JPH0285780A - Electromagnetic wave generating device - Google Patents

Electromagnetic wave generating device

Info

Publication number
JPH0285780A
JPH0285780A JP63237248A JP23724888A JPH0285780A JP H0285780 A JPH0285780 A JP H0285780A JP 63237248 A JP63237248 A JP 63237248A JP 23724888 A JP23724888 A JP 23724888A JP H0285780 A JPH0285780 A JP H0285780A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
section
steep
wave generating
waves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63237248A
Other languages
Japanese (ja)
Inventor
Tatsuyuki Shikura
達之 四蔵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP63237248A priority Critical patent/JPH0285780A/en
Publication of JPH0285780A publication Critical patent/JPH0285780A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Networks Using Active Elements (AREA)

Abstract

PURPOSE:To generate electromagnetic waves which are less in waveform disturbance by providing a serial resistance between a sharp pulse generating device and electromagnetic wave generating section. CONSTITUTION:When a capacitance 105 is charged and a switch 106 is switched from an opened state to a closed state, a voltage is impressed on an end section 12 and the voltage is propagated through an electromagnetic wave generating section 1 in the order of a pre-stage section 1A, central section 1B, and post- stage section 1C as propagation waves. The reflected waves are produced at a connecting section based on the discordance of characteristic impedance and the reflected waves are propagated in the different direction toward a sharp pulse generating device 100. While the impedance formed when the device 100 is viewed from the end section 12 is a serial resistance 3 and the capacitance 105, electromagnetic waves which are suppressed in waveform disturbance and have a sharp waveform can be obtained when impedance matching is performed by appropriately setting the value of the resistance 3 so that reflected waves from the generating section 1 cannot return to the section 1, since the capacitance 105 is negligible as compared with the reflected waves having the sharp waveform.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、雷サージや開閉サージなどの高電圧、大電
流でしかも立ち上がりが急峻なパルス状の波形を持った
サージによって発生する電磁波に対する電子機器の影響
を試験するための電磁波発生装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is directed to electromagnetic waves generated by surges such as lightning surges and switching surges that have high voltages, large currents, and have pulse-like waveforms with a steep rise. This invention relates to an electromagnetic wave generator for testing the effects of equipment.

〔従来の技術〕[Conventional technology]

最近、前述のようなサージ状の電磁波がノイズとして電
子機器に侵入して電子機器を誤動作させることが大きな
問題になっている。現在製作される殆どの電子機器に使
用されているICやLSIなどの集積半導体素子は、電
子機器の縮小化、偉績性の向上、価格の低減などの大き
な効果をもたらしたが、一方で、個々の回路素子の寸法
が縮小されたことから、外部から侵入して来たノイズに
よる誤動作や局部的な絶縁損傷などの可能性、が増加し
、いわゆるノイズに弱い電子機器になるという結果にな
っており、このような欠点を克服するために種々の努力
が払われている。
Recently, it has become a serious problem that the above-mentioned surge-like electromagnetic waves enter electronic devices as noise and cause them to malfunction. Integrated semiconductor devices such as ICs and LSIs, which are used in most electronic devices manufactured today, have brought about significant effects such as downsizing electronic devices, improving performance, and lowering prices. As the dimensions of circuit elements have been reduced, the possibility of malfunctions and local insulation damage due to noise entering from the outside has increased, resulting in electronic devices that are more susceptible to noise. Various efforts have been made to overcome these drawbacks.

第2図は電子機器を急、峻波パルス状の電磁波を生起す
る環境の中において、試験するための電磁波発生装置の
電磁波発生部の斜視図である。この図において、電磁波
発生部lは接地電位となる下部導体と高圧部となる上部
導体との対向した銅板からなっており、更に図の左右の
方向で3つの部分から成り立っており、左側の部分が前
段部IA、中央部が中央部IB、右側が後段部ICで、
中央部IBの上下の導体は平行に配置されており、導体
間に形成される空間が供試品を設置する供試空間10と
なっている。供試空間10の上下寸法を確保するために
中央部IBの上下の導体間を4本の絶縁棒11で支持す
る構造としており、前段部IAや後段部ICもそれぞれ
に絶縁材を使用して支持する構造としているが図示を省
略しである。
FIG. 2 is a perspective view of an electromagnetic wave generating section of an electromagnetic wave generating apparatus for testing electronic equipment in an environment that generates sudden and steep pulsed electromagnetic waves. In this figure, the electromagnetic wave generating part l consists of a copper plate with a lower conductor that is at ground potential and an upper conductor that is a high voltage part facing each other. is the front section IA, the center section is the center section IB, and the right side is the rear section IC.
The upper and lower conductors of the central portion IB are arranged in parallel, and the space formed between the conductors serves as a test space 10 in which a test sample is installed. In order to ensure the vertical dimensions of the test space 10, the structure is such that four insulating rods 11 are used to support the upper and lower conductors of the central part IB, and insulating materials are used for the front part IA and the rear part IC, respectively. Although a supporting structure is shown, illustration is omitted.

前段部LA並びに後段部ICは中央部IBから離れるに
つれて上下導体の幅と間隔が直線的に縮小する構成とな
っている。後述のように、前段部IAの左端の端部12
には急峻波パルス発生装置が接続され、後段部ICの右
端の端部13には整合抵抗が接続される。
The front stage LA and the rear stage IC are configured such that the width and the interval between the upper and lower conductors decrease linearly as they move away from the center part IB. As described later, the left end portion 12 of the front section IA
A steep wave pulse generator is connected to , and a matching resistor is connected to the right end 13 of the rear-stage IC.

中央部IBでの上下導体間の距離は約2m、図の左右方
向の長さ寸法は約3m、図の奥行きの幅寸法は約3mと
、いずれもmレベルの寸法であり、前段部IA、後段部
1cの長さ寸法も約3mであるので1を磁波発生部1の
全長は約9mである。
The distance between the upper and lower conductors in the central part IB is approximately 2 m, the length in the horizontal direction in the figure is approximately 3 m, and the width in the depth direction in the figure is approximately 3 m, all of which are m-level dimensions, and the front part IA, Since the length of the rear section 1c is also about 3 m, the total length of the magnetic wave generating section 1 is about 9 m.

T4電磁波生装置で発生させる電磁場は立ち上がり時間
が数ナノ秒程度の究めて短い時間の波頭部を持つパルス
状である必要があるので、このような電磁波を発生させ
るための急峻波パルス発生装置が発生するパルスも立ち
上がり時間としての波頭長は数ナノ秒程度である必要が
ある。電磁波が1ナノ秒で伝播する距離は約30c謡で
あり、この値は前述の電磁波発生部1の寸法に比べて小
さいので、電磁波発生部1を回路的に取り扱う際には周
知のように分布定数回路として等価回路を設定する必要
があり、同時に急峻パルス電圧を印加して効率的に電磁
波を生成するためにはインピーダンス整合を充分にとる
必要がある。
The electromagnetic field generated by the T4 electromagnetic wave generator needs to be in the form of a pulse with an extremely short wave front with a rise time of several nanoseconds, so a steep wave pulse generator is required to generate such electromagnetic waves. The pulse that is generated must also have a wavefront length in terms of rise time of several nanoseconds. The distance that an electromagnetic wave propagates in 1 nanosecond is approximately 30 cm, and this value is smaller than the dimensions of the electromagnetic wave generating section 1 mentioned above, so when treating the electromagnetic wave generating section 1 in terms of a circuit, the distribution is as well known. It is necessary to set an equivalent circuit as a constant circuit, and at the same time, sufficient impedance matching must be achieved in order to apply a steep pulse voltage and efficiently generate electromagnetic waves.

端部12に接続される急峻波パルス発生装置並びに端部
13に接続される整合抵抗の端子間の寸法は約20cm
なので、これらの端子を前述のインピーダンス整合上問
題ないように接続するためには電磁波発生部の端部をこ
の寸法に合わせる必要があることから、図示のように、
前段部IAと後段部ICの形状を端部に行くほど上下の
導体幅と間隔を直線的に縮小する形状にしている。
The dimension between the terminals of the steep wave pulse generator connected to end 12 and the matching resistor connected to end 13 is approximately 20 cm.
Therefore, in order to connect these terminals so that there is no problem with the impedance matching mentioned above, it is necessary to match the end of the electromagnetic wave generating part to this dimension, so as shown in the figure,
The shapes of the front stage part IA and the rear stage IC are such that the upper and lower conductor widths and intervals are linearly reduced toward the ends.

周知のように、平行導体を分布定数回路の等価回路に置
き換えた場合、特性インピーダンスが定義され、この特
性インピーダンスと同じインピーダンスを接続した場合
に接続部で伝播波の反射が起こらず整合がとれた状態に
なる。この特性インピーダンスは導体の抵抗や空間の漏
れ抵抗あるいは誘電…失などを無視できる場合には、単
位長さ当たりのインダクタンスLとキャパシタンスCと
の比の平方根で定義され、その値は純抵抗となる。
As is well known, when parallel conductors are replaced with an equivalent circuit of a distributed constant circuit, a characteristic impedance is defined, and when the same impedance as this characteristic impedance is connected, no reflection of propagating waves occurs at the connection and matching is achieved. become a state. This characteristic impedance is defined as the square root of the ratio of inductance L and capacitance C per unit length when conductor resistance, space leakage resistance, dielectric loss, etc. can be ignored, and its value becomes pure resistance. .

第2図の前段部IAと後段部tCでの上下の導体幅と間
隔を中央部IBに比例して縮小した場合、寸法比が変化
しても前述のインダクタンスLとキャパシタンスCは変
化しないので、特性インピーダンスは中央部IBと同じ
値になる。したがって理想的には前段部IA、中央部I
B、及び後段部ICは特性インピーダンスが全て同じ値
になるので、それぞれの接続部で伝播波の反射が起こら
ない、更に、端部13に特性インピーダンスと同じ値の
抵抗値を持つ整合抵抗を接続すると端部12から左側で
は理想的なインピーダンス整合がとれた状態となる。
If the width and spacing of the upper and lower conductors in the front part IA and the rear part tC in FIG. 2 are reduced in proportion to the center part IB, the above-mentioned inductance L and capacitance C will not change even if the dimensional ratio changes, so The characteristic impedance has the same value as the central portion IB. Therefore, ideally, the front part IA, the central part I
B and the subsequent IC all have the same characteristic impedance, so reflection of propagating waves does not occur at each connection.Furthermore, a matching resistor with the same resistance value as the characteristic impedance is connected to the end 13. Then, on the left side of the end portion 12, ideal impedance matching is achieved.

第3図は急峻波パルス発生装置の簡略化した等価回路図
である。この図において、変圧器101で昇圧した電圧
を整流器101で整流して直流にし、充電抵抗102を
介して充電用コンデンサ103を充電する。この充電時
には放電ギャップ104は開の状態にある。充電コンデ
ンサ103の電圧が所定の値に上昇したところで放電ギ
ャップを強制的に放電させて短絡状態とすることにより
、充電コンデンサ103の電圧が図の右側に接続された
図示しない負荷に印加される。この等価回路は原理的な
もので波頭長が数ナノ秒という非常に急峻な波形を持つ
パルスを発生させるためには種々の工夫を凝らした回路
が使用されるのが実際である。
FIG. 3 is a simplified equivalent circuit diagram of the steep wave pulse generator. In this figure, a voltage boosted by a transformer 101 is rectified into direct current by a rectifier 101, and a charging capacitor 103 is charged via a charging resistor 102. During this charging, the discharge gap 104 is in an open state. When the voltage of the charging capacitor 103 rises to a predetermined value, the discharge gap is forcibly discharged to create a short-circuit state, so that the voltage of the charging capacitor 103 is applied to a load (not shown) connected to the right side of the figure. This equivalent circuit is based on the principle, and in reality, circuits with various ingenuity are used to generate pulses with very steep waveforms with wavefront lengths of several nanoseconds.

第4図は電磁波発生部に急峻波パルス発生装置と整合抵
抗を接続した場合の等価回路である。この図でキャパシ
タンス105は第3図の充電コンデンサ103、スイッ
チ106は放電ギャップ104に相当し充電のための変
圧器101や整流器io1などは省略しである。電磁波
発生部lは3つの部分をそれぞれ別個に平行導体からな
る分布定数回路として太線で示しである。ゑ、峻波パル
ス発生装置100は1を磁波発生部1の端部12に、整
合抵抗2は同じく端部13にそれぞれ接続されており、
キャパシタンス105が充電状態でスイッチ106が開
の状態から閉にすると端部12にキャパシタンス105
の電圧が印加され、この電圧は伝播波となって前段部I
A、中央部IB、後段部ICの順序で伝播してゆく、こ
れら3つの部分の特性インピーダンスは前述のように同
じ値に設計しであるので理想的にはそれぞれの部分の接
続部で伝播波が反射することはない、端部13に接続さ
れている整合抵抗2も電磁波発生部1の特性インピーダ
ンスに合わせであるので端部13においても伝膚波が反
射することはない。
FIG. 4 shows an equivalent circuit when a steep wave pulse generator and a matching resistor are connected to the electromagnetic wave generator. In this figure, capacitance 105 corresponds to charging capacitor 103 in FIG. 3, switch 106 corresponds to discharge gap 104, and charging transformer 101, rectifier io1, etc. are omitted. The electromagnetic wave generating section l is shown by thick lines as a distributed constant circuit consisting of three separate parts of parallel conductors. E. In the sharp wave pulse generator 100, 1 is connected to the end 12 of the magnetic wave generator 1, and the matching resistor 2 is also connected to the end 13.
When the capacitance 105 is in a charged state and the switch 106 is closed from the open state, the capacitance 105 is transferred to the end 12.
is applied, and this voltage becomes a propagating wave to the front part I.
The characteristic impedances of these three parts, which propagate in the order of A, central part IB, and rear part IC, are designed to have the same value as described above, so ideally the propagating wave will be at the connection point of each part. Since the matching resistor 2 connected to the end 13 is also matched to the characteristic impedance of the electromagnetic wave generating section 1, the conductive wave will not be reflected at the end 13 either.

このように理恐的には急峻波パルス発生装置lOOによ
って電圧が印加され電磁波発生部1の中を端部12から
端部13に向かって伝播する伝播波は反射されることが
ないので、印加された電圧の波形そのままが中央部IB
での上下の導体間の電圧波形になるので、供試空間10
に計画通りの波形を持った電磁波を発生させることがで
きる。
In this way, theoretically, the voltage is applied by the steep wave pulse generator lOO and the propagating wave propagating in the electromagnetic wave generating section 1 from the end 12 to the end 13 is not reflected, so the applied voltage is The waveform of the voltage is the same as the one at the center IB.
Since the voltage waveform between the upper and lower conductors at
It is possible to generate electromagnetic waves with a planned waveform.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

実際の11t磁波発生部lは建屋の中に設置さるので、
壁や床の影響、あるいは近くに設けられている設備など
の影響などによって電磁波発生部1のインダクタンスや
キャパシタンスの値が位置によって変化し、また電磁波
発生部1の寸法が設計通りでなく製作上の誤差があるこ
ともあって、前述のような特性インピーダンスがそれぞ
れの部分で完全に一致するということはなく、また、整
合抵抗2も完全に整合がとれる値から外れることになる
。その結果、電磁波発生部1内及び端部13で伝播波の
反射が起こり、この反射波は電磁波発生部1から急峻波
パルス発生装置100の方向に向かって伝播するが、端
部12から見た急峻波パルス発生装置100のインピー
ダンスはキャパシタンス105であり、急峻波形に対し
ては短絡状態と同様であるので、電磁波発生部1内に生
じた反射波が全反射して端部12から電磁波発生部l内
に印加波と同じ方向に伝播する。このように、電磁波発
生部1内で発生した部分的な反射波が急峻波パルス発生
装置100によって全反射するために、電磁波発生部1
内で発生した反射波による波形の乱れが増幅される形に
なって、期待通りの急峻波形が得られないという問題が
生ずる。
The actual 11t magnetic wave generator l is installed inside the building, so
The inductance and capacitance values of the electromagnetic wave generating section 1 change depending on the position due to the influence of walls and floors, or the influence of nearby equipment, etc. Due to errors, the characteristic impedances described above do not completely match in each part, and the matching resistor 2 also deviates from a value that allows perfect matching. As a result, reflection of the propagating wave occurs within the electromagnetic wave generating section 1 and at the end 13, and this reflected wave propagates from the electromagnetic wave generating section 1 toward the steep wave pulse generator 100, but when viewed from the end 12, The impedance of the steep wave pulse generator 100 is the capacitance 105, which is similar to a short-circuit state for steep waveforms, so that the reflected waves generated in the electromagnetic wave generator 1 are totally reflected and are transmitted from the end 12 to the electromagnetic wave generator. propagates in the same direction as the applied wave. In this way, since the partially reflected waves generated within the electromagnetic wave generating section 1 are totally reflected by the steep wave pulse generating device 100, the electromagnetic wave generating section 1
A problem arises in that the disturbance in the waveform due to the reflected waves generated inside is amplified, making it impossible to obtain the expected steep waveform.

この発明は、電磁波発生部内で発生した反射波が急峻波
パルス発生装置で反射して再度電磁波発生部内に伝播し
ないようにして、波形の乱れの少ない電圧波を発生する
t磁波発生装置を提供することを目的とする。
The present invention provides a magnetic wave generator that generates voltage waves with less waveform disturbance by preventing reflected waves generated within the electromagnetic wave generator from being reflected by the steep wave pulse generator and propagating into the electromagnetic wave generator again. The purpose is to

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、この発明によれば、対向す
る2枚の導体板でなる電磁波発生部と、この電磁波発生
部の一方の端部に電気的に接続されて急峻波パルスを印
加する急峻波パルス発生装置と、前記を磁波発生部のも
う一方の端部に電気的に接続された整合抵抗とからなる
電磁波発生装置において、前記急峻波パルス発生装置と
前記電磁波発生部との間に直列抵抗を挿入してなるもの
とする。
In order to solve the above problems, according to the present invention, there is provided an electromagnetic wave generating section made up of two conductor plates facing each other, and an electromagnetic wave generating section that is electrically connected to one end of the electromagnetic wave generating section to apply a steep wave pulse. In an electromagnetic wave generating device comprising a steep wave pulse generating device and a matching resistor electrically connected to the other end of the magnetic wave generating section, the steep wave pulse generating device and the electromagnetic wave generating section may be connected to each other. It is assumed that a series resistor is inserted.

〔作用) この発明の構成において、急峻波パルス発生装置と前記
im波発生部との間に直列抵抗を挿入することにより、
電圧波発生部から急峻波パルス発生装置の方を見たイン
ピーダンスはこの直列抵抗を加えた値になり、この値を
電磁波発生部の特性インピーダンスに一致させれば電磁
波発生部内で発生した反射波に対してインピーダンス整
合がとれるので、この反射波が全反射して電磁波発生部
に戻ることが無い。
[Function] In the configuration of the present invention, by inserting a series resistor between the steep wave pulse generator and the im wave generator,
The impedance when looking from the voltage wave generator toward the steep wave pulse generator is the sum of this series resistance, and if this value is made to match the characteristic impedance of the electromagnetic wave generator, the reflected wave generated within the electromagnetic wave generator will be On the other hand, since impedance matching can be achieved, this reflected wave will not be totally reflected and return to the electromagnetic wave generating section.

〔実施例〕〔Example〕

以下この発明を実施例に基づいて説明する。第1図はこ
の発明の実施例を示す等価回路図であり、第4図との違
いは直列抵抗3を急峻波パルス発生装置100と電磁波
発生部lとの間に直列に挿入しであることであり、その
他の構成物は同じなので詳細な説明を省略する。
The present invention will be explained below based on examples. FIG. 1 is an equivalent circuit diagram showing an embodiment of the present invention, and the difference from FIG. 4 is that a series resistor 3 is inserted in series between the steep wave pulse generator 100 and the electromagnetic wave generator l. Since the other components are the same, detailed explanation will be omitted.

キャパシタンス105が充電状態でスイッチ106が開
の状態から閉にすると、端部12にキャパシタンス10
5の電圧が印加され、この電圧は伝播波となって前段部
IA、中央部IB、後段部ICの順序で伝播してゆく、
これら3つの部分での特性インピーダンスは前述のよう
に実際の電磁波発生部では部分的に異なる値になってい
るので、特性インピーダンス整合の不一致に基づく反射
波が生じ、この反射波は方向を変えて急峻波パルス発生
装置100の方向に向かって伝播する。電磁波発生部1
の112から急峻波パルス発生装置100の方向を見た
インピーダンスは直列抵抗3とキャパシタンス105と
であるが、象、峻波形である反射波に対してはキャパシ
タンス105は無視できるので結局直列抵抗3のみと考
えることができる。電磁波発生部1から急峻波パルス発
生装置100の方をみたインピーダンスが電磁波発生部
1の特性インピーダンスになるようにこの直列抵抗をを
設定することにより、反射波に対して端部12でインピ
ーダンス整合がとれるので、電磁波発生部1から出た反
射波が再び電磁波発生部lに戻って来ることなはい、そ
の結果、電磁波発生部1内で発生する反射波が増幅され
て電磁波発生部1が生起するtm波の波形の乱れが抑制
される。
When the switch 106 is closed from the open state while the capacitance 105 is in a charged state, the capacitance 10 is transferred to the end 12.
A voltage of 5 is applied, and this voltage becomes a propagation wave and propagates in the order of the front part IA, the center part IB, and the rear part IC.
As mentioned above, the characteristic impedances in these three parts have partially different values in the actual electromagnetic wave generating part, so reflected waves occur due to the mismatch in characteristic impedance matching, and these reflected waves change direction. It propagates in the direction of the steep wave pulse generator 100. Electromagnetic wave generator 1
The impedance seen from 112 in the direction of the steep wave pulse generator 100 is the series resistance 3 and the capacitance 105, but since the capacitance 105 can be ignored for reflected waves with a steep waveform, in the end only the series resistance 3 You can think about it. By setting this series resistor so that the impedance seen from the electromagnetic wave generator 1 toward the steep wave pulse generator 100 becomes the characteristic impedance of the electromagnetic wave generator 1, impedance matching is achieved at the end 12 for reflected waves. Therefore, the reflected waves emitted from the electromagnetic wave generating section 1 will not return to the electromagnetic wave generating section 1 again, and as a result, the reflected waves generated within the electromagnetic wave generating section 1 will be amplified and the electromagnetic wave generating section 1 will be generated. Disturbance of the tm wave waveform is suppressed.

i!電磁波発生部1特性インピーダンスの値は約100
Ωであり、したがって整合抵抗2もこれに合わせた値で
ある。前述のように、am磁波発生部の特性インピーダ
ンスは計算通りの値になるとは限らずまた、場所によっ
て異なることがあるので、直列抵抗3を設定するための
特性インピーダンスの値が不確実であるというのが実際
であり、また、急峻波パルス発生装置100にも図示し
ない抵抗があるので、直列抵抗3の値の設定には実際に
電磁波発生部Iによってtiff波を発注させ波形を観
測しながら直列抵抗3の最適な値を設定することになる
。しかし、特性インピーダンスの値が不確実であるとい
っても桁違いになる分けではなく、また、急峻波パルス
発生装置100内の抵抗値も特性インピーダンスの抵抗
値に対して充分小さい値であるので、直列抵抗3の最適
な値も100Ω近辺の値であるこさに変わりはなく、こ
のような値でしかも急峻パルス波形に通した抵抗として
、円筒状のセラミックの表面に導電処理を施したセラミ
ック抵抗が適しており、整合抵抗2にも同様の抵抗が使
用される。
i! The value of the electromagnetic wave generating part 1 characteristic impedance is approximately 100
Ω, and therefore the matching resistor 2 has a value corresponding to this value. As mentioned above, the characteristic impedance of the AM magnetic wave generator is not always the calculated value and may differ depending on the location, so the value of the characteristic impedance for setting the series resistor 3 is uncertain. In fact, since the steep wave pulse generator 100 also has a resistor (not shown), to set the value of the series resistor 3, the electromagnetic wave generator I actually orders a tiff wave and connects it in series while observing the waveform. The optimum value for resistor 3 will be set. However, even though the value of the characteristic impedance is uncertain, it does not mean that it is an order of magnitude greater, and the resistance value within the steep wave pulse generator 100 is also a sufficiently small value compared to the resistance value of the characteristic impedance. The optimum value for the series resistor 3 is still around 100Ω, and as a resistor that can pass steep pulse waveforms at this value, a ceramic resistor with conductive treatment applied to the surface of a cylindrical ceramic is used. is suitable, and a similar resistance is used for the matching resistor 2.

〔発明の効果〕〔Effect of the invention〕

前述のように、急峻波パルス発生装置と前記電磁波発生
部との間に直列抵抗を挿入して電磁波発生部から急峻波
パルス発生装置の方を見たインピーダンスが電磁波発生
部の特性インピーダンスに一敗するように設定すること
により、電磁波発生部内で発生した反射波に対してイン
ピーダンス整合がとれてこの反射波が再び反射して電磁
波発生部に戻るということはない、その結果、を磁波発
生部が生起する1を磁波の波形の乱れが抑制され、期待
通りの急峻波形の1ttia波を発生する電磁波発生部
を得ることができるという効果が生ずる。
As mentioned above, a series resistor is inserted between the steep wave pulse generator and the electromagnetic wave generator, so that the impedance when looking from the electromagnetic wave generator to the steep wave pulse generator is equal to the characteristic impedance of the electromagnetic wave generator. By setting the electromagnetic wave generating section to The effect is that the disturbance in the waveform of the 1ttia magnetic wave that occurs is suppressed, and it is possible to obtain an electromagnetic wave generating section that generates the 1ttia wave with the expected steep waveform.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例を示す等価回路図、第2図は
電磁波発生部の斜視図、第3図は急峻波パルス発生装置
の簡略化した回路図、第4図は従来技術の等価回路図で
ある。 1・・・電磁波発生部、IA・・・前段部、1B・・・
中央部、IC・・・後段部、12.13・・・端部、2
・・・整合抵抗、3・・・直列抵抗、100・・・急峻
波パルス発生装置。 第1図 μで 第3図
Fig. 1 is an equivalent circuit diagram showing an embodiment of the present invention, Fig. 2 is a perspective view of an electromagnetic wave generating section, Fig. 3 is a simplified circuit diagram of a steep wave pulse generator, and Fig. 4 is an equivalent circuit diagram of the prior art. It is a circuit diagram. 1... Electromagnetic wave generation section, IA... front stage section, 1B...
Center part, IC... rear part, 12.13... end part, 2
... Matching resistor, 3... Series resistor, 100... Steep wave pulse generator. Figure 1 μ and Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1)対向する2枚の導体板でなる電磁波発生部と、この
電磁波発生部の一方の端部に電気的に接続されて急峻波
パルスを印加する急峻波パルス発生装置と、前記電磁波
発生部のもう一方の端部に電気的に接続された整合抵抗
とからなる電磁波発生装置において、前記急峻波パルス
発生装置と前記電磁波発生部との間に直列抵抗を挿入し
てなることを特徴とする電磁波発生装置。
1) An electromagnetic wave generation section made up of two opposing conductor plates, a steep wave pulse generation device that is electrically connected to one end of the electromagnetic wave generation section and applies a steep wave pulse, and the electromagnetic wave generation section An electromagnetic wave generating device comprising a matching resistor electrically connected to the other end, characterized in that a series resistor is inserted between the steep wave pulse generating device and the electromagnetic wave generating section. Generator.
JP63237248A 1988-09-21 1988-09-21 Electromagnetic wave generating device Pending JPH0285780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63237248A JPH0285780A (en) 1988-09-21 1988-09-21 Electromagnetic wave generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63237248A JPH0285780A (en) 1988-09-21 1988-09-21 Electromagnetic wave generating device

Publications (1)

Publication Number Publication Date
JPH0285780A true JPH0285780A (en) 1990-03-27

Family

ID=17012596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63237248A Pending JPH0285780A (en) 1988-09-21 1988-09-21 Electromagnetic wave generating device

Country Status (1)

Country Link
JP (1) JPH0285780A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5087900A (en) * 1990-11-19 1992-02-11 Reliability Incorporated Transmission line network for multiple capacitive loads
CN102636702A (en) * 2012-04-25 2012-08-15 中国人民解放军理工大学 Bounded-wave electromagnetic pulse simulator of elliptic arc transition section

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5087900A (en) * 1990-11-19 1992-02-11 Reliability Incorporated Transmission line network for multiple capacitive loads
CN102636702A (en) * 2012-04-25 2012-08-15 中国人民解放军理工大学 Bounded-wave electromagnetic pulse simulator of elliptic arc transition section

Similar Documents

Publication Publication Date Title
US5502392A (en) Methods for the measurement of the frequency dependent complex propagation matrix, impedance matrix and admittance matrix of coupled transmission lines
JP3565893B2 (en) Probe device and electric circuit element measuring device
Smith Signal and noise measurement techniques using magnetic field probes
Samoylichenko et al. Electrical characteristics of a modal filter with a passive conductor in the reference plane cutout
KR920702188A (en) Function unit
Bishop et al. Subnanosecond Pockels cell switching using avalanche transistors
EP0198624A1 (en) Overvoltage protection device
US4045735A (en) Apparatus for testing electronic devices having a high density array of pin leads
JPH0285780A (en) Electromagnetic wave generating device
Claudi et al. Aging of Insulation Materials under Repetitive Impulse Voltage Stress with high dv/dt
JP2703904B2 (en) Probe substrate for semiconductor integrated circuit measurement
Tuema et al. The design and performance of a low-impedance, self-matched transmission line pulse generator
Xie et al. Spice simulation and experimental study of transmission lines with TVSs excited by EMP
Petr et al. Investigation of a radial transmission line transformer for high‐gradient particle accelerators
JP2628262B2 (en) Probe attenuator
Timsit High speed electronic connector design: a review of electrical and electromagnetic properties of passive contact elements--Part 1
Thornton Subnanosecond risetime in metal foil coaxial shunts (for pulsed current measurement)
JP3538504B2 (en) Electromagnetic wave generator
EP0259179A2 (en) Overvoltage protection device
US4419628A (en) Transient-noise simulators
Yagasaki Characteristics of a special-isolation transformer capable of protecting from high-voltage surges and its performance
JPH04184279A (en) Electromagnetic wave generator
Greason et al. Noninvasive optoelectronic system for measurement of electrostatic discharge (ESD)-induced phenomena
JPH0786772A (en) Circuit board equipment
Yao Electrical Characteristics of a Two-Level Single Ground-Plane Interconnection in Josephson Tunneling Logic