JPH0282519A - Solid phase epitaxy method - Google Patents

Solid phase epitaxy method

Info

Publication number
JPH0282519A
JPH0282519A JP23410488A JP23410488A JPH0282519A JP H0282519 A JPH0282519 A JP H0282519A JP 23410488 A JP23410488 A JP 23410488A JP 23410488 A JP23410488 A JP 23410488A JP H0282519 A JPH0282519 A JP H0282519A
Authority
JP
Japan
Prior art keywords
film
energy beam
solid phase
amorphous semiconductor
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23410488A
Other languages
Japanese (ja)
Inventor
Hiroshi Hanabusa
寛 花房
Hidekane Ogata
秀謙 尾方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP23410488A priority Critical patent/JPH0282519A/en
Publication of JPH0282519A publication Critical patent/JPH0282519A/en
Pending legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To shorten treatment period by forming a reflection reducing film or a reflective film for controlling energy beam absorption on an amorphous semiconductor film and changing energy beam directions so as to increase the intensity of an energy beam. CONSTITUTION:The formation of a reflection reducing film or a reflective film allows temperature distribution to take place on an amorphous semiconductor film 3 when an energy beam is applied. A solid phase epitaxial growth goes on in the vicinity of opening parts 2a so that temperatures nearby the opening parts 2a corresponding to seeds are high and surrounding temperatures thereof are low. After that, the region of the solid growth spreads from the parts in the vicinity of the opening parts 2a to the surrounding parts thereof by increasing energy beam intensity.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、半導体膜、特にSt膜のエピタキシャル成長
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method for epitaxial growth of semiconductor films, particularly St films.

(ロ)従来の技術 絶縁層(絶縁物の基板も含む)上に単結晶Si層を形成
したものは、SOI (Silicon onInsu
lator)構造と称され、狭い領域で容易に素子分離
が行なえ、高集積化や高速化が可能なものとして知られ
ている。そして、従来のSi基板上に素子が作製される
半導体集積回路(rc)に比べて、特性向上が図れるこ
とから盛んに研究開発が行なわれている。
(b) Conventional technology A method in which a single crystal Si layer is formed on an insulating layer (including an insulating substrate) is called SOI (Silicon on Insulator).
It is known as a structure that allows easy isolation of elements in a narrow area and allows for higher integration and higher speed. Further, research and development are being actively conducted on this semiconductor integrated circuit (RC) because its characteristics can be improved compared to conventional semiconductor integrated circuits (RC) in which elements are fabricated on a Si substrate.

絶縁層上に単結晶Si膜を形成させるものとして、固相
エピタキシャル成長方法があり、これは単結晶Si基板
上に、Si基板面の一部をシードとして露出させて絶縁
膜を形成し、シードと絶縁膜上に非晶jiSi(以下a
−5iと称す)膜を堆積し、600℃以下の低温でアニ
ールすることで、横方向に固相成長させて、a−3i膜
を単結晶化させるものである。
There is a solid-phase epitaxial growth method to form a single crystal Si film on an insulating layer.This method forms an insulating film on a single crystal Si substrate by exposing a part of the Si substrate surface as a seed. Amorphous jiSi (hereinafter a) is deposited on the insulating film.
The a-3i film is deposited and annealed at a low temperature of 600° C. or lower to cause solid-phase growth in the lateral direction, thereby converting the a-3i film into a single crystal.

固相エピタキシャル成長のアニールにレーサヲ用いるも
のがあるが、大面積を一度にレーザ照射してアニールす
ると、シードの結晶方位を継承しない粒界が発生して横
方向のエピタキシャル成長距離が伸びず、小面積のエピ
タキシャル領域しか得られなかった。
Some methods use a laser to anneal solid-phase epitaxial growth, but when a large area is irradiated and annealed at once, grain boundaries that do not inherit the crystal orientation of the seed are generated, and the lateral epitaxial growth distance is not extended. Only epitaxial regions were obtained.

そこで、特開昭62−257718号公報では、レーザ
の照射領域を、まず、シードを含む小領域にしてアニー
ルを行い、次にその小領域の周辺部分に照射領域を広げ
てアニールを行っている。即ち、シードから小領域ごと
にアニールを行ってエピタキシャル成長をさせ、大面積
のエピタキシャル領域を得ている。
Therefore, in Japanese Patent Application Laid-Open No. 62-257718, the laser irradiation area is first annealed in a small area including the seed, and then the irradiation area is expanded to the peripheral part of the small area and annealing is performed. . That is, epitaxial growth is performed by annealing each small region from a seed to obtain a large-area epitaxial region.

C′l  発明が解決しようとする課題しかし、上述の
様に、エピタキシャル成長させる領域を小領域に区切り
、アニール領域を順次広げていく様レーザの照射領域を
移動させるものでは、基板1枚当りの処理時間が非常に
長くなってしまう。また、レーザの照射領域を規制する
のにレチクルを使うので、装置が複雑となりコストも高
くなる。
C'l Problems to be Solved by the Invention However, as described above, in a method in which the region to be epitaxially grown is divided into small regions and the laser irradiation region is moved so as to gradually expand the annealing region, the processing per substrate is It will take a very long time. Furthermore, since a reticle is used to regulate the laser irradiation area, the apparatus becomes complicated and costs increase.

に)課題を解決するための手段 本発明は単結晶半導体基台上に開孔部を有する絶縁膜を
形成し、前記開孔部から露出する単結晶半導体基台部分
及び前記絶縁繰上に非晶質半導体膜を形成し、該非晶質
半導体膜にエネルギービームを照射して該非晶質半導体
膜を単結晶化させる固相エピタキシャル成長方法におい
て、非晶質半導体膜上にエネルギービームの吸収を制御
するための反射防止膜または反射膜を形成し、エネルギ
ービームの強度を大きくする方向に変化させるものであ
る。
B) Means for Solving the Problems The present invention forms an insulating film having an opening on a single crystal semiconductor base, and forms an amorphous film on the single crystal semiconductor base portion exposed from the opening and on the insulating layer. In a solid phase epitaxial growth method in which a crystalline semiconductor film is formed and the amorphous semiconductor film is irradiated with an energy beam to make the amorphous semiconductor film into a single crystal, in order to control the absorption of the energy beam on the amorphous semiconductor film. An anti-reflection film or a reflective film is formed to change the intensity of the energy beam in the direction of increasing it.

(ホ)作用 非晶質半導体股上に反射防止膜または反射膜を形成する
ことで、エネルギービームを照射したときの非晶質半導
体膜に温度分布を発生させることができる。そこで、シ
ードに相等する開孔部付近の温度を高く、その周囲温度
を低くする様にして、開孔部付近での固相エピタキシャ
ル成長を進行させ、その後エネルギービームの強度を大
きくすることで、固相成長の領域が開孔部付近からその
周囲へと広がる。
(E) Function By forming an antireflection film or a reflective film on the amorphous semiconductor film, a temperature distribution can be generated in the amorphous semiconductor film when irradiated with an energy beam. Therefore, by increasing the temperature near the opening, which is equivalent to the seed, and lowering the surrounding temperature, solid phase epitaxial growth is promoted near the opening, and then the intensity of the energy beam is increased. The region of phase growth spreads from the vicinity of the opening to its surroundings.

(へ)実施例 第1図に沿って本発明の一実施例を説明する。(f) Example An embodiment of the present invention will be described along with FIG.

尚、本実施例では単結晶Si基台として、単結晶Si基
板を用いているが、基板上に形成された単結晶Si膜を
用いても良い。
In this embodiment, a single-crystal Si substrate is used as the single-crystal Si base, but a single-crystal Si film formed on the substrate may also be used.

(1;は000面を主面とする単結晶Si基台としての
単結晶Si基板で、その表面に絶縁膜として膜厚0.2
μmのS i O2M(21を減圧CVD(化学気相成
長)法により堆積させる。そしてフォトリングラフィ技
術により、5102膜(2)の一部に開孔部(2a)を
形成し、単結晶Si基板(1)の表面を露出させる(第
1図A)。この開孔部(2a)から露出している単結晶
Si基板+11表面がシード部(1a)となる。開孔部
(2a)即らシード部(1a)の幅は例えば10μmと
し、S i O2M(21の開孔部から開孔部までの幅
は例えば100μmとする。
(1; is a single-crystal Si substrate as a single-crystal Si base with the 000 plane as the main surface, and an insulating film with a thickness of 0.2
μm of SiO2M (21) is deposited by low pressure CVD (chemical vapor deposition). Then, by photolithography technology, an opening (2a) is formed in a part of the 5102 film (2), and single-crystal SiO2M (21) is deposited. The surface of the substrate (1) is exposed (FIG. 1A). The surface of the single crystal Si substrate +11 exposed through the opening (2a) becomes the seed portion (1a).The opening (2a) immediately The width of the seed portion (1a) is, for example, 10 μm, and the width from hole to hole of S i O2M (21) is, for example, 100 μm.

仄に5i02膜(2)やシード部(1a)の表面上全面
1ca−5i膜ts+ヲ減圧CVD法やUHV蒸着法で
おおよそCL3μm堆積する(第1図B)。
The 5i02 film (2) and the 1ca-5i film ts+ are deposited on the entire surface of the seed portion (1a) to a thickness of about CL3 μm by low pressure CVD or UHV evaporation (FIG. 1B).

更にa−8i膜(3)上ζこ反射防止膜として約50O
Aの厚さのSiN膜(4)を減圧CVD法により堆積す
る。そして、第1図Cに示す様に、SiN膜の幅方向に
おけるシード部(1a)上とその横(左右夫々)5μm
程以外のところを選択的にエツチング除去する。
Furthermore, about 50O as an anti-reflection film on the a-8i film (3).
A SiN film (4) having a thickness of A is deposited by low pressure CVD. Then, as shown in FIG.
Selective etching removes areas outside the area.

次にこの基板を図示しないレーザアニール装置に設置し
、表面全面(a−SiM(31及びSiN膜(4;上)
に、エネルギービームとして例えば、波長515nmの
Ar  イオンレーザ光を照射する。
Next, this substrate was placed in a laser annealing device (not shown), and the entire surface (a-SiM (31) and SiN film (4; top)
Then, for example, Ar ion laser light with a wavelength of 515 nm is irradiated as an energy beam.

すると、S i NM(4)のレーザ光の吸収が大きい
ため、SiN膜(4)を形成しである部分のa−3i膜
(3)の温度は他の部分よりも高くなる。すなわち、シ
ード部(1a)上のa−3illi部分はS i02膜
(21上のa−3i膜部分よりも高温となる。
Then, since the absorption of laser light by Si NM (4) is large, the temperature of the a-3i film (3) in a certain part where the SiN film (4) is formed becomes higher than in other parts. That is, the a-3illi portion on the seed portion (1a) becomes hotter than the a-3i film portion on the Si02 film (21).

例えば、レーザ光のエネルギー強度を150mJ/iと
して照射すると、シード部(1a)上のa−3i膜は5
00乃至550℃に加熱昇温され、シード部(1a)の
結晶方位を継承した固相エピタキシャル成長が5A/s
ecの速さで進行する。このとき、SiN膜(4)で覆
われていないa−Si膜部分は350℃程反の温度にし
かならず、結晶化せず非晶質のまま保持される(第1図
D)。従って多結晶となる亜粒界も発生しない。
For example, when irradiating the laser beam with an energy intensity of 150 mJ/i, the a-3i film on the seed part (1a) will be
The temperature is raised from 00 to 550°C, and solid phase epitaxial growth inherits the crystal orientation of the seed part (1a) at 5A/s.
Proceed at the speed of ec. At this time, the portion of the a-Si film that is not covered with the SiN film (4) reaches a temperature of only about 350 DEG C., and remains amorphous without crystallizing (FIG. 1D). Therefore, subgrain boundaries that become polycrystalline do not occur.

シード部(1a)上のa−5i膜部分の固相エピタキシ
ャル成長が終了して単結晶5i(31となったら、レー
ザ光の強度を徐々に増加する(〜250品5x/dぐら
いまで)。
When the solid phase epitaxial growth of the a-5i film portion on the seed part (1a) is completed and the single crystal 5i (31) is reached, the intensity of the laser beam is gradually increased (up to about 250 products 5x/d).

この場合、a−3i膜における500℃の部分がシード
部(1a)付近からその周囲の低温部に向かって移動す
る様に徐々にレーザ光の強度を増し、シード部(1a)
上での固相エピタキシャル成長速度5A/secよりも
遅い、例えばI A/Secぐらいの速度でa−3i膜
の固相エピタキシャル成長を進行させる(第1図E)。
In this case, the intensity of the laser beam is gradually increased so that the 500°C part of the a-3i film moves from near the seed part (1a) to the surrounding low temperature part, and
The solid phase epitaxial growth of the a-3i film is performed at a rate slower than the above solid phase epitaxial growth rate of 5 A/sec, for example, about IA/Sec (FIG. 1E).

5これにより、シード部(1a)上でa−5i膜が固相
エピタキシャル成長した単結晶5i(31をシードとし
て(結晶方位を継承して)シード部(1a)周辺へと固
相エピタキシャル成長が進み、a−3i膜(3)全体が
単結晶Si膜(3)となる(第1図F)。
5 As a result, solid phase epitaxial growth of the a-5i film on the seed part (1a) proceeds around the seed part (1a) using the single crystal 5i (31 as a seed (inheriting the crystal orientation)), The entire a-3i film (3) becomes a single crystal Si film (3) (FIG. 1F).

尚、レーザ光の強度を増していくと、500℃の部分は
シード部(1a)付近から徐々にその周囲へと移動して
いき、シード部(1a)付近では更Iこ温度が上がるが
、このシード部(1a)付近のa −3i膜は固相成長
して単結晶となっているので、温度が上がっても溶融せ
ず、固相エピタキシャル成長に悪影響を及ぼすことはな
いっ 本実施例に詔いて、反射防止膜であるSiN膜はa−3
iM上に部分的に形成されたが、第2図に示す様にシー
ド部(1a)上のa−3i膜(3)上では厚く、その他
の部分では簿い、S i NjfA(51を形成しても
良く、また、第う図に示す様に、レーザ光の吸収の良い
反射防止膜ではなく、レーザ光の吸収の悪い反射膜(6
)を、反射防止膜の場合と逆の存在になる様に形成して
、レーザアニールによる固相エピタキシャル成長を行っ
ても良い。
As the intensity of the laser beam increases, the 500°C portion gradually moves from the vicinity of the seed part (1a) to its surroundings, and the temperature increases further in the vicinity of the seed part (1a). Since the a-3i film near the seed part (1a) has grown into a single crystal through solid phase growth, it will not melt even if the temperature rises, and will not have a negative effect on solid phase epitaxial growth. The SiN film, which is an anti-reflection film, is a-3.
Although it was partially formed on the iM, as shown in Fig. 2, it was thick on the a-3i film (3) on the seed part (1a) and thin in other parts, and formed S i NjfA (51). Also, as shown in Figure 6, instead of using an anti-reflection film that absorbs laser light well, a reflective film (6) that has poor absorption of laser light may be used.
) may be formed so as to have an existence opposite to that of the antireflection film, and solid phase epitaxial growth may be performed by laser annealing.

(ト)発明の効果 本発明は以上の説明から明らかな如く、反射防止膜また
は反射膜をa−3i膜上に形成して、レーザ光を照射す
るので、a−8tMに高温部と低温部の温度分布が発生
する。シード部付近のa −3i膜は固相成長により単
結晶化するが、その周囲は温度が低く結晶化せず、亜粒
界も発生しない。
(G) Effects of the Invention As is clear from the above description, the present invention forms an anti-reflection film or a reflective film on the a-3i film and irradiates it with laser light, so that the a-8tM has a high temperature area and a low temperature area. temperature distribution occurs. The a-3i film near the seed portion becomes single crystallized by solid phase growth, but the temperature around it is low and crystallization does not occur, and no subgrain boundaries occur.

そして、レーザ光の強度を増すことで、シード部の周囲
へと固相エピタキシャル成長する領域が広第1図 その照射領域を変更することはしないので、アニール装
置として簡単なものでよく、コストも低く抑えられる。
By increasing the intensity of the laser beam, the area for solid-phase epitaxial growth around the seed part is expanded (Figure 1).Since the irradiation area is not changed, a simple annealing device is sufficient and the cost is low. It can be suppressed.

また、レーザ光を走置せずに基板全り 面にあ2て゛rアニール行うので、処理時間の短縮化が
できる。
Furthermore, since the entire surface of the substrate is annealed without applying a laser beam, the processing time can be shortened.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の一実施例の工程説明図、第2図及
び第3図は夫々異なる実施例の説明図である。 (1)・・・単結晶Si基板(単結晶半導体基台)、(
1a)・−・シード部、t2)−3iOzfiA(絶縁
膜)(2a)・・・開孔部、(3)・・・a−3i膜(
非晶質半導体膜>、(3)・・・単結晶Si4摸。
FIG. 1 is a process explanatory diagram of one embodiment of the method of the present invention, and FIGS. 2 and 3 are explanatory diagrams of different embodiments. (1)...Single crystal Si substrate (single crystal semiconductor base), (
1a)...Seed part, t2)-3iOzfiA (insulating film) (2a)...Opening part, (3)...a-3i film (
Amorphous semiconductor film>, (3)...Single crystal Si4 sample.

Claims (1)

【特許請求の範囲】 1)単結晶半導体基台上に開孔部を有する絶縁膜を形成
し、前記開孔部から露出する単結晶半導体基台部分及び
前記絶縁膜上に非晶質半導体膜を形成し、該非晶質半導
体膜にエネルギービームを照射して該非晶質半導体膜を
単結晶化させる固相エピタキシャル成長方法において、 非晶質半導体膜上にエネルギービームの吸収を制御する
ための反射防止膜または反射膜を形成し、エネルギービ
ームの強度を大きくする方向に変化させて、前記非晶質
半導体膜の単結晶化する領域を広げることを特徴とする
固相エピタキシャル成長方法。
[Scope of Claims] 1) An insulating film having an opening is formed on a single crystal semiconductor base, and an amorphous semiconductor film is formed on the single crystal semiconductor base portion exposed from the opening and on the insulating film. In a solid phase epitaxial growth method in which an energy beam is formed on the amorphous semiconductor film and the amorphous semiconductor film is made into a single crystal, anti-reflection is provided on the amorphous semiconductor film to control absorption of the energy beam. A solid phase epitaxial growth method characterized by forming a film or a reflective film and changing the intensity of an energy beam in a direction of increasing it to widen a region where the amorphous semiconductor film is made into a single crystal.
JP23410488A 1988-09-19 1988-09-19 Solid phase epitaxy method Pending JPH0282519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23410488A JPH0282519A (en) 1988-09-19 1988-09-19 Solid phase epitaxy method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23410488A JPH0282519A (en) 1988-09-19 1988-09-19 Solid phase epitaxy method

Publications (1)

Publication Number Publication Date
JPH0282519A true JPH0282519A (en) 1990-03-23

Family

ID=16965695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23410488A Pending JPH0282519A (en) 1988-09-19 1988-09-19 Solid phase epitaxy method

Country Status (1)

Country Link
JP (1) JPH0282519A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007001066A1 (en) 2005-06-27 2007-01-04 Daiichi Sankyo Company, Limited Pharmaceutical preparation containing an angiotensin ii receptor antagonist and a calcium channel blocker
WO2008001734A1 (en) 2006-06-27 2008-01-03 Daiichi Sankyo Company, Limited Compressed preparation
WO2009113420A1 (en) 2008-03-13 2009-09-17 第一三共株式会社 Improvement of dissolvability of preparation containing olmesartan medoxomil
WO2010126013A1 (en) 2009-04-28 2010-11-04 第一三共株式会社 Method for producing olmesartan medoxomil
WO2010126014A1 (en) 2009-04-28 2010-11-04 第一三共株式会社 Novel solvate crystals

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007001066A1 (en) 2005-06-27 2007-01-04 Daiichi Sankyo Company, Limited Pharmaceutical preparation containing an angiotensin ii receptor antagonist and a calcium channel blocker
WO2008001734A1 (en) 2006-06-27 2008-01-03 Daiichi Sankyo Company, Limited Compressed preparation
WO2009113420A1 (en) 2008-03-13 2009-09-17 第一三共株式会社 Improvement of dissolvability of preparation containing olmesartan medoxomil
WO2010126013A1 (en) 2009-04-28 2010-11-04 第一三共株式会社 Method for producing olmesartan medoxomil
WO2010126014A1 (en) 2009-04-28 2010-11-04 第一三共株式会社 Novel solvate crystals

Similar Documents

Publication Publication Date Title
JPH06177034A (en) Semiconductor single crystal growth method
JPS60245124A (en) Manufacture of semiconductor device
JPH0582442A (en) Manufacture of polycrystalline semiconductor thin film
JPH0282519A (en) Solid phase epitaxy method
US4737233A (en) Method for making semiconductor crystal films
JPS62132311A (en) Recrystallizing method for conductor film
JPH02283036A (en) Manufacture of semiconductor device
JPS5939790A (en) Production of single crystal
KR100250182B1 (en) Method of forming semiconductor crystal and semiconductor device
JPH0917729A (en) Manufacture of semiconductor device
JP4316149B2 (en) Thin film transistor manufacturing method
JPH02275641A (en) Manufacture of semiconductor device
JPH0883766A (en) Method for crystallizing amorphous silicon and manufacture of thin film transistor
JPH0629212A (en) Manufacture of semiconductor device
JP3210313B2 (en) Method for improving characteristics of polycrystalline silicon thin film
JPS5939791A (en) Production of single crystal
JPH08293464A (en) Manufacture of semiconductor substrate and semiconductor device
JPS5893224A (en) Preparation of semiconductor single crystal film
JP2857480B2 (en) Method for manufacturing semiconductor film
JPH07142405A (en) Polycrstalline semiconductor film and deposition thereof
JPH02226718A (en) Production of unsingle crystal semiconductor
JPH01200673A (en) Manufacture of semiconductor device
JPS62219510A (en) Formation of single crystal island region
JPH0453124A (en) Manufacture and apparatus for single-crystal silicon thin film
JPH03284831A (en) Forming method for semiconductor thin-film