JPH0287009A - Method and apparatus for measuring surface shape - Google Patents

Method and apparatus for measuring surface shape

Info

Publication number
JPH0287009A
JPH0287009A JP23869888A JP23869888A JPH0287009A JP H0287009 A JPH0287009 A JP H0287009A JP 23869888 A JP23869888 A JP 23869888A JP 23869888 A JP23869888 A JP 23869888A JP H0287009 A JPH0287009 A JP H0287009A
Authority
JP
Japan
Prior art keywords
leaf spring
leading end
probe
spring
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23869888A
Other languages
Japanese (ja)
Other versions
JPH0670565B2 (en
Inventor
Reizo Kaneko
金子 礼三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP23869888A priority Critical patent/JPH0670565B2/en
Publication of JPH0287009A publication Critical patent/JPH0287009A/en
Publication of JPH0670565B2 publication Critical patent/JPH0670565B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To measure the three-dimensional surface shape of every substance by immersing a surface to be measured, a probe, a support spring and the leading end of a displacement sensor in a liquid. CONSTITUTION:A probe 1 is fixed to the leading end of a leaf spring 2 so as to turn downwardly and the leaf spring 2 protrudes horizontally in a cantilevered fashion in such a state that the base end thereof is fixed to the lower end of a sweeping hanging lever 3. The probe 1 slides on the surface of the object 4 to be measured placed on a base plate 5 in a contact state. The radius of the leading end of the probe 1 is formed so as to have a dimension of a sub-micron order or less in order to obtain sub-micron resolving power and, as the leaf spring 2, an extremely thin spring easy to bend is used. A displacement sensor 6 is positioned so that the leading end 7 thereof is faced just above the leading end part of the leaf spring 2 in order to detect the behavior of the displacement of the leading end of the leaf spring 2, and the probe 1, the leaf spring 2, the surface 4a to be measured and the leading end 7 of the sensor 6 are immersed in the liquid 9 received in a container 8. Since the turblent vibration to the leaf spring 2 is blocked and viscous attenuation can be freely given, a surface shape can be measured under reduced load and there is also no possibility destructing the surface to be measured by the sharp probe.

Description

【発明の詳細な説明】 (1)発明の目的 [産業上の利用分野] 本発明は、医学、生物学、化学、表面T学等の分野にお
(Jる微細な表面形状を観察する必要に際し、特に高さ
を含む三次元の寸法をミクロンメートル以下の分解能で
測定するのに供せられる表面形状測定方法およびその実
施に直接使用する装置に関する。
Detailed Description of the Invention (1) Purpose of the Invention [Field of Industrial Application] The present invention is applicable to fields such as medicine, biology, chemistry, and surface T-chemistry. In particular, the present invention relates to a surface profile measuring method used to measure three-dimensional dimensions including height with a resolution of micrometers or less, and an apparatus directly used for carrying out the method.

[従来の技術] 従来は、表面形状の一般的な観測手段として光学顕微鏡
や走査型電子顕微鏡があるが、高さを含む三次元の寸法
を測定するには不向きである。さらに、光学顕微鏡は光
の波長で分解能が制限されミクロンメートル以下の観測
は困難である。また電子顕微鏡での観測は真空中で行わ
なければならず、生体など水分を含む試料をそのまま測
定することは出来ない。
[Prior Art] Conventionally, optical microscopes and scanning electron microscopes have been used as general observation means for surface shapes, but they are not suitable for measuring three-dimensional dimensions including height. Furthermore, the resolution of optical microscopes is limited by the wavelength of light, making it difficult to observe micrometers or smaller. Furthermore, observation with an electron microscope must be performed in a vacuum, and samples containing water, such as living organisms, cannot be directly measured.

高さを含む三次元の寸法を測定する最も一般的な測定器
は、触針を表面におしつけ、表面をなぞる従来の触針式
表面粗さ訓である。これは触針の表面への押し付は荷重
は10ミリグラムオーダもしくはそれ以上であり、この
荷重に触21が耐えるためにはその先端半径はミクロン
以下にする必要がある。よってミクロン以下のピッチの
微細な凹凸は検出出来ない。さらにこの大きな荷重で表
面を損傷する危険もある。特に生物組織表面のように柔
らかいものは測定不能である。
The most common measuring instrument for measuring three-dimensional dimensions, including height, is the conventional stylus surface roughness test, in which a stylus is placed on the surface and traced along the surface. This is because when the stylus is pressed against the surface, the load is on the order of 10 milligrams or more, and in order for the stylus 21 to withstand this load, the tip radius must be less than microns. Therefore, fine irregularities with a pitch of microns or less cannot be detected. Furthermore, there is a risk of damaging the surface due to this large load. In particular, soft objects such as biological tissue surfaces cannot be measured.

最近、非接触で表面の凹凸を光で検出する光学式表面粗
ざ泪も用いられるようになった。これは表面を損傷する
危険はないが、光スポットの直径は1ミクロン以上であ
り、やはりミクロン以下の面分解能での測定には分解能
が不足である。
Recently, optical surface roughness detection, which uses light to detect surface irregularities in a non-contact manner, has also come into use. Although this poses no risk of damaging the surface, the diameter of the light spot is more than 1 micron, and the resolution is still insufficient for measurements with a surface resolution of less than a micron.

さらに、鋭い針を表面にオングストロームオーダまで近
イ」け、その間に流れるトンネル電流を検出する走査型
トンネル顕微鏡が開発された。
Furthermore, a scanning tunneling microscope was developed that allows a sharp needle to be inserted into the surface as close as angstroms to detect the tunneling current that flows between the needles.

分解能は原子レベルまで期待出来、空気中でも測定可能
であるが、1ヘンネル電流を利用するかぎり表面は導体
に限定されるという大きな欠点がある。
The resolution can be expected to be down to the atomic level, and measurement is possible even in the air, but as long as 1 Hennel current is used, the major drawback is that the surface is limited to conductors.

[発明が解決しようどづる課題] 本発明は、前記従来の微細な表面形状の観測手段の欠点
に鑑み、あらゆる物質の表面に対して容易な操作かつ高
い分解能で三次元形状を測定するのに有効適切な表面形
状測定方法および装置を提供せ/、とするものである。
[Problems to be Solved by the Invention] In view of the drawbacks of the conventional observation means for observing minute surface shapes, the present invention provides a method for measuring the three-dimensional shape of the surface of any material with easy operation and high resolution. It is an object of the present invention to provide an effective and appropriate surface profile measurement method and apparatus.

(2)発明の構成 [課題を解決するための手段] 本発明は、触針を支持するばねと、当該ばねの変位を検
出する変位センサを備え、前記触21を測定面に接触摺
動させて表面形状を測定する装置において、前記測定面
と前記触21と前記支持ばねと前記変位センサの先端と
を液体中に浸漬せしめ、前記支持ばねの変位挙動の検出
により表面形状を測定するに当り、前記支持ばねに対し
外乱振動を遮断自在かつ粘性減衰を付与自在に液体中測
定をしてミクロンノー1〜ル以下の精密測定を可能どし
てなる。
(2) Structure of the invention [Means for solving the problem] The present invention includes a spring that supports a stylus and a displacement sensor that detects the displacement of the spring, and the stylus 21 is slid in contact with a measurement surface. In an apparatus for measuring a surface shape, the measurement surface, the touch 21, the support spring, and the tip of the displacement sensor are immersed in a liquid, and the surface shape is measured by detecting the displacement behavior of the support spring. The support spring is capable of blocking disturbance vibrations and imparting viscous damping to the support spring, and is capable of performing measurements in a liquid with precision of micron no. 1 to micron or less.

[実 施 例1] 本発明装置の第1実施例を第1図につぎ説明する。[Implementation Example 1] A first embodiment of the device of the present invention will now be described with reference to FIG.

図中1は触針、2板ばねで、掃引吊杆3下端に基端をハ
持ちし水平に突出しである。触針1は板ばね2の先端に
下向固定されている。4aは基板5上に載置した測定物
4の測定面で、触針1はこの上を接触摺動する。触針1
の先端半径はサブミクロンの分解能を得るためにもサブ
ミクロンもしくはで−れ以下に形成する。板ばね2はた
わみやすいものとし、例えば長さ10mm 。
In the figure, 1 is a stylus, and 2 is a leaf spring, whose base end is held at the lower end of the sweep hanging rod 3 and protrudes horizontally. The stylus 1 is fixed downward to the tip of a leaf spring 2. Reference numeral 4a denotes a measurement surface of a measurement object 4 placed on a substrate 5, on which the stylus 1 slides in contact. Stylus 1
The radius of the tip is formed to be submicron or less in order to obtain submicron resolution. The leaf spring 2 is flexible and has a length of, for example, 10 mm.

幅1mm 、厚さ10μmとすれば10μq/μm程度
の剛性が得られる。まl〔、フォトリソグラフィにJ:
るエツチング技術を使いミリノー1〜ル以下の掻く薄い
バネを形成しそれを用いてもよい。
If the width is 1 mm and the thickness is 10 μm, a rigidity of about 10 μq/μm can be obtained. 〔J for photolithography:
It is also possible to form a thin spring with a thickness of 1 to 1 mm or less using an etching technique and use it.

6は板ばね2の先端変位の挙動を検出するよう板ばね2
の先端部真上に先端7を臨ませた変位センサで、本実施
例では焦点誤差検出型の光へラドセンサを用いている。
6 is a plate spring 2 so as to detect the behavior of the tip displacement of the plate spring 2.
This is a displacement sensor whose tip 7 is directly above the tip of the lens, and in this embodiment, a focus error detection type optical helical rad sensor is used.

8は容器であって、触針1、板ばね2、測定面4aおよ
び光へラドセンサ6の先端7を浸)へする液体って満た
されている。
Reference numeral 8 denotes a container filled with a liquid to immerse the stylus 1, the leaf spring 2, the measuring surface 4a, and the tip 7 of the optical sensor 6.

ここで本実施例に本発明方法を作用させるには、触針1
を測定面4aに接触させる。ここで生じる接触荷重は、
板ばね2の剛性が小さいため極めて小さな値、例えば触
!(1と測定面/laとに作用するファンデルヴアール
ス力と同程度の10μqのオーダにできる。よって、接
触による表面の損傷を避けることができる。この状態で
掃引吊杆3の水平移動に伴い板ばね2ど−・体向に触針
1を測定面4に沿って走査する際、板ばね2は測定面4
aの形状に応じて挙動変位しそれを掃引吊杆3の動きに
同調追従して水平移動する光へラドセンサ6で検出する
Here, in order to apply the method of the present invention to this example, the stylus 1
is brought into contact with the measurement surface 4a. The contact load generated here is
Because the rigidity of the leaf spring 2 is small, the value is extremely small, for example, when the rigidity is tactile! (It can be on the order of 10 μq, which is about the same as the van der Waals force acting on 1 and the measurement surface /la. Therefore, damage to the surface due to contact can be avoided. In this state, the horizontal movement of the sweep suspension rod 3 When the stylus 1 is scanned along the measurement surface 4 in the direction of the leaf spring 2, the leaf spring 2 moves along the measurement surface 4.
The behavior changes according to the shape of a, and this is detected by the rad sensor 6 as the light moves horizontally in synchronization with the movement of the sweep hanging rod 3.

この場合、触針1は測定面4aに極めて小さい接触荷重
で接しているため、板ばね2は振動しやすい。特に空気
中では、音IIの空気振動で板ばね2は共振し、接触を
不安定にする危険が大きい。しかし本発明方法のように
液体9の中に浸漬した液体9中測定に当って、空気振動
は液体9で遮断され、しかも液体9の粘性で板ばね2の
振動に大きな減衰が生じるので共振は生じなくなる。よ
って支定に接触摺動が行える。
In this case, since the stylus 1 is in contact with the measurement surface 4a with an extremely small contact load, the leaf spring 2 is likely to vibrate. Particularly in the air, the leaf spring 2 resonates due to the air vibration of sound II, and there is a great danger that the contact will become unstable. However, when measuring in the liquid 9 immersed in the liquid 9 as in the method of the present invention, the air vibrations are blocked by the liquid 9, and the viscosity of the liquid 9 causes a large attenuation of the vibration of the leaf spring 2, so the resonance is not caused. It will no longer occur. Therefore, contact sliding can be performed on the support.

光へッドレンザ6の先端7は、レンズもしくはレンズを
保護する透明体であるが、これが液体9中に浸漬されて
いるため、液表面で生じる表面波による乱反射や屈折率
変動の影響を受けず、良好な晶質の変位検出が出来る。
The tip 7 of the optical head lens 6 is a lens or a transparent body that protects the lens, but since it is immersed in the liquid 9, it is not affected by diffuse reflection or refractive index fluctuation due to surface waves generated on the liquid surface. Good displacement detection of crystalline material is possible.

即ち、高粘度、高安定なばね変位の検出が可能となる。That is, it is possible to detect a highly viscous and highly stable spring displacement.

[実 施 例2] 本発明装置の第2実施例を第2図につき説明する。[Implementation example 2] A second embodiment of the device according to the invention will be described with reference to FIG.

同図は、前記第1実施例において、触針1を支持するの
に平行ばね2′を用いた実施例である。平行ばね2′は
触211が測定面4aを摺動したとき生じる摩擦力によ
る曲げモーメントに対する剛性が大きく、1枚の板ばね
を使用した場合J:す、曲げモーメントによるばねの変
形が少ない。よって摩擦力による変位検出誤差を小ざく
出来る、。
This figure shows an embodiment in which a parallel spring 2' is used to support the stylus 1 in the first embodiment. The parallel spring 2' has high rigidity against the bending moment due to the frictional force generated when the contact 211 slides on the measurement surface 4a, and when a single leaf spring is used, the spring deformation due to the bending moment is small. Therefore, displacement detection errors due to frictional force can be reduced.

[実 施 例3] 本発明装置の第3実施例を第3図につき説明する。[Implementation Example 3] A third embodiment of the device of the present invention will be described with reference to FIG.

同図は、前記第1実施例における光へッドゼンサ6に代
えて、板ばね2の変位検出に板ばね2先端直上に下端を
臨ませた導電プローブ10を使用した実施例である。こ
の場合、板ばね2には導電性材料を用いる。導電プロー
ブ10下端と板ばね2先端の間に電位を与え、極めて近
く接近させると両者の間にトンネル電流が流れる。この
電流は導電プローブ10と板ばね2の隙間に極めて敏感
に変化する。言い換えると一定のトンネル電流は一定の
隙間に対応する。よって、ピエゾ素子11で1〜ンネル
電流が一定となるよう、導電プローブ10を板ばね2先
端と直角対向する方向に駆動してやると導電プロブ10
下端は板ばね2先端の変位にかかわらずつねに板ばね2
と一定の隙間を保つ。かくして板ばね2の上下挙動変位
は導電プローブ10の上下挙動変位、即ち、ピエゾ素子
11の変位に等しくなる。ピエゾ素子11の変位はピエ
ゾ素子11に加えられる電圧で知ることが出来るから、
これにより板ばね2の上下挙動変位を測定出来る。使用
する液体9が導電性を持つ場合には、導電プローブ10
のごく先端部を除き絶縁被覆12を施してやることによ
り効果的なトンネル電流の検出が可能になる。
This figure shows an embodiment in which a conductive probe 10 whose lower end faces directly above the tip of the leaf spring 2 is used to detect the displacement of the leaf spring 2 in place of the optical head sensor 6 in the first embodiment. In this case, the leaf spring 2 is made of a conductive material. When a potential is applied between the lower end of the conductive probe 10 and the tip of the leaf spring 2 and the probes are brought very close together, a tunnel current flows between the two. This current changes extremely sensitively to the gap between the conductive probe 10 and the leaf spring 2. In other words, a constant tunnel current corresponds to a constant gap. Therefore, if the conductive probe 10 is driven in a direction perpendicularly facing the tip of the leaf spring 2 so that the channel current in the piezo element 11 is constant, the conductive probe 10
The lower end is always connected to leaf spring 2 regardless of the displacement of the tip of leaf spring 2.
and maintain a certain gap. Thus, the vertical displacement of the leaf spring 2 is equal to the vertical displacement of the conductive probe 10, that is, the displacement of the piezo element 11. Since the displacement of the piezo element 11 can be determined by the voltage applied to the piezo element 11,
This allows the vertical displacement of the leaf spring 2 to be measured. When the liquid 9 used is conductive, the conductive probe 10
By applying the insulating coating 12 except for the tip of the slit, it becomes possible to effectively detect the tunnel current.

図中13は直流電源、14は抵抗、15は増幅器である
In the figure, 13 is a DC power supply, 14 is a resistor, and 15 is an amplifier.

(3)発明の効果 かくして本発明によれば、極めて微小な荷重で表面形状
を測定でき、従来装置では実現できなかった鋭い触針を
安定にかつ測定面の破壊の危険がなく使用できる。よっ
て高い分解能で三次元の表面形状を測定できる。
(3) Effects of the Invention Thus, according to the present invention, the surface shape can be measured with an extremely small load, and a sharp stylus, which was not possible with conventional devices, can be used stably and without the risk of breaking the measurement surface. Therefore, three-dimensional surface shapes can be measured with high resolution.

さらに整理食塩水や水などの生体の生存可能なもの、タ
ンパク質やアミノ酸など水分を含む有機物の自然状態を
保存するものが使用可能であり、従来の観測手段では観
測出来ながったこれらの物質の自然状態での微細形状が
本発明では測定できる。また、周囲雰囲気で酸化や汚染
が起こり易い活性な表面も、不活性な液体、たとえばシ
リコン油などに浸漬すれば純粋な表面を測定出来る等優
れた効果を奏する。
In addition, it is possible to use substances that allow living organisms to survive, such as purified saline and water, and substances that preserve the natural state of organic substances that contain water, such as proteins and amino acids, and these substances that cannot be observed with conventional observation methods can be used. According to the present invention, the fine shape of the material in its natural state can be measured. Furthermore, even active surfaces that are susceptible to oxidation and contamination in the surrounding atmosphere can be immersed in an inert liquid, such as silicone oil, to produce excellent effects such as being able to measure pure surfaces.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の第1実施例を示す一部破断側面図
、第2図は同・第2実施例を示す一部破断側面図、第3
図は同・第3実施例を示す一部破断側面図である。 1・・・触針       2・・・板ばね2′・・・
平行ばね    4・・・測定物4a・・・測定面  
   6・・・光へッドセンザ7・・・光へラドセン勺
の先端 8・・・容器       9・・・液体10・・・導
電プローブ  11・・・ピエゾ素子12・・・絶縁被
FIG. 1 is a partially cutaway side view showing a first embodiment of the device of the present invention, FIG. 2 is a partially cutaway side view showing the same second embodiment, and FIG.
The figure is a partially cutaway side view showing the third embodiment. 1... Stylus 2... Leaf spring 2'...
Parallel spring 4...Measurement object 4a...Measurement surface
6... Optical head sensor 7... Tip of optical head sensor 8... Container 9... Liquid 10... Conductive probe 11... Piezo element 12... Insulating coating

Claims (1)

【特許請求の範囲】 1、測定面に接触摺動する触針を支持したばねの変位挙
動の検出により表面形状を測定するに当り、前記支持ば
ねに対し外乱振動を遮断自在かつ粘性減衰を付与自在に
液体中測定してミクロンメートル以下の精密測定をする
ことを特徴とする表面形状測定方法 2 触針を支持したばねと、当該ばねの変位を検出する
変位センサを備え、前記触針を測定面に接触摺動させて
表面形状を測定する装置において、前記測定面と前記触
針と前記支持ばねと前記変位センサの先端とが液体中に
浸漬されていることを特徴とする表面形状測定装置
[Claims of Claims] 1. When measuring a surface shape by detecting the displacement behavior of a spring that supports a stylus that slides in contact with a measurement surface, the support spring is capable of blocking disturbance vibrations and is provided with viscous damping. Surface shape measuring method 2 characterized by freely measuring in a liquid and performing precise measurements of micrometers or less A spring supporting a stylus and a displacement sensor that detects the displacement of the spring are provided, and the stylus is measured. A device for measuring a surface shape by sliding contact with a surface, characterized in that the measurement surface, the stylus, the support spring, and the tip of the displacement sensor are immersed in a liquid.
JP23869888A 1988-09-26 1988-09-26 Surface shape measuring method and device Expired - Lifetime JPH0670565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23869888A JPH0670565B2 (en) 1988-09-26 1988-09-26 Surface shape measuring method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23869888A JPH0670565B2 (en) 1988-09-26 1988-09-26 Surface shape measuring method and device

Publications (2)

Publication Number Publication Date
JPH0287009A true JPH0287009A (en) 1990-03-27
JPH0670565B2 JPH0670565B2 (en) 1994-09-07

Family

ID=17033968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23869888A Expired - Lifetime JPH0670565B2 (en) 1988-09-26 1988-09-26 Surface shape measuring method and device

Country Status (1)

Country Link
JP (1) JPH0670565B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04230801A (en) * 1990-04-28 1992-08-19 Focus Messtechnik Gmbh & Co Kg Scanning head

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04230801A (en) * 1990-04-28 1992-08-19 Focus Messtechnik Gmbh & Co Kg Scanning head

Also Published As

Publication number Publication date
JPH0670565B2 (en) 1994-09-07

Similar Documents

Publication Publication Date Title
US10156585B2 (en) Cantilevered probes having piezoelectric layer, treated section, and resistive heater, and method of use for chemical detection
JP4398519B2 (en) Double stage device for sample scanning
EP0388023B1 (en) Atomic force microscope with optional replaceable fluid cell
JP3249130B2 (en) Scanning probe microscope used in fluids
JP2915554B2 (en) Barrier height measurement device
US5253516A (en) Atomic force microscope for small samples having dual-mode operating capability
US5621210A (en) Microscope for force and tunneling microscopy in liquids
US9140720B2 (en) Feedback controller in probe microscope utilizing a switch and a inverter
US6349591B1 (en) Device and method for controlling the interaction of a tip and a sample, notably for atomic force microscopy and nano-indentation
Fu et al. Long‐range scanning for scanning tunneling microscopy
JPH0287009A (en) Method and apparatus for measuring surface shape
JPH11108976A (en) Permittivity measuring apparatus
JP2003329565A (en) Scanning probe microscope
JPH0821845A (en) Sample measuring probe device
JPH09251026A (en) Scanning probe microscope
JPH079363B2 (en) Surface mechanical property measuring device
RU2731039C1 (en) Device for measuring surface relief parameters and mechanical properties of materials
Chettwynd et al. High precision surface profilometry: from stylus to STM
JPH01259210A (en) Surface shape measuring instrument
KR100636011B1 (en) Defect detection apparatus
JPH06102457A (en) Scanning type near field optical microscope
JPH01224616A (en) Surface shape measuring instrument
JPH03115903A (en) Method and device for measuring surface shape
JPH04137644A (en) Film thickness measuring method and film thickness measuring instrument
JPH07181150A (en) Photoelectron detection apparatus and method for measuring surface roughness of image

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070907

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080907

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080907

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090907

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090907

Year of fee payment: 15