JPH0283992A - Distributed feedback type semiconductor laser and distributed reflection type semiconductor laser - Google Patents

Distributed feedback type semiconductor laser and distributed reflection type semiconductor laser

Info

Publication number
JPH0283992A
JPH0283992A JP23704288A JP23704288A JPH0283992A JP H0283992 A JPH0283992 A JP H0283992A JP 23704288 A JP23704288 A JP 23704288A JP 23704288 A JP23704288 A JP 23704288A JP H0283992 A JPH0283992 A JP H0283992A
Authority
JP
Japan
Prior art keywords
layer
semiconductor laser
active layer
distributed
quantum well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23704288A
Other languages
Japanese (ja)
Inventor
Hiroaki Fujii
宏明 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP23704288A priority Critical patent/JPH0283992A/en
Publication of JPH0283992A publication Critical patent/JPH0283992A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1228DFB lasers with a complex coupled grating, e.g. gain or loss coupling

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To make the diffraction efficiency of a laser constant irrespective of a machined shape, improve uniformity and reproducibility, and manufacture it easily by forming steps of fixed cycle reflectivity as the result of the absence of order of a multi-quantum well structure in an axial direction of a resonator. CONSTITUTION:An active layer 1 and a clad layer 3 composed of a clad layer 2 and a multi-quantum well structure are grown on a substrate 7. The GaAs well layer of the active layer 1 is made sufficiently thick to a degree that it is not quantized. The average composition of the active layer after the absence of order is set so that it becomes Al0.2Ga0.8As. Next, Si ion implantation of linear repetitive pattern is performed. This Si implantation area 11 is made parallel to the resonator surface and distribution reflectivity is given to light running in an axial direction of the resonator. The repetition cycle of the area 11 forms a fourth-order diffraction grating to the oscillation wavelength of laser. Next, the layer 3 is etched and a clad layer 4 and a cap layer 6 are grown. Lastly, a p electrode 8 and an n electrode 9 are formed and a semiconductor laser is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、回折格子を具備した半導体レーザに関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor laser equipped with a diffraction grating.

〔従来の技術〕[Conventional technology]

分布(i還型半導体レーザおよび分布反射型半導体レー
ザは、共振器軸内に、一定周期で分布する屈折率ステッ
プを有し、その屈折率ステップでの光の回折による帰還
または反射で発振するため、発振波長に選択性があり、
単一軸モードに発振する。通常、この屈折率ステップは
、活性層に近接する光ガイド層またはクラッド層に凹凸
(以下、グレーティングと称する)を設けることにより
得られる。第7図に、従来の分布帰還型半導体レーザの
一例、第8図に、従来の分布反射型レーザの一例を示す
。従来の分布帰還型半導体レーザおよび分布反射型半導
体レーザの製造方法は、まず、1回目の成長でグレーテ
ィングを設けるべき光ガイド層57.58またはクラッ
ド層2.4を含む多層薄膜を成長し、次に、この基板上
に、グレーティング加工を施し、2回目の成長でこのグ
レーティングを埋め込む方法が、−i的である。
Distribution (i-reduction type semiconductor lasers and distributed reflection type semiconductor lasers have a refractive index step distributed at a constant period within the resonator axis, and oscillates by feedback or reflection due to light diffraction at the refractive index step) , there is selectivity in the oscillation wavelength,
Oscillates in single axis mode. Typically, this refractive index step is obtained by providing irregularities (hereinafter referred to as gratings) in the light guide layer or cladding layer adjacent to the active layer. FIG. 7 shows an example of a conventional distributed feedback semiconductor laser, and FIG. 8 shows an example of a conventional distributed reflection laser. In the conventional manufacturing method of distributed feedback semiconductor lasers and distributed reflection semiconductor lasers, first, a multilayer thin film including a light guide layer 57, 58 or a cladding layer 2.4 on which a grating is to be provided is grown in the first growth, and then a multilayer thin film is grown. The -i method is to process a grating on this substrate and embed the grating in the second growth.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、従来技術には、以下に示す二つの問題点
がある。まず、第1点は、光ガイド層57.58または
クラッド層2,4に、グレーティング加工を施す際には
、フォトリソグラフィーによる超微細加工を必要とする
ため、レーザ光の回折効率を決定する、グレーティング
形状の制御には、高い加工精度を必要とする。また、第
2点は、2回目の埋め込み成長で、グレーティングの形
状保存が難しいため、成長方法に何らかの工夫を必要と
する。本発明の目的は、素子特性上重要な、レーザ光の
回折効率が、加工形状によらず一定に決まる、製作容易
で、均一性、再現性の高い、分布帰還型半導体レーザお
よび分布反射型半導体レーザを提供することにある。
However, the conventional technology has two problems as shown below. First, when performing grating processing on the light guide layers 57 and 58 or the cladding layers 2 and 4, ultrafine processing by photolithography is required, so the diffraction efficiency of the laser beam is determined. Controlling the grating shape requires high processing accuracy. The second point is that it is difficult to preserve the shape of the grating during the second implantation growth, so some kind of ingenuity is required in the growth method. The purpose of the present invention is to provide a distributed feedback semiconductor laser and a distributed reflection semiconductor laser that are easy to manufacture, have high uniformity, and are highly reproducible, in which the diffraction efficiency of laser light, which is important for device characteristics, is fixed regardless of the processing shape. The goal is to provide lasers.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の、分布帰還型半導体レーザは、2つありその1
つは、多重量子井戸構造よりなる活性層と、前記活性層
に、光およびキャリアの閉じ込めを行なうためのクラッ
ド層を少なくとも有する多層構造を備え、共振器軸方向
に、前記活性層を構成する多重量子井戸構造の無秩序化
による、一定周期の屈折率ステップを具備する構造にな
っている。また、もう1つの分布帰還型半導体レーザは
、活性層と、前記活性層に、光およびキャリアの閉じ込
めを行なうためのクラッド層と、多重量子井戸構造より
なる光ガイド層を少なくとも有する多層構造を備え、共
振器軸方向に、前記光ガイド層を構成する多重量子井戸
構造の無秩序化による、一定周期の屈折率ステップを具
備する構成になっている。また、本発明の分布反射型半
導体レーザは、活性層と、前記活性層に、光およびキャ
リアの閉じ込めを行なうためのクラッド層と、多重量子
井戸構造よりなる光ガイド層を少なくとも有する多層構
造から成る活性領域と、活性層が存在しない多層構造か
ら成る分布反射領域とを備え、分布反射領域にのみ、共
振器軸方向に、前記光ガイド層を構成する多重量子井戸
構造の無秩序化による、一定周期の屈折率ステップを具
備する構成になっている。
There are two distributed feedback semiconductor lasers of the present invention, one of which is
One is a multilayer structure including an active layer having a multi-quantum well structure, and at least a cladding layer for confining light and carriers in the active layer; It has a structure with refractive index steps with a constant period due to disordering of the quantum well structure. Another distributed feedback semiconductor laser has a multilayer structure including at least an active layer, a cladding layer for confining light and carriers, and a light guide layer having a multi-quantum well structure. , the structure includes a refractive index step with a constant period in the resonator axis direction due to disordering of the multiple quantum well structure constituting the optical guide layer. Further, the distributed reflection type semiconductor laser of the present invention has a multilayer structure including at least an active layer, a cladding layer for confining light and carriers in the active layer, and a light guide layer having a multi-quantum well structure. It comprises an active region and a distributed reflection region consisting of a multilayer structure in which no active layer exists, and only in the distributed reflection region, a constant period is formed by disordering the multiple quantum well structure constituting the optical guide layer in the cavity axis direction. The structure has a refractive index step of .

〔作用〕[Effect]

本発明の分布帰還型半導体レーザおよび分布反射型半導
体レーザの、共振器軸と垂直方向からみた断面模式図を
第1図、第2図、第3図に示す。
FIG. 1, FIG. 2, and FIG. 3 show schematic cross-sectional views of the distributed feedback semiconductor laser and the distributed reflection semiconductor laser of the present invention, viewed from a direction perpendicular to the resonator axis.

第1図、第2図、第3図ともに、レーザ光の回折効率を
決定する、共振器方向の一定周期の屈折率差は、活性層
または光ガイド層を構成する、多重量子井戸構造の不純
物注入による無秩序化で与えられるため、レーザ光の回
折効率は、加工形状によらず一定に決まり、製作が容易
である。しかも、共振器軸方向の屈折率差の大きさは、
多重量子井戸構造の組成、層厚などで決まるため、現在
の有機金属気相成長法(以下、MOVPE法と称する)
、分子線エピタキシー法(以下、MBE法と称する)等
の高精度薄膜成長技術によれば、素子特性について、十
分高い、均一性、再現性が得られる。また、埋め込み成
長に際し、形状保存の必要がなく、平坦成長であるため
、埋め込み成長による素子特性の劣化が少ない。なお、
注入する不純物原子は、2回目の埋め込み成長中の拡散
を抑えるために、できるだけ拡散係数の小さい原子を選
ぶことが重要である。また、第1図、第2図については
、分布帰還型半導体レーザであるなめ、発光領域に不純
物注入しているため、2回目の成長前に、表面汚染層を
エツチング後、再成長を行なっている。不純物注入によ
るダメージに関i−では、アニール等の方法で回復を図
り、光吸収係数の増大を抑えた。また、第1図の分布帰
還型を導体レーザについては、活性層を挟む両側の層に
不純物注入を行なっているため、リーク電流防止のため
に、無秩序化された活性層の平均組成が、多重量子井戸
構造よりも大きな禁制帯幅を持つように設定することが
必要である。
In Figures 1, 2, and 3, the refractive index difference at a constant period in the cavity direction, which determines the diffraction efficiency of laser light, is due to the impurity of the multi-quantum well structure constituting the active layer or optical guide layer. Since it is given by disordering by injection, the diffraction efficiency of the laser beam is fixed regardless of the processed shape, and manufacturing is easy. Moreover, the magnitude of the refractive index difference in the cavity axis direction is
The current metal organic vapor phase epitaxy (hereinafter referred to as MOVPE method) is determined by the composition, layer thickness, etc. of the multi-quantum well structure.
, molecular beam epitaxy (hereinafter referred to as MBE method) and other high-precision thin film growth techniques can provide sufficiently high uniformity and reproducibility of device characteristics. Further, during buried growth, there is no need to preserve the shape and the growth is flat, so there is little deterioration of device characteristics due to buried growth. In addition,
It is important to select implanted impurity atoms that have as small a diffusion coefficient as possible in order to suppress diffusion during the second implantation growth. In addition, as for Figures 1 and 2, since these are distributed feedback semiconductor lasers, impurities are injected into the light emitting region, so before the second growth, the surface contamination layer is etched and then regrown. There is. Regarding damage caused by impurity implantation, recovery was attempted by methods such as annealing, and an increase in the light absorption coefficient was suppressed. In addition, in the distributed feedback type conductor laser shown in Figure 1, impurities are implanted into the layers on both sides of the active layer, so the average composition of the disordered active layer is multiplied to prevent leakage current. It is necessary to set it to have a larger forbidden band width than the quantum well structure.

〔実施例〕〔Example〕

以下、本発明の分布帰還型半導体レーザおよび分布反射
型半導体レーザを製造工程に従って詳しく説明する。第
】図の分布帰還型半導体レーザの製造工程を第4図に、
第2図の分布帰還型半導体1−・−ザの製造工程を第5
図に、第3図の分布反射型半導体レーザの製造工程を第
6図に示す。ここでは、例示のため、結晶材料を人e 
GaAs/GaAs系とするが、他の半導体材料でも良
いはもちろんである。また、ここでは、結晶成長方法は
、MOVPE法、不純物注入方法は、集束性イオンビー
ム法〈以下、FIB法と称する)にて、説明を行なう。
Hereinafter, the distributed feedback semiconductor laser and the distributed reflection semiconductor laser of the present invention will be explained in detail according to the manufacturing process. Figure 4 shows the manufacturing process of the distributed feedback semiconductor laser shown in Figure 4.
The manufacturing process of the distributed feedback semiconductor 1-... in FIG.
6 shows the manufacturing process of the distributed reflection type semiconductor laser shown in FIG. 3. As shown in FIG. Here, for illustrative purposes, the crystalline material is
Although GaAs/GaAs is used, it goes without saying that other semiconductor materials may be used. Further, herein, the crystal growth method will be described as the MOVPE method, and the impurity implantation method will be described as the focused ion beam method (hereinafter referred to as the FIB method).

まず、第1図の分布帰還型半導体レーザについて説明を
行なう、n形GaAs基板7上に、常圧M OV P 
E法による成長で、厚さ0.8u、mのn^e 0.5
GaO−5^Sでなるクラッド層2、GaAsとAff
。、5cao−s^Sの多重量子井戸構造よりなる活性
層1、厚さ0.3μmのP   Aj? 0−9GaO
−5八Sでなるクラッド層3をこの順に成長する〔第4
図(a>)、ここで、活性層のGaAsウェル層は、量
子化しない程度に十分厚くし、無秩序化した後の活性層
の平均組成は、Aeo−2cao、a^Sとなるように
設定した。次に、この基板に対し、FIB法により、周
期0.5μm、注入幅0.1μm、注入深さ1)、\μ
mの直線状繰り返しパターンのSiイオン注入を行なっ
た〔第4図(b)〕。直線状のSi注入領域】1は、共
振器面と平行となるようにし、共振器軸方向に走る光に
対し、分布屈折率を与えられるようにした。また、注入
領域11の繰り遅し周期は、GaAs系レーザの発振波
長に対し、4次の回折格子を形成する。次に、FIBプ
ロセスによる表面汚染層を除去するために、クラッド層
3を0.1.umエツチングし、0.2μmとした〔第
4図(c))、次いで、2回目のMOVPE成長により
、厚さ0.6μmのp −ke 0.5GaO,5A5
でなるクラッド層4、厚さ0.5μmのp−GaAsで
なるキヤ・・ノブ層6を順次成長した。i&後に、n電
極8、n電極9を形成し、第4図(d)及び第1図に示
す分布帰還型半導体レーザを製作した。
First, to explain the distributed feedback semiconductor laser shown in FIG.
Growth by E method, thickness 0.8u, m, n^e 0.5
Cladding layer 2 made of GaO-5^S, GaAs and Aff
. , 5cao-s^S multi-quantum well structure active layer 1, 0.3 μm thick P Aj? 0-9GaO
-58S cladding layer 3 is grown in this order [4th
Figure (a>), where the GaAs well layer of the active layer is made thick enough to prevent quantization, and the average composition of the active layer after disordering is set to be Aeo-2cao, a^S. did. Next, this substrate was processed using the FIB method with a period of 0.5 μm, an implantation width of 0.1 μm, and an implantation depth of 1).
Si ion implantation was performed in a linear repeating pattern of m [FIG. 4(b)]. The linear Si-implanted region 1 was made parallel to the resonator surface so as to give a distributed refractive index to light traveling in the direction of the resonator axis. Further, the retardation period of the injection region 11 forms a fourth-order diffraction grating with respect to the oscillation wavelength of the GaAs-based laser. Next, in order to remove the surface contamination layer due to the FIB process, the cladding layer 3 is coated with a thickness of 0.1. um etching to a thickness of 0.2 μm [Fig. 4(c)), and then a second MOVPE growth to form a p-ke 0.5GaO,5A5 film with a thickness of 0.6 μm.
A cladding layer 4 made of the above material and a carrier knob layer 6 made of p-GaAs having a thickness of 0.5 μm were successively grown. After i&, an n-electrode 8 and an n-electrode 9 were formed, and the distributed feedback semiconductor laser shown in FIG. 4(d) and FIG. 1 was manufactured.

次に、第2図の分布反射型半導体レーザについて説明す
る。n型GaAs基板7上に、厚さ0.8μmのn−A
e 065aa0.5ASでなるクラッド層2、n−^
t? 0−2Ga0,8^Sとn−人e 0−5Ga0
.5ASの多重量子井戸構造でなる光ガイド層5、n−
GaAsでなる表面保護層12をこの順にMOVPE成
長する〔第5図(a)〕。次に、第1図の場合と同様に
、この基板に対し、FIB法により、周期0,5μm、
注入幅0.1μm、注入深さ0.5μmの直線状繰り返
しパターンの51イオン注入を行なってSi注入領域1
1を形成した〔第5図(b))、次いで、FIB法によ
る表面汚染層除去のため、表面保護層をエツチングによ
り除去する〔第5図(c))、最後に、厚さ0.1μm
のGaAsでなる活性層1゛、厚さ0.8μmのp−人
& 0.5GaO−5^Sでなるクラ・ンド層4、厚さ
0.5μInのp −GaAsでなるキャンプ層6を順
次成長し、n電極8、n電極りを形成して、本発明の分
布帰還型半導体レーザを製作した〔第5図(d)〕。
Next, the distributed reflection type semiconductor laser shown in FIG. 2 will be explained. On the n-type GaAs substrate 7, a 0.8 μm thick n-A
Cladding layer 2 made of e 065aa0.5AS, n-^
T? 0-2Ga0,8^S and n-person e 0-5Ga0
.. Optical guide layer 5 having a multi-quantum well structure of 5AS, n-
A surface protective layer 12 made of GaAs is grown by MOVPE in this order [FIG. 5(a)]. Next, as in the case of FIG. 1, this substrate was subjected to the FIB method with a period of 0.5 μm
51 ion implantations were performed in a linear repeating pattern with an implantation width of 0.1 μm and an implantation depth of 0.5 μm to form Si implanted region 1.
1 was formed [FIG. 5(b)), and then the surface protective layer was removed by etching to remove the surface contamination layer by the FIB method [FIG. 5(c)].Finally, a film with a thickness of 0.1 μm was formed.
An active layer 1 made of GaAs of This was grown to form an n-electrode 8 and an n-electrode layer, thereby producing a distributed feedback semiconductor laser according to the present invention [FIG. 5(d)].

最後に、第3図の分布反射型半導体レーザについて説明
する。n型GaAs基板7上に、厚さθ、1)tmのn
 −Ae o、;Gao、5^Sでなるクラッド層2、
厚さ0.3ttrnのn −Aff r)、2Ga□、
8Asとn−A(!、)、qGao、、、ASの多重量
子井戸m造でなる光ガイド層5、厚さ0.1μmのGa
Asでなる活性層1′、厚さ0.8μmのpAf o、
5Gao、、ASでなるクラッド層4、厚さ0.5μm
のp−GaAsでなるキャップ層6をこの順に成長した
〔第6図(a)〕。次に、分布反射領域となる部分のキ
ャップ層、p−クラッド層、活性層をエツチングにより
除去した〔第6図(b)〕。そして、分分布反射域にの
み、第1図、第2図の場合と同様に、FIB法によるS
iイオン注入を行なって注入領域11を形成した〔第6
図(c)E、注入条件は、第1図、第2図と同様である
。最後に、分布反射領域にのみ、遷択的に、pke 0
−5Ga0.5^Sとn −Aj’ Q、5caQ、5
^Sの2層でなる電流ブロック層10、p −GaAs
でなるキャップ層6を成長し、n電極8、n電極9を形
成して、本発明の分布反射型半導体レーザを製作した〔
第6図(d))。
Finally, the distributed reflection semiconductor laser shown in FIG. 3 will be explained. n of thickness θ, 1) tm on the n-type GaAs substrate 7
-Ae o, ;Gao, cladding layer 2 consisting of 5^S,
n-Affr) with a thickness of 0.3ttrn, 2Ga□,
A light guide layer 5 made of a multi-quantum well structure of 8As and n-A(!,), qGao,..., AS, a Ga layer with a thickness of 0.1 μm.
Active layer 1' made of As, pAfo with a thickness of 0.8 μm,
Cladding layer 4 made of 5Gao, AS, thickness 0.5μm
A cap layer 6 made of p-GaAs was grown in this order [FIG. 6(a)]. Next, the portions of the cap layer, p-cladding layer, and active layer that will become the distributed reflection region were removed by etching [FIG. 6(b)]. Then, only in the distributed reflection region, as in the case of Figs. 1 and 2, the FIB method is applied.
i ion implantation was performed to form the implanted region 11 [6th
In Figure (c)E, the implantation conditions are the same as in Figures 1 and 2. Finally, only in the distributed reflection region, selectively, pke 0
-5Ga0.5^S and n -Aj' Q, 5caQ, 5
Current blocking layer 10 consisting of two layers of ^S, p -GaAs
A cap layer 6 was grown, and an n-electrode 8 and an n-electrode 9 were formed to produce a distributed reflection semiconductor laser according to the present invention.
Figure 6(d)).

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、素子特性上重要な
、レーザ光の回折効率が、加工形状によらず一定に決ま
り、製作容易で、均一性、再現性の高い、分布帰還型半
導体レーザおよび分布反射型半導体レーザが得られる。
As described above, according to the present invention, the diffraction efficiency of laser light, which is important for device characteristics, is fixed regardless of the processed shape, and the distributed feedback semiconductor is easy to manufacture and has high uniformity and reproducibility. A laser and a distributed reflection semiconductor laser are obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の分布帰還型半導体レーザの断面層構
造の模式図、第2図は、本発明の分布帰還型半導体レー
ザの断面層構造の模式図、第3図は、本発明の分布反射
型半導体レーザの断面層構造の模式図、第4図は、第1
図の分布帰還型半導体レーザの製造工程を示す図、第5
図は、第2図の分布帰還型半導体レーザの製造工程を示
す図、第6図は、第3図の分布反射型半導体レーザの製
造工程を示す図、第7図は、従来の分布帰還型半導体レ
ーザの断面層構造の模式図、第8図は、従来の分布反射
型半導体レーザの断面層構造の模式図である。尚、第1
図から第8図まで、すべて、共振器軸に垂直な方向から
見た図である。 1・・・多重量子井戸構造よりなる活性層、1′・・・
活性層、2,3.4・・・クラッド層、5・・・多重量
子井戸構造よりなる光ガイド層、5′・・・光ガイド層
、6・・・キャップ層、7・・・基板、8,9・・・電
極、10・・・電流ブロック層、11・・・不純物注入
領域、12・・・表面保護層。 代理人 弁理士  内 原  晋 、8を櫨 第2図 第1区 第3図 躬 !刀 第4図 第6図 第7図 第8図 1゜ 2゜ 3゜ 手続補正帯(自発) 5」
FIG. 1 is a schematic diagram of the cross-sectional layer structure of the distributed feedback semiconductor laser of the present invention, FIG. 2 is a schematic diagram of the cross-sectional layer structure of the distributed feedback semiconductor laser of the present invention, and FIG. 3 is a schematic diagram of the cross-sectional layer structure of the distributed feedback semiconductor laser of the present invention. A schematic diagram of the cross-sectional layer structure of a distributed reflection semiconductor laser, FIG.
Figure 5 shows the manufacturing process of the distributed feedback semiconductor laser shown in Figure 5.
The figure shows the manufacturing process of the distributed feedback type semiconductor laser shown in Figure 2, Figure 6 shows the manufacturing process of the distributed reflection type semiconductor laser shown in Figure 3, and Figure 7 shows the manufacturing process of the distributed feedback type semiconductor laser shown in Figure 3. A schematic diagram of a cross-sectional layer structure of a semiconductor laser. FIG. 8 is a schematic diagram of a cross-sectional layer structure of a conventional distributed reflection type semiconductor laser. Furthermore, the first
8 to 8 are all views seen from a direction perpendicular to the resonator axis. 1... Active layer consisting of multiple quantum well structure, 1'...
Active layer, 2, 3.4... Cladding layer, 5... Light guide layer having a multiple quantum well structure, 5'... Light guide layer, 6... Cap layer, 7... Substrate, 8, 9... Electrode, 10... Current blocking layer, 11... Impurity implantation region, 12... Surface protection layer. Agent Susumu Uchihara, Patent Attorney, 8th figure 2nd ward 1st ward 3rd place of Haji! Sword Figure 4 Figure 6 Figure 7 Figure 8 1゜2゜3゜Procedure correction band (voluntary) 5

Claims (3)

【特許請求の範囲】[Claims] (1)多重量子井戸構造よりなる活性層と、前記活性層
に、光およびキャリアの閉じ込めを行なうためのクラッ
ド層を少なくとも有する半導体レーザにおいて、共振器
軸方向に、前記活性層を構成する多重量子井戸構造の無
秩序化による、一定周期の屈折率ステップを具備するこ
とを特徴とする分布帰還型半導体レーザ。
(1) In a semiconductor laser having an active layer having a multiple quantum well structure and at least a cladding layer for confining light and carriers in the active layer, the multiple quantum wells constituting the active layer are arranged in the cavity axis direction. A distributed feedback semiconductor laser characterized by having a refractive index step with a constant period due to a disordered well structure.
(2)発光に与る活性層と、前記活性層に、光およびキ
ャリアの閉じ込めを行なうためのクラッド層と、多重量
子井戸構造よりなる光ガイド層を少なくとも有する多層
構造を備え、共振器軸方向に、前記光ガイド層を構成す
る多重量子井戸構造の無秩序化による、一定周期の屈折
率ステップを具備することを特徴とする分布帰還型半導
体レーザ。
(2) A multilayer structure including at least an active layer that participates in light emission, a cladding layer for confining light and carriers in the active layer, and a light guide layer consisting of a multiple quantum well structure, and The distributed feedback semiconductor laser is characterized in that it has a refractive index step with a constant period due to disordering of a multi-quantum well structure constituting the optical guide layer.
(3)発光に与る活性層と、前記活性層に、光およびキ
ャリアの閉じ込めを行なうためのクラッド層と、多重量
子井戸構造よりなる光ガイド層とを少なくとも有する多
層構造から成る活性領域と、少くとも前記光ガイド層を
有し、発光に与る活性層が存在しない多層構造から成る
分布反射領域とを具備し、前記分布反射領域にのみ、共
振器軸方向に、前記光ガイド層を構成する多重量子井戸
構造の無秩序化による、一定周期の屈折率ステップを具
備することを特徴とする分布反射型半導体レーザ。
(3) an active region having a multilayer structure including at least an active layer that participates in light emission, a cladding layer for confining light and carriers in the active layer, and a light guide layer having a multi-quantum well structure; and a distributed reflection region having a multilayer structure having at least the light guide layer and no active layer that participates in light emission, and the light guide layer is configured only in the distributed reflection region in the resonator axis direction. A distributed reflection semiconductor laser characterized by having a refractive index step with a constant period due to disordering of a multi-quantum well structure.
JP23704288A 1988-09-20 1988-09-20 Distributed feedback type semiconductor laser and distributed reflection type semiconductor laser Pending JPH0283992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23704288A JPH0283992A (en) 1988-09-20 1988-09-20 Distributed feedback type semiconductor laser and distributed reflection type semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23704288A JPH0283992A (en) 1988-09-20 1988-09-20 Distributed feedback type semiconductor laser and distributed reflection type semiconductor laser

Publications (1)

Publication Number Publication Date
JPH0283992A true JPH0283992A (en) 1990-03-26

Family

ID=17009542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23704288A Pending JPH0283992A (en) 1988-09-20 1988-09-20 Distributed feedback type semiconductor laser and distributed reflection type semiconductor laser

Country Status (1)

Country Link
JP (1) JPH0283992A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2369492A (en) * 2000-11-28 2002-05-29 Kamelian Ltd (Ga,In)(N,As) Laser structures using distributed feedback
EP1705763A2 (en) * 2005-03-24 2006-09-27 Avago Technologies Fiber IP (Singapore) Pte. Ltd. Quantum cascade laser with grating formed by a periodic variation in doping
JP2010045066A (en) * 2008-08-08 2010-02-25 Fujitsu Ltd Semiconductor laser device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2369492A (en) * 2000-11-28 2002-05-29 Kamelian Ltd (Ga,In)(N,As) Laser structures using distributed feedback
WO2002045221A3 (en) * 2000-11-28 2003-10-23 Kamelian Ltd (ga,in)(n,as) laser structures using distributed feedback
EP1705763A2 (en) * 2005-03-24 2006-09-27 Avago Technologies Fiber IP (Singapore) Pte. Ltd. Quantum cascade laser with grating formed by a periodic variation in doping
EP1705763A3 (en) * 2005-03-24 2006-10-18 Avago Technologies Fiber IP (Singapore) Pte. Ltd. Quantum cascade laser with grating formed by a periodic variation in doping
CN1874091A (en) * 2005-03-24 2006-12-06 阿瓦戈科技光纤Ip(新加坡)股份有限公司 Quantum cascade laser with grating formed by a periodic variation in doping
JP2010045066A (en) * 2008-08-08 2010-02-25 Fujitsu Ltd Semiconductor laser device

Similar Documents

Publication Publication Date Title
US5764669A (en) Semiconductor laser including disordered window regions
US5003549A (en) Semiconductor laser
US5757835A (en) Semiconductor laser device
EP0506453A1 (en) A quantum wire structure and a method for producing the same
US5737351A (en) Semiconductor laser including ridge structure extending between window regions
US5180685A (en) Method for the production of a semiconductor laser device
JPH0656906B2 (en) Semiconductor laser device
JPH0491484A (en) Manufacture of semiconductor laser device
JPH05175609A (en) Manufacture of algainp semiconductor lightemitting device
US5033816A (en) Method for making a diffraction lattice on a semiconductor material
JP4194844B2 (en) Semiconductor laser with multiple optically active regions
JP2960926B2 (en) Manufacturing method of laser diode
JPH0283992A (en) Distributed feedback type semiconductor laser and distributed reflection type semiconductor laser
US5490159A (en) Visible light semiconductor laser
JPH065986A (en) Manufacture of semiconductor laser
US6717186B2 (en) Semiconductor laser device
KR100261243B1 (en) Laser diode and its manufacturing method
KR100261248B1 (en) Laser diode and its manufacturing method
JP3022351B2 (en) Optical semiconductor device and method of manufacturing the same
JPH0388382A (en) Semiconductor laser
JPH03156989A (en) Semiconductor laser and its manufacture
JP2810518B2 (en) Semiconductor laser device and method of manufacturing the same
JPH1140885A (en) Semiconductor laser device
KR100330591B1 (en) Method of making semiconductor laser diode
JPH06350188A (en) Semiconductor laser element