, a fusion part 20 of the polycrystalline silicon thin film 6 is moved, crystal is grown, and a single crystal silicon thin film 22 is formed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体集積回路装置を製造するための単結晶半
導体薄膜を製造する方法に関し、特に多結晶又は非晶質
の半導体薄膜にレーザビームなどのエネルギを照射して
溶融させ、その溶融部分を移動させることにより単結晶
化させる方法に関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a method for manufacturing a single crystal semiconductor thin film for manufacturing semiconductor integrated circuit devices, and in particular, a method for manufacturing a single crystal semiconductor thin film for manufacturing a semiconductor integrated circuit device, and in particular a method for manufacturing a polycrystalline or amorphous semiconductor thin film using a laser beam or the like. The present invention relates to a method of irradiating energy to melt the material and moving the melted portion to form a single crystal.

(従来の技術) 単結晶半導体薄膜を製造する方法としては、半導体薄膜
を帯状に溶融させる線状加熱型帯状溶融再結晶化法、エ
ネルギとしてレーザビームを照射して半導体薄膜を溶融
させるレーザビーム再結晶化法、エネルギとして電子ビ
ームを照射する電子ビーム再結晶化法などが知られてい
る。
(Prior art) Methods for manufacturing single-crystal semiconductor thin films include the linear heating band-shaped melting recrystallization method in which the semiconductor thin film is melted in a band shape, and the laser beam recrystallization method in which the semiconductor thin film is melted by irradiating a laser beam as energy. A crystallization method and an electron beam recrystallization method in which an electron beam is irradiated as energy are known.

それらの再結晶化法においては、誘電体膜などの下地上
に多結晶又は非晶質の半導体薄膜を形成し、レーザビー
ムなどのエネルギを照射する。
In these recrystallization methods, a polycrystalline or amorphous semiconductor thin film is formed on a base such as a dielectric film and irradiated with energy such as a laser beam.

(発明が解決しようとする課題) エネルギの照射による局部的な溶融部分からの熱の放散
は主として未溶融状態の半導体薄膜方向に行なわれる。
(Problem to be Solved by the Invention) Heat dissipation from a locally melted portion due to energy irradiation is mainly carried out in the direction of an unmelted semiconductor thin film.

半導体薄膜の表面側は気体と接するため熱伝導が悪く、
下地側には厚い誘電体が存在することが多く、熱伝導が
悪いためである。そして、従来の方法により形成される
単結晶半導体薄膜の結晶性は十分なものではない。
The surface side of the semiconductor thin film is in contact with gas, so heat conduction is poor.
This is because there is often a thick dielectric material on the underlying side, which has poor thermal conductivity. Furthermore, the crystallinity of single-crystal semiconductor thin films formed by conventional methods is not sufficient.

下地上に全面に単結晶半導体薄膜を形成した場合、例え
ばトランジスタを形成するには素子分離を行なう必要が
あるので、素子分離のために単結晶半導体薄膜をパター
ン化する必要がある。単結晶半導体薄膜のパターン化は
多結晶又は非晶質の半導体薄膜のパターン化よりも困雅
である。
When a single-crystal semiconductor thin film is formed over the entire surface of a base, it is necessary to perform element isolation in order to form a transistor, for example, so it is necessary to pattern the single-crystal semiconductor thin film for element isolation. Patterning single crystal semiconductor thin films is more difficult than patterning polycrystalline or amorphous semiconductor thin films.

また、下地上に全面に単結晶化を行なおうとすればレー
ザなどのエネルギを照射する領域が広くなり、素子分離
領域などのように単結晶化する必要のない部分までエネ
ルギを照射するため、時間がかかる。
In addition, if you try to monocrystallize the entire surface of the substrate, the area to be irradiated with laser energy will be wider, and the energy will be irradiated to areas that do not need to be monocrystallized, such as element isolation regions. it takes time.

本発明は再結晶化法により単結晶半導体薄膜を製造する
際に溶融部分からの熱の放散を改善することによって結
晶性の優れた単結晶半導体薄膜を形成し、また、単結晶
半導体薄膜に素子分離用のパターン化を施すことを不要
にすることを目的とするものである。
The present invention forms a single crystal semiconductor thin film with excellent crystallinity by improving the dissipation of heat from the molten part when manufacturing a single crystal semiconductor thin film by a recrystallization method, and also forms a single crystal semiconductor thin film with excellent crystallinity. The purpose of this is to eliminate the need for patterning for separation.

(課題を解決するための手段) 本発明では、多結晶又1よ非晶質の半導体薄膜を島状に
形成し、他の部分を絶縁物として半導体薄膜と絶縁物の
表面を同一高さにし、前記半導体薄膜及び絶縁物上に冷
却媒体を設けた状態でエネルギを照射して前記半導体薄
膜を溶融させ、その溶融部分を移動させることにより結
晶化させる。
(Means for Solving the Problems) In the present invention, a polycrystalline or amorphous semiconductor thin film is formed into an island shape, and the other part is an insulator, and the surfaces of the semiconductor thin film and the insulator are made to have the same height. , the semiconductor thin film is melted by irradiating energy with a cooling medium provided on the semiconductor thin film and the insulator, and the melted portion is moved to crystallize it.

冷却媒体としてはポリエチレングリコール、ポリエチレ
ンエーテル、ポリエチレンエステル、ポリプロピレンオ
キシドなど一般に表面活性剤として知られるものを使用
することができる。
As the cooling medium, those generally known as surfactants, such as polyethylene glycol, polyethylene ether, polyethylene ester, and polypropylene oxide, can be used.

エネルギはレーザビームその他の光ビーム、電子ビーム
、熱線などのエネルギービームを用いることができる。
As the energy, an energy beam such as a laser beam or other light beam, an electron beam, or a heat ray can be used.

(作用) 単結晶化しようとする半導体薄膜上に冷却媒体が存在す
るので、エネルギの照射による溶融領域から冷却媒体へ
熱が放散し、形成される単結晶薄膜の結晶性が向上する
(Function) Since the cooling medium is present on the semiconductor thin film to be made into a single crystal, heat is dissipated from the melted region due to energy irradiation to the cooling medium, and the crystallinity of the formed single crystal thin film is improved.

単結晶化しようとする半導体薄膜は島状に形成されてい
るので、不要な領域にエネルギを照射しなくてすみ、エ
ネルギを照射する時間が短縮される。
Since the semiconductor thin film to be made into a single crystal is formed into an island shape, it is not necessary to irradiate energy to unnecessary regions, and the time for irradiating energy is shortened.

また、多結晶又は非晶質の状態の半導体薄膜を島状に形
成するので、単結晶化された後の半導体薄膜を島状にパ
ターン化するのに比べると容易である。
Furthermore, since a semiconductor thin film in a polycrystalline or amorphous state is formed into an island shape, it is easier than patterning a semiconductor thin film into an island shape after being made into a single crystal.

(実施例) 第1図は一実施例を表わす。(Example) FIG. 1 represents one embodiment.

単結晶シリコン基板2の表面を酸化して約1μmの厚さ
のシリコン酸化膜(SiO:)4を形成したものを下地
として使用する。しかし、下地はこのようなものに限ら
ない。例えば層4が高融点金属膜であってもよく、また
、シリコン基板2にはトランジスタなどの素子が形成さ
れていてもよい。
A silicon oxide film (SiO:) 4 having a thickness of approximately 1 μm is formed by oxidizing the surface of a single crystal silicon substrate 2 and is used as a base. However, the base material is not limited to this type of material. For example, the layer 4 may be a high melting point metal film, and the silicon substrate 2 may have elements such as transistors formed thereon.

下地としてはまた、ガラスやセラミック、又は表面をポ
リイミド膜などの誘電体膜で被った金属基板などを使用
することもできる。
As the base, it is also possible to use glass, ceramic, or a metal substrate whose surface is covered with a dielectric film such as a polyimide film.

下地上に減圧CVD法により多結晶シリコン薄膜6を5
000人〜1μmの厚さに島状に形成する。8は絶縁物
のシリコン酸化膜である。多結晶シリコン薄膜6を島状
に形成する方法は後述する。
A polycrystalline silicon thin film 6 is formed on the base by low pressure CVD method.
It is formed into an island shape with a thickness of 1,000 to 1 μm. 8 is a silicon oxide film which is an insulator. A method for forming the polycrystalline silicon thin film 6 into an island shape will be described later.

多結晶シリコン薄膜6及び絶縁物8の上に減圧CVD法
によりシリコン窒化膜(Si3N4)10を約800人
の厚さに堆積する。さらにその上に減圧CVD法により
シリコン酸化膜12を約1000人の厚さに堆積し、そ
の表面に冷却媒体としてのポリエチレングリコール層1
4を形成する。ポリエチレングリコール層14上には光
学ガラス板16を載せる。
A silicon nitride film (Si3N4) 10 is deposited on the polycrystalline silicon thin film 6 and the insulator 8 to a thickness of about 800 nm by low pressure CVD. Furthermore, a silicon oxide film 12 is deposited to a thickness of approximately 1,000 nm by low-pressure CVD, and a polyethylene glycol layer 1 as a cooling medium is formed on the surface of the silicon oxide film 12.
form 4. An optical glass plate 16 is placed on the polyethylene glycol layer 14.

第1図のように積層した後、例えば光出力3W程度のア
ルゴンレーザビーム18をレンズで集光して多結晶シリ
コン薄膜6に照射し、レーザビーム18を図では右方向
に走査することにより多結晶シリコン薄膜6の溶融部分
20を移動させて結晶成長させ、単結晶シリコン薄膜2
2を形成する。
After laminating the layers as shown in FIG. 1, for example, an argon laser beam 18 with an optical output of about 3 W is focused by a lens and irradiated onto the polycrystalline silicon thin film 6, and the laser beam 18 is scanned in the right direction in the figure. The molten portion 20 of the crystalline silicon thin film 6 is moved to cause crystal growth, and the single crystal silicon thin film 2 is grown.
form 2.

その後、光学ガラス板16、ポリエチレングリコール層
14、シリコン酸化膜12及びシリコン窒化膜10を除
去する。
Thereafter, the optical glass plate 16, polyethylene glycol layer 14, silicon oxide film 12, and silicon nitride film 10 are removed.

第1図におけるシリコン酸化膜12と光学ガラス板16
は無くても単結晶シリコン薄膜22の形成は可能である
が、ポリエチレングリコール14はシリコン窒化膜10
上に直接形成するよりもシリコン酸化膜12を介して形
成する方が濡れ性がよくなる。また、光学ガラス板16
を載せることによりポリエチレングリコール層14の厚
さを均−にすることができる。
Silicon oxide film 12 and optical glass plate 16 in FIG.
Although it is possible to form the single crystal silicon thin film 22 without polyethylene glycol 14, the silicon nitride film 10
Forming via the silicon oxide film 12 provides better wettability than forming directly on the silicon oxide film 12. In addition, the optical glass plate 16
The thickness of the polyethylene glycol layer 14 can be made uniform by placing the polyethylene glycol layer 14 on the polyethylene glycol layer 14.

このようにして、第2図に示されるように下地4上に島
状に単結晶半導体薄膜22が形成されたものが得られる
In this way, as shown in FIG. 2, an island-shaped single crystal semiconductor thin film 22 is formed on the base 4.

次に、下地上に多結晶又は非晶質の半導体薄膜6を島状
に形成する方法について説明する。
Next, a method of forming a polycrystalline or amorphous semiconductor thin film 6 in an island shape on a base will be described.

下地4上に絶縁膜8を形成する。絶縁膜8がシリコン酸
化膜の場合は堆積又は高圧酸化などの方法によって形成
する。多結晶又は非晶質の半導体薄膜を形成する領域を
設けるために写真製版と異方性エツチングによってその
領域の絶縁膜8を除去する。多結晶又は非晶質の半導体
薄膜6を絶縁膜8の膜厚より厚目に堆積する。その上か
らレジストなどの有機物の層を表面が平坦になるように
塗布し、有機物と半導体薄膜6のエツチング速度が等し
くなる条件でエッチバックを施して絶縁膜8の開口部に
半導体薄膜6を埋め込む。
An insulating film 8 is formed on the base 4. When the insulating film 8 is a silicon oxide film, it is formed by a method such as deposition or high-pressure oxidation. In order to provide a region for forming a polycrystalline or amorphous semiconductor thin film, the insulating film 8 in that region is removed by photolithography and anisotropic etching. A polycrystalline or amorphous semiconductor thin film 6 is deposited to be thicker than the insulating film 8 . A layer of organic material such as a resist is applied on top of it so that the surface is flat, and etchback is performed under conditions such that the etching rate of the organic material and the semiconductor thin film 6 are equal to each other to embed the semiconductor thin film 6 into the opening of the insulating film 8. .

他の方法では、下地4上にまず多結晶シリコンなどの半
導体薄膜6を堆積し、シリコン酸化膜などの絶縁物8を
形成する領域を写真製版と異方性エツチングによって除
去するa除去された部分に絶縁膜8を埋め込む。絶縁膜
8を埋め込むには、半導体薄膜6の厚さより厚く絶縁膜
8を堆積し、レジストなどの有機物膜を塗布して表面を
平坦にした後、エッチバックを行なう。
In another method, a semiconductor thin film 6 such as polycrystalline silicon is first deposited on the base 4, and a region where an insulator 8 such as a silicon oxide film is to be formed is removed by photolithography and anisotropic etching. An insulating film 8 is embedded in the area. In order to embed the insulating film 8, the insulating film 8 is deposited to be thicker than the semiconductor thin film 6, the surface is made flat by applying an organic film such as a resist, and then etching back is performed.

このようにして島状に素子分離された単結晶半導体薄膜
22が形成されるので、単結晶半導体薄膜22にトラン
ジスタなどの素子を形成すればよい。
Since the single-crystal semiconductor thin film 22 is thus formed with island-like element isolation, elements such as transistors may be formed in the single-crystal semiconductor thin film 22.

(発明の効果) 本発明によれば、単結晶化しようとする半導体薄膜上に
冷却媒体を設けた状態で溶融再結晶化させるので、得ら
れる単結晶半導体薄膜の結晶性が向上する。
(Effects of the Invention) According to the present invention, since the semiconductor thin film to be single-crystalized is melted and recrystallized in a state where a cooling medium is provided, the crystallinity of the obtained single-crystal semiconductor thin film is improved.

単結晶化しようとする半導体薄膜を予め島状に形成して
おくので、レーザビームなどのエネルギを照射する時間
が短縮される。また、半導体薄膜を単結晶化した後にパ
ターン化するのに比べて、素子分離工程が容易になる。
Since the semiconductor thin film to be made into a single crystal is formed in advance into an island shape, the time for irradiating energy such as a laser beam is shortened. Furthermore, the device isolation process is easier than patterning a semiconductor thin film after making it into a single crystal.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一実施例を示す断面図、第2図は本発明により
得られる単結晶半導体薄膜を概略的に示す断面図である
。 6・・・・・・多結晶又は非晶質の半導体薄膜、8・・
・・・・絶縁物、14・・・・・・冷却媒体であるポリ
エチレングリコール、20・・・・・・溶融部分、22
・・・・・単結晶半導体薄膜。
FIG. 1 is a sectional view showing one embodiment, and FIG. 2 is a sectional view schematically showing a single crystal semiconductor thin film obtained by the present invention. 6... Polycrystalline or amorphous semiconductor thin film, 8...
... Insulator, 14 ... Polyethylene glycol as a cooling medium, 20 ... Melting part, 22
...Single crystal semiconductor thin film.

Claims (1)

【特許請求の範囲】[Claims] (1)多結晶又は非晶質の半導体薄膜を島状に形成し、
他の部分を絶縁物として半導体薄膜と絶縁物の表面を同
一高さにし、前記半導体薄膜及び絶縁物上に冷却媒体を
設けた状態でエネルギを照射して前記半導体薄膜を溶融
させ、その溶融部分を移動させることにより結晶化させ
る単結晶半導体薄膜の製造方法。
(1) Forming a polycrystalline or amorphous semiconductor thin film into an island shape,
The surface of the semiconductor thin film and the insulator are made to be at the same height with the other part being an insulator, and the semiconductor thin film is melted by irradiating energy with a cooling medium provided on the semiconductor thin film and the insulator, and the melted part is A method for producing a single crystal semiconductor thin film by crystallizing it by moving.
JP24140088A 1988-09-24 1988-09-24 Method for manufacturing single crystal semiconductor thin film Expired - Lifetime JP2745055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24140088A JP2745055B2 (en) 1988-09-24 1988-09-24 Method for manufacturing single crystal semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24140088A JP2745055B2 (en) 1988-09-24 1988-09-24 Method for manufacturing single crystal semiconductor thin film

Publications (2)

Publication Number Publication Date
JPH0287519A true JPH0287519A (en) 1990-03-28
JP2745055B2 JP2745055B2 (en) 1998-04-28

Family

ID=17073717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24140088A Expired - Lifetime JP2745055B2 (en) 1988-09-24 1988-09-24 Method for manufacturing single crystal semiconductor thin film

Country Status (1)

Country Link
JP (1) JP2745055B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5885858A (en) * 1993-02-22 1999-03-23 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing thin-film transistor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5885858A (en) * 1993-02-22 1999-03-23 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing thin-film transistor
US6103556A (en) * 1993-02-22 2000-08-15 Mitsubishi Denki Kabushiki Kaisha Thin-film transistor and method of manufacturing the same

Also Published As

Publication number Publication date
JP2745055B2 (en) 1998-04-28

Similar Documents

Publication Publication Date Title
US5310446A (en) Method for producing semiconductor film
EP0235819B1 (en) Process for producing single crystal semiconductor layer
JP2003022969A (en) Silicon crystallization method utilizing mask
JPS6281709A (en) Manufacture of semiconductor device
JPH06177034A (en) Semiconductor single crystal growth method
US5264072A (en) Method for recrystallizing conductive films by an indirect-heating with a thermal-conduction-controlling layer
Celler Laser crystallization of thin Si films on amorphous insulating substrates
EP0225592B1 (en) Recrystallizing conductive films
JPS62160712A (en) Manufacture of semiconductor device
JP4410926B2 (en) Laser annealing method
JPH027415A (en) Formation of soi thin film
JPH0287519A (en) Manufacture of single crystal semiconductor thin film
JP2898360B2 (en) Method for manufacturing semiconductor film
JP2857480B2 (en) Method for manufacturing semiconductor film
JPS6159820A (en) Manufacture of semiconductor device
JPS5825220A (en) Manufacture of semiconductor substrate
JPH0283915A (en) Manufacture of semiconductor single crystal thin film
JPS63265464A (en) Manufacture of semiconductor device
JPH0297012A (en) Manufacture of single crystal semiconductor thin film
JPH0793259B2 (en) Method for manufacturing semiconductor thin film crystal layer
JPH03284831A (en) Forming method for semiconductor thin-film
JPS62219510A (en) Formation of single crystal island region
JPH03138925A (en) Semiconductor-film crystallizing method
JPS62250629A (en) Manufacture of semiconductor device
JPS6380521A (en) Manufacture of semiconductor thin film crystal layer