JPH0286135A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0286135A
JPH0286135A JP23835688A JP23835688A JPH0286135A JP H0286135 A JPH0286135 A JP H0286135A JP 23835688 A JP23835688 A JP 23835688A JP 23835688 A JP23835688 A JP 23835688A JP H0286135 A JPH0286135 A JP H0286135A
Authority
JP
Japan
Prior art keywords
substrate
deposited
layer
polycrystalline
silicide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23835688A
Other languages
Japanese (ja)
Inventor
Toshiyuki Nishihara
利幸 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP23835688A priority Critical patent/JPH0286135A/en
Publication of JPH0286135A publication Critical patent/JPH0286135A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To realize manufacture of highly reliable semiconductor devices by transforming a region in a semiconductor substrate to be connected with an interconnection layer into a metallic compound in a self-aligned manner before formation of the interconnection layer. CONSTITUTION:An SiN film 21 is deposited on oxide films 12 and 13. The SiN film 21 and the gate oxide film 13 are etched with a mask of resist, so that a contact section in the buried part of an Si substrate 11 is exposed. Ti 22 is deposited on the whole surface of the Si substrate 11 and then heat treated appropriately so that the exposed part of the Si substrate 11, namely the buried contact section is transformed into a silicide 23 in a self-aligned manner. The non-reacted Ti 22 and the SiN film 21 are removed. Further, a polycrystalline Si layer 14 is deposited and patterned by etching, so that a gate electrode 15 connected to the buried contact section, namely to the silicide 23 is formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、配線層が半導体基板に直接に接続されている
半導体装置の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method of manufacturing a semiconductor device in which a wiring layer is directly connected to a semiconductor substrate.

〔発明の概要〕[Summary of the invention]

本発明は、上記の様な半導体装置の製造方法において、
半導体基板のうちで配線層を接続すべき領域を自己整合
的に金属間化合物化させてから配線層を形成することに
よって、信頼性の高い半導体装置を製造することができ
る様にしたものである。
The present invention provides a method for manufacturing a semiconductor device as described above.
A highly reliable semiconductor device can be manufactured by forming an intermetallic compound in a self-aligned manner in the region of the semiconductor substrate where the wiring layer is to be connected, and then forming the wiring layer. .

〔従来の技術〕[Conventional technology]

配線層を半導体基板に直接に接続する手法、例えば、M
O3−3RAMにおいて多結晶Siから成るゲート電極
をソース・ドレイン拡散層に直接に接続する埋め込みコ
ンタクトは、セルサイズの縮小等に有効な手法である(
例えば、特開昭62−37967号公報)。
A method of directly connecting a wiring layer to a semiconductor substrate, for example, M
In O3-3RAM, a buried contact that directly connects the gate electrode made of polycrystalline Si to the source/drain diffusion layer is an effective method for reducing the cell size (
For example, Japanese Patent Application Laid-Open No. 62-37967).

第3図は、この様な埋め込みコンタクトを有するMOS
 −S RAMの製造方法の一従来例を示している。こ
の−従来例では、まず、第3A図に示す様に、Si基板
11の素子分離領域にLOGO5酸化膜12を形成し、
更にゲート酸化膜13を形成する。
Figure 3 shows a MOS with such a buried contact.
-S A conventional example of a RAM manufacturing method is shown. In this conventional example, first, as shown in FIG. 3A, a LOGO5 oxide film 12 is formed in the element isolation region of the Si substrate 11,
Furthermore, a gate oxide film 13 is formed.

次に、第3B図に示す様に、レジスト(図示せず)をマ
スクにして埋め込みコンタクト部のゲート酸化膜13を
フッ酸で除去し、更に、第3C図に示す様に、ゲート電
極を形成するための多結晶5iF14をCVDによって
堆積させる。
Next, as shown in FIG. 3B, using a resist (not shown) as a mask, the gate oxide film 13 in the buried contact area is removed with hydrofluoric acid, and then, as shown in FIG. 3C, a gate electrode is formed. Polycrystalline 5iF14 is deposited by CVD.

次に、第3D図に示す様に、多結晶Si層14をエツチ
ングによってパターニングして、埋め込みコンタクト部
に接続されているゲート電極15を形成する。なお、S
i基板IIが多結晶Si層14に対してエツチング選択
性を持たないので、多結晶Si層14のパターニング時
にSi基板11もエツチングされて、Sil板11に凹
部16が形成されてしまう。
Next, as shown in FIG. 3D, the polycrystalline Si layer 14 is patterned by etching to form a gate electrode 15 connected to the buried contact portion. In addition, S
Since the i-substrate II has no etching selectivity with respect to the polycrystalline Si layer 14, the Si substrate 11 is also etched during patterning of the polycrystalline Si layer 14, and a recess 16 is formed in the Sil plate 11.

その後、第3E図に示す様に、不純物のイオン17をS
i基板11中へ注入して、ソース・ドレイン拡散層18
を形成する。
Then, as shown in FIG. 3E, the impurity ions 17 are
The source/drain diffusion layer 18 is implanted into the i-substrate 11.
form.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが以上の様な一従来例では、Si基板11に凹部
16が形成されてしまうので、ソース・ドレイン拡散層
18のうちで凹部16に対応する部分が実効的に深くな
り、微細化されたデバイスではこの様な部分がパンチス
ルー等の不良原因になり易い。
However, in one conventional example as described above, since the recess 16 is formed in the Si substrate 11, the portion of the source/drain diffusion layer 18 corresponding to the recess 16 becomes effectively deeper, resulting in a miniaturized device. Such parts are likely to cause defects such as punch-through.

また、凹部16に対応してできる激しい段差(図示せず
)が平坦化され切れず、Al配′!FfA(図示せず)
の段切れの原因になる。
In addition, the severe step (not shown) formed corresponding to the recess 16 cannot be completely flattened, and the Al arrangement ′! FfA (not shown)
This may cause a break in the steps.

従って、上述の様な一従来例では、必ずしも信頼性の高
い半導体装置を製造することができない。
Therefore, in the conventional example as described above, it is not necessarily possible to manufacture a highly reliable semiconductor device.

〔課題を解決するための手段〕[Means to solve the problem]

本発明による半導体装置の製造方法は、配線層15を接
続すべき領域を半導体基板11の表面に露出させる様に
前記半導体基板11上に絶縁膜12.13を選択的に形
成する工程と、露出した前記領域を自己整合的に金属間
化合物23化させる工程と、金属間化合物23化した前
記領域に接続させる様に前記配線層15を形成する工程
とを夫夫具備している。
The method of manufacturing a semiconductor device according to the present invention includes the steps of selectively forming an insulating film 12.13 on the semiconductor substrate 11 so as to expose a region to which the wiring layer 15 is to be connected on the surface of the semiconductor substrate 11; The method includes a step of converting the region formed into an intermetallic compound 23 in a self-aligned manner, and a step of forming the wiring layer 15 so as to be connected to the region formed into the intermetallic compound 23.

〔作 用〕[For production]

本発明による半導体装置の製造方法では、半導体基板1
1のうちで配線層15を接続すべき領域を自己整合的に
金属間化合物23化させてから配線層15を形成してい
るので、この配線層15を半導体で形成する場合でも、
配線層15を接続すべき領域と配線N15との材質が相
違している。
In the method for manufacturing a semiconductor device according to the present invention, a semiconductor substrate 1
Since the wiring layer 15 is formed after forming the intermetallic compound 23 in the region to which the wiring layer 15 is to be connected in a self-aligned manner, even when the wiring layer 15 is formed of a semiconductor,
The region to which the wiring layer 15 is to be connected and the wiring N15 are made of different materials.

従って、配線層15を接続すべき領域に対して配線Ji
i15の材料14を選択的に処理することができ、半導
体基板11に損傷を与えることなく配線]’i15を形
成することができる。
Therefore, the wiring Ji for the area to which the wiring layer 15 is to be connected
The material 14 of i15 can be selectively processed, and the wiring]'i15 can be formed without damaging the semiconductor substrate 11.

〔実施例〕〔Example〕

以下、MOS−3RAMの製造に適用した本発明の第1
及び第2実施例を、第1図及び第2図を参照しながら説
明する。
Hereinafter, the first embodiment of the present invention applied to the manufacture of MOS-3RAM will be described.
A second embodiment will be described with reference to FIGS. 1 and 2.

第1図が、第1実施例を示している。この第1実施例で
は、LOGOS酸化膜12及びゲート酸化膜13の形成
までは上述の一従来例と同様に行い、更に、第1A図に
示す様に、これらの酸化膜12.13上にSiN膜21
を堆積させる。
FIG. 1 shows a first embodiment. In this first embodiment, the steps up to the formation of the LOGOS oxide film 12 and the gate oxide film 13 are performed in the same manner as in the above-mentioned conventional example, and furthermore, as shown in FIG. 1A, SiN is deposited on these oxide films 12 and 13. Membrane 21
deposit.

次に、第1B図に示す様に、レジスト(図示せず)をマ
スクにしてSiN膜21及びゲート酸化膜13をエツチ
ングして、Si基板11のうちの埋め込みコンタクト部
を露出させる。
Next, as shown in FIG. 1B, the SiN film 21 and gate oxide film 13 are etched using a resist (not shown) as a mask to expose the buried contact portion of the Si substrate 11.

次に、第1C図に示す様に、Si基板11上の全面にT
i22を堆積させ、更に適度の熱処理を行う。
Next, as shown in FIG. 1C, T is applied to the entire surface of the Si substrate 11.
i22 is deposited and further moderate heat treatment is performed.

すると、Si基板11の露出部つまり埋め込みコンタク
ト部が自己整合的にシリサイド23となる。
Then, the exposed portion of the Si substrate 11, that is, the buried contact portion becomes silicide 23 in a self-aligned manner.

つまり、埋め込みコンタクト部がサリサイド化する。In other words, the buried contact portion becomes salicided.

次に、第1D図に示す様に未反応のTi22及びSiN
膜21を除去し、更に、第1E図に示す様に多結晶Si
層14をCVDによって堆積させる。
Next, as shown in Figure 1D, unreacted Ti22 and SiN
The film 21 is removed, and polycrystalline Si is further removed as shown in FIG. 1E.
Layer 14 is deposited by CVD.

その後、第1F図に示す様に、多結晶Si層14をエツ
チングによってパターニングして、埋め込みコンタクト
部つまりシリサイド23に接続されているゲート電極1
5を形成する。これ以降のソ−ス・ドレイン拡散層18
の形成等は、上述の一従来例と同様に行う。
Thereafter, as shown in FIG. 1F, the polycrystalline Si layer 14 is patterned by etching to form a gate electrode 1 connected to the buried contact portion, that is, the silicide 23.
form 5. Source/drain diffusion layer 18 after this
The formation etc. are performed in the same manner as in the above-mentioned conventional example.

この様な第1実施例では、多結晶5iiJ14のエツチ
ング時に、埋め込みコンタクト部がシリサイド23化さ
れておりSi基板11が露出していない。
In such a first embodiment, when the polycrystal 5iiJ14 is etched, the buried contact portion is made into silicide 23, so that the Si substrate 11 is not exposed.

従って、適当なエツチング条件を選べば、多結晶Si層
14のエツチング時にSi基板11がエツチングされな
い。このため、上述の一従来例の様に凹部16は形成さ
れず、この凹部16に起因する既述の様な信頼性の低下
がない。
Therefore, if appropriate etching conditions are selected, the Si substrate 11 will not be etched when the polycrystalline Si layer 14 is etched. Therefore, unlike the above-mentioned conventional example, the recess 16 is not formed, and there is no reduction in reliability as described above due to the recess 16.

しかも、Ti22等から成るシリサイド23を形成する
と、Si基板11の表面における自然酸化膜(図示せず
)が破壊され、より安定なコンタクト砥抗値を得ること
ができる。
Moreover, when the silicide 23 made of Ti22 or the like is formed, the natural oxide film (not shown) on the surface of the Si substrate 11 is destroyed, and a more stable contact abrasion value can be obtained.

第2図は、第2実施例を示している。この第2実施例は
、LOGOS酸化膜12及びゲート酸化膜13の形成後
に多結晶sil膜24を全面に形成し、この多結晶Si
薄膜24上にSiN膜21を形成することを除いて、上
述の第1実施例と実質的に同様の工程を有している。
FIG. 2 shows a second embodiment. In this second embodiment, after forming the LOGOS oxide film 12 and the gate oxide film 13, a polycrystalline sil film 24 is formed on the entire surface, and this polycrystalline silicon film 24 is formed on the entire surface.
This embodiment has substantially the same steps as the first embodiment described above, except for forming the SiN film 21 on the thin film 24.

この様な第2実施例では、多結晶Si3膜24が存在し
ているために、SiN膜21からの応力や薬品処理等か
らゲート酸化膜13が保護され、より信頼性の高いMO
3−3RAMを製造することができる。
In the second embodiment, since the polycrystalline Si3 film 24 exists, the gate oxide film 13 is protected from stress from the SiN film 21, chemical treatment, etc., and a more reliable MO
3-3 RAM can be manufactured.

なお、以上の第1及び第2実施例の何れにおいてもシリ
サイド23を形成するための金属としてTi22を用い
たが、Ti22以外にMO,、W 、Co等を用いるこ
ともできる。
Although Ti22 is used as the metal for forming the silicide 23 in both the first and second embodiments, MO, W2, Co, etc. can also be used in addition to Ti22.

〔発明の効果〕〔Effect of the invention〕

本発明による半導体装置の製造方法では、半導体基板に
損傷を与えることなく配線層を形成することができるの
で、信頼性の高い半導体装置を製造することができる。
In the method for manufacturing a semiconductor device according to the present invention, a wiring layer can be formed without damaging the semiconductor substrate, so a highly reliable semiconductor device can be manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図は本発明の夫々第1実施例、第2実施例
及び−従来例を順次に示す側断面図である。 なお図面に用いた符号において、 11−・−・−−一−−・−−−−−3i基板12−・
−・−−−−−m−・−・−LOCO5酸化膜13−−
−−−−・−−一一一一−−−−−・ゲート酸化膜14
−・−−−−−一−−−−−〜−−−多結晶Si層15
−・−−m−−・−・−・−・ゲート電極23・−・−
・−・・・−・・・・シリサイドである。
1 to 3 are side sectional views sequentially showing a first embodiment, a second embodiment, and a conventional example of the present invention, respectively. In addition, in the symbols used in the drawings, 11-・---1---3i substrate 12--
−・−−−−−m−・−・−LOCO5 oxide film 13−−
-----・--1111-----Gate oxide film 14
-------------Polycrystalline Si layer 15
−・−−m−−・−・−・−・Gate electrode 23・−・−
・-・・・-・・・・It is silicide.

Claims (1)

【特許請求の範囲】 配線層を接続すべき領域を半導体基板の表面に露出させ
る様に前記半導体基板上に絶縁膜を選択的に形成する工
程と、 露出した前記領域を自己整合的に金属間化合物化させる
工程と、 金属間化合物化した前記領域に接続させる様に前記配線
層を形成する工程とを夫々具備する半導体装置の製造方
法。
[Scope of Claims] A step of selectively forming an insulating film on the semiconductor substrate so as to expose a region to which a wiring layer is to be connected on the surface of the semiconductor substrate; A method for manufacturing a semiconductor device, comprising the steps of: forming a compound; and forming the wiring layer so as to be connected to the intermetallic region.
JP23835688A 1988-09-22 1988-09-22 Manufacture of semiconductor device Pending JPH0286135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23835688A JPH0286135A (en) 1988-09-22 1988-09-22 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23835688A JPH0286135A (en) 1988-09-22 1988-09-22 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0286135A true JPH0286135A (en) 1990-03-27

Family

ID=17028975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23835688A Pending JPH0286135A (en) 1988-09-22 1988-09-22 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0286135A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5587338A (en) * 1995-04-27 1996-12-24 Vanguard International Semiconductor Corporation Polysilicon contact stud process
US6718604B1 (en) 1999-06-22 2004-04-13 Murata Manufacturing Co., Ltd. Mounting method for electronic device elements

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5587338A (en) * 1995-04-27 1996-12-24 Vanguard International Semiconductor Corporation Polysilicon contact stud process
US6718604B1 (en) 1999-06-22 2004-04-13 Murata Manufacturing Co., Ltd. Mounting method for electronic device elements

Similar Documents

Publication Publication Date Title
JP3219909B2 (en) Method for manufacturing semiconductor device
JPH0878519A (en) Semiconductor device and fabrication thereof
US5587338A (en) Polysilicon contact stud process
GB2140619A (en) Fabrication of fet's
JPS6273772A (en) Semiconductor device and manufacturing thereof
JP2675713B2 (en) Semiconductor device and manufacturing method thereof
JPS59211282A (en) Method of producing integrated circuit
JPH0286135A (en) Manufacture of semiconductor device
US6225222B1 (en) Diffusion barrier enhancement for sub-micron aluminum-silicon contacts
US5736459A (en) Method to fabricate a polysilicon stud using an oxygen ion implantation procedure
JPS6116573A (en) Manufacture of mis type semiconductor device
JP2927257B2 (en) Method for manufacturing semiconductor device
JPS62122173A (en) Semiconductor device
JPS60124972A (en) Manufacture of semiconductor device
JPS63275181A (en) Manufacture of semiconductor device
JPS63253647A (en) Semiconductor device
JP3645032B2 (en) A method for producing a silicon quantum wire structure.
JPH0682758B2 (en) Method for forming semiconductor integrated circuit
JPH0314241A (en) Manufacture of semiconductor device
JPS63164357A (en) Manufacture of semiconductor device
JPH0282639A (en) Semiconductor device and manufacture thereof
JPS63170922A (en) Wiring method
JPH0464235A (en) Semiconductor device and manufacture thereof
JPH1126756A (en) Manufacture of semiconductor device
JPH01274452A (en) Manufacture of semiconductor device