JPH0284614A - Optical system for correcting camera-shake - Google Patents

Optical system for correcting camera-shake

Info

Publication number
JPH0284614A
JPH0284614A JP23740788A JP23740788A JPH0284614A JP H0284614 A JPH0284614 A JP H0284614A JP 23740788 A JP23740788 A JP 23740788A JP 23740788 A JP23740788 A JP 23740788A JP H0284614 A JPH0284614 A JP H0284614A
Authority
JP
Japan
Prior art keywords
lens
optical system
amount
lenses
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23740788A
Other languages
Japanese (ja)
Inventor
Naoshi Okada
尚士 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP23740788A priority Critical patent/JPH0284614A/en
Publication of JPH0284614A publication Critical patent/JPH0284614A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To correct the blur of an image and to eliminate the failure of photographing by moving a part of lenses in the imaging optical system in the direction perpendicular to the optical axis under specific conditions when camera shake arises. CONSTITUTION:A part of the lenses of the optical system are required to be the lenses which have significant influence on the movement of the image in the direction perpendicular to the optical axis but have less influence on the other aberration among all the lenses. In the equations I to IV, f is the focal length of a part of the lenses in the optical system used for correction; F is the focal lens of the entire lens system; DELTAM is the fluctuation quantity of the astigmatism of a meridional ray which is standardized by the fluctuation quantity of the main ray on the image plane; CM is the fluctuation quantity of a comatic aberration which is standardized by the fluctuation quantity of the main ray on the image plane; AXCM is the fluctuation quantity of the axial comatic aberration which is standardized by the fluctuation quantity of the main ray on the image plane. The lens used for the correction may be a positive lens and negative lens in this case. The failure of photographing is eliminated in this way.

Description

【発明の詳細な説明】 発明の技術分野 本発明はカメラにおいてシャツタ釦を押した時に発生す
る手ブレにより、撮影が失敗するのを防止する技術に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION TECHNICAL FIELD OF THE INVENTION The present invention relates to a technique for preventing failure in photographing due to camera shake that occurs when the shirt button is pressed in a camera.

発明の技術的背景と従来技術 従来の写真撮影の失敗はピンボケと手ブレがその原因の
殆どを占めていた。ところが、近年のカメラにおいては
、オートフォーカスの採用によりピンボケがなくなり、
ピント精度が向上して画質が良くなる一方、企業のコス
トダウンにより望遠系のレンズが安価に供給されるよう
になってきた。
Technical Background of the Invention and Prior Art Most failures in conventional photography were caused by out-of-focus and camera shake. However, in recent years, cameras have adopted autofocus, which eliminates out-of-focus images.
While focusing accuracy has improved and image quality has improved, telephoto lenses have become cheaper due to corporate cost reductions.

しかし、望遠系のレンズの普及の結果、手ブレの影響を
受は易くなり、撮影失敗ζ手ブレという関係となり、な
んとか手ブレをなくせないかという要望が強《なってき
た。
However, as telephoto lenses have become more widespread, they have become more susceptible to camera shake, leading to failures in photography and camera shake, and there has been a growing demand for ways to eliminate camera shake.

これに対し、従来技術には、カメラ内にブレ検出器を設
け、撮影レンズの焦点距離情報とブレ量に応じて、カメ
ラのシャッタ速度を制御するもの(特開昭54−554
29,実開昭61−、135328)や、カメラ内に加
速度検出手段を設けて、シャツタ開閉動作に応じて、加
速度検出器からの出力により画像にブレが生じたことを
警告するもの(特開昭58−70217)や結像系の一
部を移動させて、像のブレを補正するものく特開昭62
−47012)などがあるが補正用の光学系については
何も述べられていない。
On the other hand, in the conventional technology, a shake detector is installed inside the camera and the shutter speed of the camera is controlled according to the focal length information of the photographing lens and the amount of shake (Japanese Patent Laid-Open No. 54-554
29, U.S. Pat. 1982-70217) and Japanese Patent Application Laid-Open No. 1986-62, which corrects image blur by moving a part of the imaging system.
-47012), but nothing is mentioned about the optical system for correction.

木允里至亘カ 本発明は手ブレが生じた時に手ブレによる像の移動を補
正し且つその時の光学系全体の収差の劣化が少ないよう
な、手ブレ補正光学系を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a camera shake correction optical system that can correct the movement of an image due to camera shake when camera shake occurs, and that reduces the deterioration of aberrations of the entire optical system at that time. shall be.

崖虞m斐 上記目的を達成するために本発明に係る手ブレ補正光学
系は、結像光学系中の一部のレンズを光軸と垂直方向へ
移動させる事により手ブレ等による像のブレを補正する
ものであって、上記光学系の一部のレンズが全レンズの
中で光軸と垂直方向の像の移動に対しては影響が大きい
が他の収差に対しては影響の少ないレンズであると共に
以下の条件式を満足している。
In order to achieve the above object, the image stabilization optical system according to the present invention moves some lenses in the imaging optical system in a direction perpendicular to the optical axis to prevent image blur caused by camera shake, etc. A lens in which some lenses in the above optical system have a large effect on image movement in the direction perpendicular to the optical axis among all lenses, but have a small effect on other aberrations. and satisfies the following conditional expression.

■ 0.08〈1 f/F1く0.8 但しr:補正に用いる光学系中の一部 のレンズの焦点距離 F:全レンズ系の焦点距離 最大脊効画角の7割の画角の光線に対して、上記補正用
光学系を光軸と垂直方向へ移動させた時の像面での主光
線の変動量に対する諸収差の誤差感度及び軸上光線に対
する誤差感度が以下の条件を満足する事を特徴とする手
ブレ防止レンズ。
■ 0.08〈1 f/F1 0.8 However, r: Focal length of some lenses in the optical system used for correction F: Focal length of the entire lens system When the correction optical system is moved in a direction perpendicular to the optical axis, the error sensitivity of various aberrations to the fluctuation amount of the principal ray at the image plane and the error sensitivity to on-axis rays satisfy the following conditions. An anti-shake lens that is characterized by:

■  0く1ΔM l <0.5 但し、ΔMはメリディオナル光線の非 点収差の変動量を像面での主光 線の変動量で規格化したちの ■ 0< l CM + <0.1 但し、CMはコマ収差の変動量を像面 での主光線の像面での変動量で 規格化したもの ■O< l AXCM l <0.15但し、AXCM
は軸上コマ収差の変動 量を主光線の像面での変動量で 規格化したものである。
■ 0×1ΔM l <0.5 However, ΔM is the amount of variation in astigmatism of the meridional ray normalized by the amount of variation in the principal ray at the image plane ■ 0< l CM + <0.1 However, CM is the amount of variation in comatic aberration normalized by the amount of variation in the principal ray at the image plane ■O < l AXCM l <0.15 However, AXCM
is the amount of variation in axial coma aberration normalized by the amount of variation on the image plane of the principal ray.

以下各条件について説明する。Each condition will be explained below.

まず、補正に用いるレンズは正レンズでも負レンズでも
かまわないが条件■の下限を越えてrが小さくなるとレ
ンズの移動による収差の変動が大きく性能が劣化する。
First, the lens used for correction may be either a positive lens or a negative lens, but if r exceeds the lower limit of condition (2) and becomes small, the aberrations will fluctuate greatly due to lens movement and performance will deteriorate.

また逆に条件■の上限を越えてfが大きくなると、収差
の変動量は少ないものの像の補正量が少な《、像のブレ
を補正するために補正用レンズをかなりの量、移動させ
なければ効果が得られなくなる。また条件■.■,■は
収差の変動量の許容値を具体的に示したものであり、こ
れ以上の誤差感度を持つレンズ系を補正用レンズ系とし
て用いることはできない。
Conversely, if f increases beyond the upper limit of condition (2), the amount of aberration fluctuation is small, but the amount of image correction is small. The effect will no longer be obtained. Also, the condition ■. (2) and (2) specifically indicate the permissible value of the amount of variation in aberration, and a lens system having greater error sensitivity than this cannot be used as a correction lens system.

以上に加えて更に望ましい条件としてレンズ系の前群は
、外径が大きくレンズ重量も重いため、補正用光学系と
して移動させるには適さない。そこで条件■は、大きく
重いレンズの前群をさけるための条件である。補正用レ
ンズの形状としては、面の曲率中心がレンズ系全体の結
像点となるような面をもつ方が、光線に対してずなおで
あるため収差の変動が少ないと思われるが、そういう面
を持たない場合でも、補正用レンズの前面と後面で互い
に収差の変動を打ち消すような形状であれば特に問題は
ない。
In addition to the above, a further desirable condition is that the front group of the lens system has a large outer diameter and a heavy lens weight, so it is not suitable to be moved as a correction optical system. Therefore, condition (2) is a condition for avoiding the front group of a large and heavy lens. Regarding the shape of the correction lens, it would be better to have a surface where the center of curvature of the surface becomes the imaging point of the entire lens system, since it is square to the light rays, so there will be less variation in aberrations. Even if the correction lens does not have a surface, there is no particular problem as long as the front and rear surfaces of the correction lens have a shape that mutually cancels out fluctuations in aberrations.

日にづ 以下、実施例に基づいて本発明を説明する。day by day Hereinafter, the present invention will be explained based on Examples.

〈実施例1〉 第1図は後述する表1の構成を有する、前群が正のパワ
ーをもち後群が負のパワーをもつ望遠タイプのレンズ系
を示す実施例1の光学系の断面図であるが、この光学系
の個々のレンズを平行偏心させた時の諸収差(軸外光y
’ =15)の変動量を像面での像高の移動量で規格化
したものが(表2)である、つまりこれは像面で手ブレ
に対する補正を行う時の各レンズの誤差感度を表にした
ものである。
<Example 1> Fig. 1 is a cross-sectional view of an optical system of Example 1, showing a telephoto type lens system in which the front group has positive power and the rear group has negative power, having the configuration shown in Table 1 described later. However, various aberrations (off-axis light y
' = 15) normalized by the amount of movement of the image height on the image plane is (Table 2).In other words, this is the error sensitivity of each lens when correcting for camera shake on the image plane. This is a table.

この表から判断すると03. G5. G3の各レンズ
が他のレンズに比べて収差の変動量が少ないが、鏡胴の
構成上から考えると63レンズは前群の一部であるため
外径がD−93,5もあり、レンズの重量が重(、移動
させるのには適さない。そこで後群内の05. G8の
どちらかを選択することになるが、ここで各レンズにつ
いて各々のレンズを1mm平行偏心させた時の像面での
光線のズレ量を(表3)に示す。この表で見ると05.
 G8で約2倍のズレ量の差がある。そこで、その差に
注目しレンズの駆動機構の特性により、どちらかを選べ
ば良い、つまり、補正用のレンズに対して少ない移動量
しか与えられないような駆動機構であればG8を用いれ
ばよいし、充分な移動量を与えることができる駆動機構
であれば、G5を使用すればよい。
Judging from this table, 03. G5. Each lens in the G3 has less variation in aberration than other lenses, but considering the structure of the lens barrel, the 63 lens is part of the front group, so its outer diameter is D-93. The weight of the lens is heavy (and it is not suitable for moving. Therefore, we will choose either the 05. The amount of deviation of the light beam on the surface is shown in (Table 3). Looking at this table, it is 0.5.
There is a difference of about twice the amount of deviation in G8. Therefore, you should pay attention to the difference and choose one depending on the characteristics of the lens drive mechanism. In other words, if the drive mechanism can only give a small amount of movement to the correction lens, G8 should be used. However, G5 may be used as long as it is a drive mechanism that can provide a sufficient amount of movement.

また、その他に鏡胴構成上から考えると、フォーカシン
グブロックなどの移動群中にあるレンズを補正に用いる
と移動機構と補正機構を二重にする必要があるため固定
群中のレンズを選択する方が、機構的により簡単にでき
るため有利であると言える。
In addition, considering the lens barrel configuration, if a lens in a moving group such as a focusing block is used for correction, it is necessary to double the moving mechanism and correction mechanism, so it is better to select a lens in a fixed group. However, it can be said to be advantageous because it is mechanically simpler.

また、本実施例では移動させるレンズは1つしか示して
いないが、2個あるいはそれ以上のレンズを組み合わせ
ることも可能である。
Further, although only one lens to be moved is shown in this embodiment, it is also possible to combine two or more lenses.

−炎上− f=295.0    FNO=2.91 Gs/ F
 I =0.90 G、/F l −0,65 1cs/ F l =0.26 dos  2.000 〈実施例2〉 第2図は本発明を表4の構成を有する100〜300n
m/4.5〜5.6のズームレンズの最長焦点距離状態
に用いた場合の実施例の光学系の断面図である。この場
合も実施例1と同様に各レンズを平行偏心させた時の諸
収差(軸外光y’ =15)の変動量を像面での像高の
移動量で規格化したものが(表5)である。
-Flame- f=295.0 FNO=2.91 Gs/F
I =0.90 G, /F l -0,65 1 cs/ F l =0.26 dos 2.000 <Example 2>
FIG. 3 is a cross-sectional view of an optical system according to an embodiment when a zoom lens of m/4.5 to 5.6 is used in the longest focal length state. In this case, as in Example 1, the amount of variation in various aberrations (off-axis light y' = 15) when each lens is parallel decentered is normalized by the amount of movement of the image height on the image plane (Table 1). 5).

(表5)より判断すると収差の変動量が少ないのは、接
合レンズGll G!+ G?+ G11 の各レンズ
が他のレンズに比べて収差の変動量が少ないが、接合レ
ンズG、、 G2はレンズ系の前群であるためG、の外
径はD =52.5. G2の外径はD =51.0と
なりレンズ重量が重く移動させるには適さない。そこで
、G。
Judging from Table 5, the cemented lens Gll G! has the smallest amount of variation in aberration. +G? + G11 each lens has a smaller amount of variation in aberration than the other lenses, but since the cemented lenses G, and G2 are the front group of the lens system, the outer diameter of G is D = 52.5. The outer diameter of G2 is D = 51.0, which makes the lens heavy and unsuitable for movement. So, G.

G11のどちらかを選択することになるが、ここで各レ
ンズを1fflI11平行偏心させた時の像面での光線
のズレ量を(表6)に示す。この表で見ると、G?+G
、のズレ量の差は約2倍程度である。そこで、この場合
も実施例1と同様にレンズ駆動機構の特性と、鏡胴構成
の両方から見て容易な方を選択すれば良い。つまり、実
施例1と同様に、補正レンズ系を多く動かせない場合は
G、を用いれば補正レンズを多く移動させなくても像面
での補正量は充分かせげる。また補正光学系に対して微
小な位置制御ができない場合はG、を選択した方が補正
光学系の位置誤差が像面により効かないのでG、に比べ
て比較的有利である。
G11 will be selected, and Table 6 shows the amount of deviation of the light beam on the image plane when each lens is parallel decentered by 1fflI11. Looking at this table, G? +G
, the difference in the amount of deviation is about twice as much. Therefore, in this case, as in the first embodiment, the one that is easier from the viewpoint of both the characteristics of the lens drive mechanism and the lens barrel configuration may be selected. That is, as in the first embodiment, if the correction lens system cannot be moved much, by using G, a sufficient amount of correction on the image plane can be obtained without moving the correction lens much. Furthermore, if minute positional control is not possible for the correction optical system, selecting G is relatively advantageous compared to G because the positional error of the correction optical system is less effective on the image plane.

補正光学系の補正量をΔT、像面での像のズレ量をTと
すると 0くT/ΔT≦1.0 の場合は、補正光学系のスペースが広く取れる場合や、
補正光学系の位置制御が困難な場合に適しており 1.0<T/ΔT の場合は、補正光学系の移動スペースが広く取れない場
合や、高精度の位置制御が可能な場合に適している。
If the correction amount of the correction optical system is ΔT, and the amount of image shift on the image plane is T, then T/ΔT≦1.0 means that a large space can be used for the correction optical system, or
Suitable when it is difficult to control the position of the correction optical system. If 1.0<T/ΔT, it is suitable when a large movement space for the correction optical system cannot be secured or when highly accurate position control is possible. There is.

f =292.0(最長焦点距離状態)F、、=5.(
i典皇生径  槓上皿皿蓋  皿立圭  ヱヱ丘撤−r
、   76.625 G+/ F Il =0.66    l h/ F 
+ l −0,34GV/F、l=0.27  1G+
1/F11=0.115但しFlはテレ端での焦点距離 次に、第3図〜第8図は実施例1における収差図であり
、そのうちの第3図及び第4図は偏心前のメリジオナル
光線及びサジタル光線によるガウス面上の横収差を示し
ている。第5図及び第6図はGSのレンズを1.0 t
m平行偏心させたときのメリジオナル光線とサジタル光
線によるガウス面上の横収差を示し、第7図と第8図は
G、のレンズを1゜0mm平行偏心させたときの同様な
横収差を表わしている。
f = 292.0 (longest focal length state) F, , = 5. (
i-ten-o-sei-dou, plate-on-plate, plate-lid, plate-standing Kei,
, 76.625 G+/F Il =0.66 l h/F
+ l −0,34GV/F, l=0.27 1G+
1/F11=0.115, where Fl is the focal length at the telephoto end. Figures 3 to 8 are aberration diagrams in Example 1, of which Figures 3 and 4 are meridional before eccentricity. It shows the transverse aberration on the Gaussian plane due to the rays and sagittal rays. Figures 5 and 6 show the GS lens at 1.0 t.
The transverse aberration on the Gaussian surface due to the meridional ray and the sagittal ray when the lens is eccentrically eccentric by m is shown. Figures 7 and 8 show the similar transverse aberration when the lens G is eccentrically eccentric by 1°0mm. ing.

実施例2については第9図〜第14図で示しており、第
9図と第10図は偏心前におけるメリジオナル光線とサ
ジタル光線によるガウス面上の横収差を示し、第11図
と第12図はG、のレンズを1.0 m平行偏心させた
場合のメリジオナル光線とサジタル光線によるガウス面
上の横収差を示し、第13図と第14図はGllのレン
ズを1.0 m平行偏心させたときの同様な横収差を表
わしている。
Example 2 is shown in FIGS. 9 to 14, and FIGS. 9 and 10 show the lateral aberration on the Gaussian plane due to meridional rays and sagittal rays before eccentricity, and FIGS. 11 and 12. shows the transverse aberration on the Gaussian plane due to meridional rays and sagittal rays when the lens G is parallel decentered by 1.0 m, and Figures 13 and 14 show the transverse aberration on the Gaussian surface when the lens Gll is parallel decentered 1.0 m. This shows similar lateral aberrations when

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図はそれぞれ実施例1と実施例2のレン
ズ構成図であり、第3図、第4図、第5図、第6図、第
7図及び第8図はその実施例1の収差図、そして第9図
、第10図、第11図、第12図。 第13図及び第14図は実施例2の収差図である。 出 願 人 ミノルタカメラ株式会社
Figures 1 and 2 are lens configuration diagrams of Example 1 and Example 2, respectively, and Figures 3, 4, 5, 6, 7, and 8 are examples of the lenses. 1, and FIGS. 9, 10, 11, and 12. FIG. 13 and FIG. 14 are aberration diagrams of Example 2. Applicant Minolta Camera Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] (1)結像光学系中の一部のレンズを光軸と垂直方向へ
移動させる事により手ブレ等による像のブレを補正する
手ブレ補正光学系において、上記一部のレンズは全レン
ズの中で光軸と垂直方向の像の移動に対しては、影響が
大きいが他の収差に対しては影響の少ないレンズである
こと及び以下の条件を満足することを特徴とする手ブレ
補正光学系。 0.08<|f/F|<0.8 但しf:補正に用いる光学系中の一部のレンズの焦点距
離 F:全レンズ系の焦点距離 最大有効画角の7割の画角の光線に対して上記補正用光
学系を光軸と垂直方向へ移動させた時の像面での主光線
の変動量に対する諸収差の誤差感度及び軸上構成に対す
る誤差感度が以下の条件を満足する。 0<|ΔM|<0.5 但し、ΔMはメリディオナル光線の非点収差の変動量を
像面での主光線の変動量で規格化したもの 0<|CM|<0.1 但し、CMはコマ収差の変動量を像面での主光線の像面
での変動量で規格化したもの 0<|AXCM|<0.15 但し、AXCMは軸上コマ収差の変動量を主光線の像面
での変動量で規格化したものである。
(1) In an image stabilization optical system that corrects image blur caused by camera shake by moving some of the lenses in the imaging optical system in a direction perpendicular to the optical axis, some of the lenses mentioned above are Image stabilization optics characterized by being a lens that has a large effect on image movement in the direction perpendicular to the optical axis but has little effect on other aberrations, and that satisfies the following conditions: system. 0.08<|f/F|<0.8 However, f: Focal length of some lenses in the optical system used for correction F: Focal length of all lens systems Light rays with an angle of view that is 70% of the maximum effective angle of view In contrast, when the correction optical system is moved in a direction perpendicular to the optical axis, the error sensitivity of various aberrations to the fluctuation amount of the principal ray on the image plane and the error sensitivity to the on-axis configuration satisfy the following conditions. 0<|ΔM|<0.5 However, ΔM is the amount of variation in astigmatism of the meridional ray normalized by the amount of variation in the principal ray at the image plane0<|CM|<0.1 However, CM is The amount of variation in comatic aberration is normalized by the amount of variation on the image plane of the principal ray at the image plane. 0<|AXCM|<0.15 It is normalized by the amount of variation in .
(2)更に上記レンズは以下の条件を満足することを特
徴とする第1請求項に記載の手ブレ補正光学系。 F/F_N_O×0.75≧D 但しD:補正用光学系の外径 F_N_O:結像系全体のFナンバー
(2) The camera shake correction optical system according to claim 1, wherein the lens further satisfies the following conditions. F/F_N_O×0.75≧D However, D: Outer diameter of the correction optical system F_N_O: F number of the entire imaging system
(3)上記レンズは固定群中の一部であることを特徴と
する第1請求項に記載の手ブレ補正光学系。
(3) The camera shake correction optical system according to claim 1, wherein the lens is a part of a fixed group.
(4)前記レンズは単レンズ及び接合レンズであること
を特徴とする第1請求項に記載の手ブレ補正光学系。
(4) The camera shake correction optical system according to claim 1, wherein the lens is a single lens or a cemented lens.
(5)前記レンズは曲率中心が像面付近となるような面
を少くとも1面持つことを特徴とする第1請求項に記載
の手ブレ補正光学系。
(5) The camera shake correction optical system according to claim 1, wherein the lens has at least one surface whose center of curvature is near the image plane.
JP23740788A 1988-09-21 1988-09-21 Optical system for correcting camera-shake Pending JPH0284614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23740788A JPH0284614A (en) 1988-09-21 1988-09-21 Optical system for correcting camera-shake

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23740788A JPH0284614A (en) 1988-09-21 1988-09-21 Optical system for correcting camera-shake

Publications (1)

Publication Number Publication Date
JPH0284614A true JPH0284614A (en) 1990-03-26

Family

ID=17014928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23740788A Pending JPH0284614A (en) 1988-09-21 1988-09-21 Optical system for correcting camera-shake

Country Status (1)

Country Link
JP (1) JPH0284614A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011197413A (en) * 2010-03-19 2011-10-06 Nikon Corp Photographic lens, optical apparatus having the photographic lens, and method for manufacturing the photographic lens
JP2013246354A (en) * 2012-05-28 2013-12-09 Sigma Corp Imaging optical system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011197413A (en) * 2010-03-19 2011-10-06 Nikon Corp Photographic lens, optical apparatus having the photographic lens, and method for manufacturing the photographic lens
JP2013246354A (en) * 2012-05-28 2013-12-09 Sigma Corp Imaging optical system

Similar Documents

Publication Publication Date Title
JP3584107B2 (en) Zoom lens
US7471462B2 (en) Zoom lens and image pickup apparatus having the same
JP3363571B2 (en) Rear focus zoom lens and imaging system
JP3524482B2 (en) Zoom lens and optical device using the same
JPH0383006A (en) Zoom lens
JP2836142B2 (en) Zoom lens
JP3486532B2 (en) Zoom lens having vibration compensation function and camera having the same
JPH09230234A (en) Zoom lens provided with vibration-proof function
JPH01259314A (en) Optical system for varying out-of-focus image
JP4146134B2 (en) Zoom lens
JP2002098895A (en) Zoom lens having image blur correcting function
US9625688B2 (en) Optical system and imaging apparatus including the same
JP2621280B2 (en) Variable power optical system with anti-vibration function
JPH07318865A (en) Zoom lens having vibration proof function
JPH01116619A (en) Variable power optical system with vibration proof function
JP3860231B2 (en) Anti-vibration optical system
JPH0470609B2 (en)
JPH0320735B2 (en)
JPH10161024A (en) Zoom lens having camera shake correcting function
JP2001124992A (en) Variable power optical system having vibration-proof function, and optical equipment equipped with the same
JPH04362909A (en) Zoom lens with vibration-proof correcting optical system
JPH06289298A (en) Zoom lens with vibrationproofing function
JP4630451B2 (en) Zoom lens and optical apparatus using the same
JP2546293B2 (en) Small zoom lens
JP3258375B2 (en) Small two-group zoom lens