JPH0286176A - Photoelectric converter - Google Patents

Photoelectric converter

Info

Publication number
JPH0286176A
JPH0286176A JP63238330A JP23833088A JPH0286176A JP H0286176 A JPH0286176 A JP H0286176A JP 63238330 A JP63238330 A JP 63238330A JP 23833088 A JP23833088 A JP 23833088A JP H0286176 A JPH0286176 A JP H0286176A
Authority
JP
Japan
Prior art keywords
substrate
junction
photoelectric conversion
area
conversion device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63238330A
Other languages
Japanese (ja)
Inventor
Yoshihiro Miyamoto
義博 宮本
Soichiro Hikita
匹田 聡一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63238330A priority Critical patent/JPH0286176A/en
Publication of JPH0286176A publication Critical patent/JPH0286176A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To reduce the ratio of a dark current to a photoelectrically converted current by forming a contact electrode by using a light transmissive material in such a way that the area of a P-N junction can become nearly the same as that of an optical opening. CONSTITUTION:An N type layer 22 of a prescribed pattern is formed in a substrate 21 made of a compound semiconductor of P type Mg1-xCdxTe, etc., by a method for implanting ions of N type impurity atoms, etc. After forming an insulating film 23 on the substrate 21 by vapor deposition, a contact hole 24 of a prescribed pattern is formed in the film 23 by etching using a photolitho graphic method. In addition, a light shielding film 25 of alumina, etc., is formed on the substrate 21 by vapor deposition, etc., and an optical opening 27 having almost the same area as the P-N junction area 26 formed in the substrate 21 has is formed in the light shielding film 23 by etching. Finally, a contact elec trode 28 of nickel or chromium is formed on the substrate 21. Therefore, a high-sensitivity photoelectric converter in which the ratio of a dark current caused by the semiconductor material constituting the converter to an electric current produced by the photoelectric conversion of infrared rays the incidence of which is regulated by the optical opening, does not increase can be obtained.

Description

【発明の詳細な説明】 〔概 要〕 光電変換装置に関し、 遮光膜で画定された光学開口外に設けたコンタクト領域
によって光電変換装置の暗電流成分が増−加して光電変
換装置の感度が低下するのを防止するのを目的とし、 半導体基板表面に該基板と逆導電型を有する領域が形成
され、光電変換を行うP−N接合部と、前記P−N接合
部上に所定のパターンに窓開きしたコンタクト孔を有す
る絶縁膜と、該絶縁膜上に設けられ、前記P−N接合部
に入射する光の入射領域を画定する光学開口を設けた遮
光膜と、前記コンタクト孔を介して前記逆導電型領域と
接続するコンタクト電極とを設けた光電変換装置に於い
て、前記コンタクト電極が透光性の材料を用いて形成さ
れ、前記P−N接合部の面積と光学開口の面積がほぼ一
致するように形成したことで構成する。
[Detailed Description of the Invention] [Summary] Regarding a photoelectric conversion device, a contact region provided outside an optical aperture defined by a light-shielding film increases the dark current component of the photoelectric conversion device, thereby increasing the sensitivity of the photoelectric conversion device. In order to prevent this, a region having a conductivity type opposite to that of the semiconductor substrate is formed on the surface of the semiconductor substrate, a P-N junction section for photoelectric conversion, and a predetermined pattern on the P-N junction section. an insulating film having a contact hole with a window opening; a light-shielding film provided on the insulating film and having an optical aperture defining an incident area for light incident on the P-N junction; In the photoelectric conversion device provided with a contact electrode connected to the opposite conductivity type region, the contact electrode is formed using a light-transmitting material, and the area of the P-N junction and the area of the optical aperture are the same. are formed so that they almost match.

(産業上の利用分野〕 本発明は光電変換装置に係り、特に赤外線領域に感度を
有するエネルギーバンドギャップの狭い半導体を用いた
光電変換装置に関する。
(Industrial Application Field) The present invention relates to a photoelectric conversion device, and more particularly to a photoelectric conversion device using a semiconductor with a narrow energy bandgap and sensitivity in the infrared region.

エネルギーバンドギャップの狭い化合物半導体、例えば
インジウムアンチモン(InSb) 、水銀・カドミウ
ム・テルル(llgl−X CdX Te) 、鉛・錫
・テルル(PbSnTe)等の化合物半導体基板にP−
N接合を形成した光電変換装置は周知である。
P-
A photoelectric conversion device in which an N junction is formed is well known.

近年、このような光電変換装置に於いて、該装置の検知
感度を向上させるために、入射エネルギーが同一の場合
であると入射するホトンの数が増加する長波長帯に感度
を有する材料の採用や、暗電流(素子のP−N接合部近
傍の少数キャリアに起因する電流で、素子の形成材料に
よって定まる電流)の小さい光電変換装置が要求されて
いる。
In recent years, in order to improve the detection sensitivity of such photoelectric conversion devices, materials that are sensitive to long wavelength bands, where the number of incident photons increases when the incident energy is the same, have been adopted. There is a demand for photoelectric conversion devices with low dark current (a current caused by minority carriers near the PN junction of the device, which is determined by the material of the device).

〔従来の技術〕[Conventional technology]

従来の光電変換装置としては、第4図に示すように、例
えばP型のHg+−x Cdx Te等の化合物半導体
基板1に所定パターンにボロン(B)等のN型の不純物
をイオン注入等の方法で導入してN型層2を形成し、こ
の基板1の裏面側より赤外線を矢印Aに示すように導入
し、この導入された赤外線がP−N接合部3で光電変換
された信号を1、該N型層2上に設けられたInバンプ
4を用いて取り出し、この光電変換された信号を、上記
Inバンブ4で接続され、シリコン基板5に形成された
電荷結合装置のような信号処理装置の人力ダイオード6
に入力して信号処理している。
As shown in FIG. 4, a conventional photoelectric conversion device is manufactured by ion-implanting N-type impurities such as boron (B) in a predetermined pattern on a compound semiconductor substrate 1 such as P-type Hg+-x Cdx Te. Infrared rays are introduced from the back side of this substrate 1 as shown by arrow A, and the introduced infrared rays convert signals photoelectrically at the P-N junction 3. 1. The In bump 4 provided on the N-type layer 2 is used to take out the photoelectrically converted signal, and the signal is connected to the In bump 4 and formed on the silicon substrate 5, such as a charge-coupled device. Processing equipment human power diode 6
The signal is processed by inputting it to the

然し、このような裏面入射型の光電変換装置では8.矢
印Aに示すように基板lの裏面側で前記PN接合部3に
対向せずに、P−N接合部の間に入射された赤外線は、
基板に導入されてキャリアと成った後、P−N接合部に
到達する迄に再結合され易いため、感度が低下する問題
がある。また基板の裏面側よりP−N接合部に対向して
入射された赤外線も、基板の表面の近傍にP−N接合部
が形成されているため、この接合部に到達する迄にキャ
リアは消滅し易く、やはり感度は低下する。
However, in such a back-illuminated photoelectric conversion device, 8. As shown by arrow A, infrared rays are incident on the back side of the substrate 1 between the PN junctions without facing the PN junction 3.
After they are introduced into the substrate and become carriers, they are likely to be recombined before reaching the PN junction, resulting in a problem of reduced sensitivity. Furthermore, since the P-N junction is formed near the front surface of the substrate, infrared rays incident from the back side of the substrate opposite the P-N junction will disappear by the time they reach this junction. However, the sensitivity also decreases.

そこで赤外線を基板の表面より入射する赤外線検知装置
が望まれる。
Therefore, an infrared detection device that emits infrared rays from the surface of the substrate is desired.

このような表面入射型の光電変換装置としては、第5図
に示すように、例えばP型のHg1−XCdy T6等
の化合物半導体基板11にN型層12をボロン(B)等
の原子をイオン注入することで形成する。そして該基板
11上に硫化亜鉛(ZnS)等の絶縁膜13を形成する
。このP−N接合部14は素子に電圧を印加した時、半
導体の特性に支配されるキャリアの拡散長LPで決まる
広がった赤外線の感光プロフィルを持つことが知られて
いる。
For such a front-illuminated photoelectric conversion device, as shown in FIG. Formed by injection. Then, an insulating film 13 made of zinc sulfide (ZnS) or the like is formed on the substrate 11. It is known that this PN junction 14 has a wide infrared ray sensitivity profile determined by the carrier diffusion length LP, which is controlled by the characteristics of the semiconductor, when a voltage is applied to the device.

そしてP−N接合部の周辺部からの光の入射を阻止する
ために、金(Au)等よりなる遮光膜15を設け、この
遮光膜15を所定の寸法に開口して光学開口16を画定
している。
In order to prevent light from entering from the periphery of the P-N junction, a light-shielding film 15 made of gold (Au) or the like is provided, and the light-shielding film 15 is opened to a predetermined size to define an optical aperture 16. are doing.

ところで、このような表面入射型の光電変換装置に於い
ては、P−N接合によってダイオードが形成されている
N型層12に所定の電圧を印加してこのダイオードを動
作させる必要があり、そのために電圧を印加するための
コンタクト電極が要求される。
Incidentally, in such a front-illuminated photoelectric conversion device, it is necessary to apply a predetermined voltage to the N-type layer 12 in which a diode is formed by a P-N junction to operate this diode. A contact electrode is required to apply a voltage to.

第6図はこのような表面入射型の光電変換装置のコンタ
クト電極を形成した場合で、P型の化合物半導体基板1
1に形成したN型領域12上に絶縁膜13を形成した後
、該絶縁膜13を所定のパターンに窓開きし、N型領域
12の端部に設けたコンタクト領域17に光を透過しな
いインジウムのようなコンタクト電極18を形成し、こ
のコンタクト電極18を基板1の端部に導出している。
FIG. 6 shows a case where a contact electrode of such a front-illuminated photoelectric conversion device is formed, and a P-type compound semiconductor substrate 1 is shown in FIG.
After forming an insulating film 13 on the N-type region 12 formed in 1, the insulating film 13 is opened in a predetermined pattern, and a contact region 17 provided at the end of the N-type region 12 is filled with indium that does not transmit light. A contact electrode 18 is formed, and this contact electrode 18 is led out to the edge of the substrate 1.

そしてこのコンタクト電極18上に酸化アルミニウム等
の等の遮光膜15を形成し、この遮光膜15を所定のパ
ターンに開口して光学開口16を画定している。
A light-shielding film 15 made of aluminum oxide or the like is formed on the contact electrode 18, and the light-shielding film 15 is opened in a predetermined pattern to define an optical aperture 16.

そして基板11の表面より前記した光学開口16を介し
て赤外線を入射し、この入射した光を検知するようにす
れば、解像度の高い検知素子が形成される。
If infrared rays are incident on the surface of the substrate 11 through the optical aperture 16 and the incident light is detected, a detection element with high resolution can be formed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、このような表面入射型構造の光電変換装置に
於いては、光の入射領域を規定する光学開口16の寸法
Wより、更に横方向に寸法1文法がったコンタクト領域
17を必要としており、このことはP−N接合部19が
、横方向に光学開口16の寸法Wよりコンタクト領域1
7の寸法の2だけ広がったことになる。
Incidentally, in such a photoelectric conversion device having a front-illuminated structure, a contact region 17 is required which is one dimension larger in the lateral direction than the dimension W of the optical aperture 16 that defines the light incident region. , this means that the P-N junction 19 is laterally smaller than the contact area 1 due to the dimension W of the optical aperture 16.
This means that it has expanded by 2 of the dimension of 7.

光電変換装置の暗電流は、形成される装置のPN接合部
19における空乏層20内に形成される電子、正孔対に
よる深いエネルギー準位、及び接合部周辺の少数キャリ
アによって形成されるため、P−N接合部19の面積が
大きくなる程、接合部の空乏層20の面積が大きくなる
ので、光電変換装置に於ける暗電流は大きくなる。
The dark current of a photoelectric conversion device is formed by deep energy levels due to electron and hole pairs formed in the depletion layer 20 at the PN junction 19 of the device to be formed, and minority carriers around the junction. As the area of the PN junction 19 becomes larger, the area of the depletion layer 20 at the junction becomes larger, so the dark current in the photoelectric conversion device becomes larger.

光電変換装置の特性は光学開口によって規定された正規
の光の入射によって光電変換された電流に対する暗電流
の比が小さい程、その装置の検知感度が大であるとされ
ている。
As for the characteristics of a photoelectric conversion device, it is said that the smaller the ratio of the dark current to the current photoelectrically converted by the incidence of normal light defined by the optical aperture, the higher the detection sensitivity of the device.

本発明は上記した事項に鑑みてなされたもので、光学開
口で規定された入射赤外線によって光電変換された電流
に対して暗電流の比が小さい装置の提供を目的とする。
The present invention has been made in view of the above-mentioned matters, and an object of the present invention is to provide a device in which the ratio of dark current to current photoelectrically converted by incident infrared rays defined by an optical aperture is small.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成する本発明の光電変換装置は、半導体基
板表面に該基板と逆導電型を有する領域が形成され、光
電変換を行うP−N接合部と、前記P−N接合部上に所
定のパターンに窓開きしたコンタクト孔を有する絶縁膜
と、該絶縁膜上に設けられ、前記P−N接合部に入射す
る光の入射領域を画定する光学開口を設けた遮光膜と、
前記コンタクト孔を介して前記逆導電型領域と接続する
コンタクト電極とを設けた光電変換装置に於いて、前記
コンタクト電極が透光性の材料を用いて形成され、前記
P−N接合部の面積と光学開口の面積がほぼ一致するよ
うに形成したことで構成する。
A photoelectric conversion device of the present invention that achieves the above object includes a region having a conductivity type opposite to that of the substrate formed on the surface of a semiconductor substrate, a P-N junction for performing photoelectric conversion, and a predetermined region on the P-N junction. an insulating film having contact holes opened in a pattern; a light-shielding film provided on the insulating film and having an optical aperture defining an incident area for light incident on the P-N junction;
In the photoelectric conversion device provided with a contact electrode connected to the opposite conductivity type region through the contact hole, the contact electrode is formed using a transparent material, and the area of the P-N junction is The area of the optical aperture is formed so that the area of the optical aperture and the area of the optical aperture are almost the same.

〔作 用] 本発明の装置は、コンタクト電極を赤外線を透過させる
光透過電極で形成することで、コンタクト領域を設けて
も、P−N接合部の面積と光学開口の面積を路間−の面
積に保ち、光学開口で規定された入射赤外線による光電
変換された電流に対して暗電流の比が小さくなるように
する。
[Function] By forming the contact electrode with a light-transmitting electrode that transmits infrared rays, the device of the present invention reduces the area of the P-N junction and the area of the optical aperture between the paths even if a contact area is provided. The area is maintained so that the ratio of the dark current to the photoelectrically converted current due to the incident infrared rays defined by the optical aperture is small.

〔実施例〕〔Example〕

以下、図面を用いて本発明の一実施例につき詳細に説明
する。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

第1図は本発明の光電変換装置の第1実施例の断面図で
ある。
FIG. 1 is a sectional view of a first embodiment of the photoelectric conversion device of the present invention.

図示するように、P型のHg+−x Cdx Teのよ
うな化合物半導体基板21に、所定のパターンのN型層
22をボロン(B)等のN型の不純物原子のイオン注入
法等により形成する。
As shown in the figure, an N-type layer 22 in a predetermined pattern is formed on a compound semiconductor substrate 21 such as P-type Hg+-x Cdx Te by ion implantation of N-type impurity atoms such as boron (B). .

更に該基板上にはZnS等の絶縁膜23を蒸着により形
成後、ホトリソグラフィ法を用いたエツチングにより所
定のパターンのコンタクト孔24を形成する。更に該基
板上には酸化アルミニウム等の遮光膜25を蒸着等によ
り形成した後、該遮光膜25を基板21に形成されたP
−N接合部26の面積に略等しい面積の光学開口27を
有するようにホトリソグラフィを用いたエツチングによ
り開口する。
Furthermore, after forming an insulating film 23 of ZnS or the like on the substrate by vapor deposition, contact holes 24 in a predetermined pattern are formed by etching using photolithography. Furthermore, after forming a light-shielding film 25 of aluminum oxide or the like on the substrate by vapor deposition or the like, the light-shielding film 25 is applied to the P layer formed on the substrate 21.
An optical opening 27 having an area approximately equal to the area of the -N junction 26 is formed by etching using photolithography.

そして該基板上にニッケル(Ni)、或いはクロム(C
r)等のコンタクト電極28を形成する。このNi、或
いはCr等の金属は、10〜20nm程度の厚さに形成
すれば装置に入射される赤外線の内80〜90%の光量
の赤外線を透過する能力がある。
Then, nickel (Ni) or chromium (C) is deposited on the substrate.
A contact electrode 28 such as r) is formed. If this metal such as Ni or Cr is formed to a thickness of about 10 to 20 nm, it has the ability to transmit 80 to 90% of the amount of infrared rays incident on the device.

第2図は本発明の第2実施例を示す。FIG. 2 shows a second embodiment of the invention.

図示するように本実施例が第1の実施例と異なる点は、
遮光膜25が金等の金属膜で形成されている点にあり、
この場合には、その上に形成される光透過型のコンタク
ト電極28と絶縁をとるための二酸化シリコン(SiO
□)膜や、ZnS膜等の絶縁膜29を蒸着によって形成
した後、所定のパターンに開口する。
As shown in the figure, the difference between this embodiment and the first embodiment is as follows.
The light shielding film 25 is formed of a metal film such as gold,
In this case, silicon dioxide (SiO
□) After forming a film or an insulating film 29 such as a ZnS film by vapor deposition, openings are formed in a predetermined pattern.

また第3図に本発明の第3実施例を示す。Further, FIG. 3 shows a third embodiment of the present invention.

図の31は上記光電変換装置で光電変換された信号を処
理する電荷結合素子が形成されたSi基板31で該基板
31には接着剤32が塗布されて表面にSiO□膜等の
保護膜33を形成したP型の”g+−x CdXTeの
化合物半導体基板34が形成され、該基板34がSi基
板31の接続電極35と接続される箇所に向かってテー
パ状にエンチングされ、このテーパーエツチング領域に
透光性のNiやCr等のコンタクト電極36が蒸着等に
より形成されている。また該化合物半導体基板34には
N型層37が上記コンタクト電極36と接触するように
して形成されている。
31 in the figure is a Si substrate 31 on which a charge-coupled device for processing a signal photoelectrically converted by the photoelectric conversion device is formed, and an adhesive 32 is applied to the substrate 31, and a protective film 33 such as a SiO□ film is coated on the surface. A P-type "g+-x CdXTe compound semiconductor substrate 34 is formed, and the substrate 34 is etched into a tapered shape toward a portion of the Si substrate 31 where it is connected to the connection electrode 35, and this taper etched region is etched. A contact electrode 36 made of a transparent material such as Ni or Cr is formed by vapor deposition or the like. An N-type layer 37 is also formed on the compound semiconductor substrate 34 so as to be in contact with the contact electrode 36.

そして化合物半導体基板34上にSiO□膜よりなる絶
縁膜38を介して金等よりなる遮光膜39の内縁部が、
P−N接合部41が基板表面に露出した箇所と合致して
蒸着およびエツチングにより形成される。
Then, the inner edge of the light shielding film 39 made of gold or the like is formed on the compound semiconductor substrate 34 via the insulating film 38 made of SiO□ film.
A P-N junction 41 is formed by vapor deposition and etching to match the exposed portion of the substrate surface.

このようにすれば、従来の装置に比較してPN接合部4
1の面積と路間−寸法の光学開口部が形成されることに
なり、暗電流の増加といった現象が無くなり、形成され
る装置の感度が向上する。
In this way, compared to the conventional device, the PN junction 4
Since an optical aperture having an area and path length of 1 is formed, a phenomenon such as an increase in dark current is eliminated, and the sensitivity of the formed device is improved.

(発明の効果〕 以上の説明から明らかなように本発明によれば、光学開
口の面積と装置のP−N接合部の面積とが略一致し、装
置を形成する半導体材料によって起因される暗電流の、
光学開口で規定された入射赤外線の光電変換により形成
された電流に対する比が増加しない高感度の赤外線検知
装置が得られる効果がある。
(Effects of the Invention) As is clear from the above description, according to the present invention, the area of the optical aperture and the area of the P-N junction of the device substantially match, and the darkness caused by the semiconductor material forming the device of current,
This has the effect of providing a highly sensitive infrared detection device in which the ratio of the incident infrared rays defined by the optical aperture to the current formed by photoelectric conversion does not increase.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光電変換装置の第1実施例の断面図、 第2図は本発明の光電変換装置の第2実施例の断面図、 第3図は本発明の光電変換装置の第3実施例の断面図、 第4図は裏面入射型の光電変換装置の断面図、第5図お
よび第6図は従来の表面入射型の光電変換装置の断面図
である。 図において、 21はP型Hg+−x Cdx Te基板、22.37
はN型層、23.29.38は絶縁膜、24はコンタク
ト孔、25.39は遮光膜、26.41はP−N接合部
、27は光学開口、28.36はコンタクト電極、31
はSi基板、32は接着剤、33は保護膜、34は化合
物半導体基板、35は接続電極を示す。 1品
FIG. 1 is a cross-sectional view of a first embodiment of a photoelectric conversion device of the present invention, FIG. 2 is a cross-sectional view of a second embodiment of a photoelectric conversion device of the present invention, and FIG. 3 is a cross-sectional view of a second embodiment of a photoelectric conversion device of the present invention. FIG. 4 is a cross-sectional view of a back-illuminated photoelectric conversion device, and FIGS. 5 and 6 are cross-sectional views of a conventional front-illuminated photoelectric conversion device. In the figure, 21 is a P-type Hg+-x Cdx Te substrate, 22.37
23.29.38 is an N-type layer, 23.29.38 is an insulating film, 24 is a contact hole, 25.39 is a light shielding film, 26.41 is a P-N junction, 27 is an optical opening, 28.36 is a contact electrode, 31
32 is a Si substrate, 32 is an adhesive, 33 is a protective film, 34 is a compound semiconductor substrate, and 35 is a connection electrode. 1 item

Claims (1)

【特許請求の範囲】 半導体基板(21、31)表面に該基板と逆導電型を有
する領域(22)が形成され、光電変換を行うP−N接
合部(26、41)と、前記P−N接合部上に所定のパ
ターンに窓開きしたコンタクト孔(24)を有する絶縁
膜(23)と、該絶縁膜上に設けられ、前記P−N接合
部に入射する光の入射領域を画定する光学開口(27)
を設けた遮光膜(25、38)と、前記コンタクト孔(
24)を介して前記逆導電型領域(22)と接続するコ
ンタクト電極(28、36)とを設けた光電変換装置に
於いて、 前記コンタクト電極(28)が透光性の材料を用いて形
成され、前記P−N接合部の面積と光学開口の面積がほ
ぼ一致するように形成したことを特徴とする光電変換装
置。
[Claims] A region (22) having a conductivity type opposite to that of the semiconductor substrate (21, 31) is formed on the surface of the semiconductor substrate (21, 31), and a P-N junction (26, 41) that performs photoelectric conversion, and an insulating film (23) having contact holes (24) opened in a predetermined pattern on the N junction; and an insulating film (23) provided on the insulating film to define an incident area for light incident on the P-N junction. Optical aperture (27)
The light shielding film (25, 38) provided with the contact hole (
24) In a photoelectric conversion device provided with a contact electrode (28, 36) connected to the opposite conductivity type region (22) via a photoelectric conversion device, the contact electrode (28) is formed using a translucent material. A photoelectric conversion device characterized in that the area of the P-N junction portion and the area of the optical aperture are formed so as to substantially match each other.
JP63238330A 1988-09-22 1988-09-22 Photoelectric converter Pending JPH0286176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63238330A JPH0286176A (en) 1988-09-22 1988-09-22 Photoelectric converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63238330A JPH0286176A (en) 1988-09-22 1988-09-22 Photoelectric converter

Publications (1)

Publication Number Publication Date
JPH0286176A true JPH0286176A (en) 1990-03-27

Family

ID=17028606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63238330A Pending JPH0286176A (en) 1988-09-22 1988-09-22 Photoelectric converter

Country Status (1)

Country Link
JP (1) JPH0286176A (en)

Similar Documents

Publication Publication Date Title
US7256470B2 (en) Photodiode with controlled current leakage
US9054008B2 (en) Solar blind ultra violet (UV) detector and fabrication methods of the same
US9337220B2 (en) Solar blind ultra violet (UV) detector and fabrication methods of the same
US9419159B2 (en) Semiconductor light-detecting element
US5075237A (en) Process of making a high photosensitive depletion-gate thin film transistor
CA2050362C (en) Photo-sensing device
US20050253132A1 (en) Photodetector circuits
US4965212A (en) Optical sensor
JPH0652785B2 (en) Photosensitive device having a region between detectors that does not transmit light of a wavelength to be detected, and method of manufacturing the same
US8212327B2 (en) High fill-factor laser-treated semiconductor device on bulk material with single side contact scheme
US5047622A (en) Long wavelength infrared detector with heterojunction
JPS62160776A (en) Photovoltage detector and manufacture of the same
US4034396A (en) Light sensor having good sensitivity to visible light
CN116075944A (en) Photodiode device with enhanced characteristics
JPH0286176A (en) Photoelectric converter
JPH0492481A (en) Photosensor
JPH0286177A (en) Photoelectric converter
KR102245138B1 (en) Method for forming active area of photodiode and method for manufacturing phtodiode thereof
KR101827213B1 (en) Photo-sensitive semiconductor having small dark current and Method for manufacturing the same
JPS6015005B2 (en) Photovoltaic infrared sensing element
JPH01233777A (en) Infrared radiation detector
JPH02284479A (en) Photoelectric conversion device
JPH09232605A (en) Flame sensor
JPH01309387A (en) Semiconductor photodetecting element
JPH01238160A (en) Infrared ray detector