JPH027998B2 - - Google Patents

Info

Publication number
JPH027998B2
JPH027998B2 JP260481A JP260481A JPH027998B2 JP H027998 B2 JPH027998 B2 JP H027998B2 JP 260481 A JP260481 A JP 260481A JP 260481 A JP260481 A JP 260481A JP H027998 B2 JPH027998 B2 JP H027998B2
Authority
JP
Japan
Prior art keywords
ethylene
molecular weight
per hour
gas
propylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP260481A
Other languages
Japanese (ja)
Other versions
JPS57117595A (en
Inventor
Tatsuo Kinoshita
Hidekuni Oda
Akyoshi Shimizu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP260481A priority Critical patent/JPS57117595A/en
Priority to DE8282300109T priority patent/DE3270823D1/en
Priority to EP82300109A priority patent/EP0060609B2/en
Priority to CA000393987A priority patent/CA1169102A/en
Publication of JPS57117595A publication Critical patent/JPS57117595A/en
Publication of JPH027998B2 publication Critical patent/JPH027998B2/ja
Priority to US08/091,733 priority patent/US6153807A/en
Priority to US08/098,236 priority patent/US5955639A/en
Priority to US08/449,282 priority patent/US5767331A/en
Granted legal-status Critical Current

Links

Landscapes

  • Lubricants (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、優れた特性を有する合成潤滑油に関
する。 特公昭47―21650号公報によれば、特定のエチ
レン含有量の油状エチレン・プロピレン共重合体
が、粘度指数が高く、酸化安定性、せん断安定
性、熱安定性が優れ、しかも流動点が低い合成潤
滑油となり得ることが記載されている。しかしな
がらここに具体的に示されている合成潤滑油は、
粘度指数、流動点及び引火点などの諸性質を考慮
するときには、未だ充分にバランスのとれた性能
を有しているとは言えない。例えば諸公報に示さ
れている合成潤滑油は、蒸留分別しないものは、
粘度指数は高いが引火点が低くしかも流動点が高
い。例えば、このために、ギアオイルの如き高負
荷用として有用な100℃の粘度が60cst以上のもの
は、流動点が高過ぎるために実用に供し得ない。
該公報では分別蒸留の可能性を示唆しており、こ
れによつて狭い沸点範囲のものを得ると流動点、
引火点に関する上述の欠点を解消させることが可
能であるが、この場合には比較的粘度指数の小さ
いものしか得られそうもないこともまた該公報の
記載からうかがえる。 本発明は、同一粘度のもので比較した場合、粘
度指数、引火点および流動点が共に良好な合成潤
滑油を提供するものである。本発明の他の目的
は、剪断安定性、酸化安定性、熱安定性が優れ、
油膜強度大なる合成潤滑油を提供することにあ
る。本発明の特別な態様によれば、実用に供しう
る高負荷用高粘度銘柄の合成潤滑油を提供するこ
とが可能である。本発明の他の特別な態様によれ
ば、低温度における粘度が相対的に小さい合成潤
滑油を提供することが可能である。すなわち本発
明は、エチレン含有量30ないし70モル%、数平均
分子量300ないし2000、Q値(重量平均分子量/
数平均分子量)2.5以下であつて統計的な分子量
分布を有し、流動点が−27.5℃以下でありかつ粘
度指数が140以上であるエチレン・α―オレフイ
ン共重合合成潤滑油に関する。 本発明の合成潤滑油は、エチレン30ないし70モ
ル%、好ましくは40ないし60モル%のエチレン・
α―オレフイン共重合体である。エチレン含有量
が30モル%より少ないものは粘度指数が小さいた
め好ましくなく、またエチレン含有量が70モル%
より多いものは低温度における流動性が劣るので
好ましくない。 共重合成分であるα―オレフインとしては、プ
ロピレン、1―ブテン、1―ペンテン、1―ヘキ
セン、1―オクテン、1―デセン、1―ドデセ
ン、1―テトラデセン、1―ヘキサデセン、1―
オクタデセン、4―メチル―1―ペンテンなどの
炭素数3ないし20のα―オレフインであり、これ
らは2種以上で構成されていてもよい。これらの
中では、とくに炭素数3ないし14のα―オレフイ
ンが好ましく、更に炭素数8ないし14のα―オレ
フインを構成成分とするエチレン・α―オレフイ
ン共重合油は低温粘度特性が優れている。 エチレン・α―オレフイン共重合体の数平均分
子量は、300ないし2000、好ましくは500ないし
1800である。すなわち数平均分子量が300より小
さいものは引火点が低いので好適とは言えず、ま
た数平均分子量が2000を越えるものは流動性が悪
く実用的でない。一方、Q値(重量平均分子量/
数平均分子量)は好ましくは2.5以下であつて、
しかも統計的な分子量分布を示している。Q値が
前記範囲より大きいものは、同一の分子量のもの
で比較した場合には、引火点が低くしかも流動点
が高いという欠点を有している。またQ値が小さ
いにもかかわらず、粘度指数が良好であるために
は、統計的な分子量分布を示すことが肝要であ
る。例えばQ値の大きい共重合体を精密蒸留し、
Q値が2.5以下であつてしかも分子量分布曲線の
低分子側及び高分子側がほぼ垂直になつているよ
うなものは粘度指数が小さく好ましくない。 なおエチレン・α―オレフイン共重合体中のエ
チレン含有量は13C―NMR分析により測定され
る。その数平均分子量は、分子量既知の標準物質
(単分散ポリスチレン及びスクアラン)を用いて
予め較正されたGPC(Gel Permeation
Chromatograph)によつて測定される。またQ
値は、分子量既知の標準物質(単分散ポリスチレ
ンMw500〜840×104、16個)を使用してGPC
(Gel Permeation Chromatograph)カウントを
測定し、分子量とEV(Elution Volume)の相関
図(較正曲線)を作成しておく。そしてGPC法
により試料のGPCパターンをとり、分子量を較
正曲線から求めた後、Q値を計算する。さらに統
計的な分子量分布とは、重合によつて直接得られ
る共重合体が有するような対数正規分布又はこれ
に近い分布を示すもので、実質的量、例えば10重
量%以上の低分子量成分(及び/又は高分子量成
分)のカツトをしていないものをいう。 本発明の合成潤滑油は、流動点が−27.5℃以下
であり、粘度指数が140以上、好ましくは160以上
を示す。又、100℃における動粘度は通常4ない
し200cstの範囲にある。とくに100℃における動
粘度が60cst以上のものでも低温における流動性
が良好であり、高負荷用潤滑油として好適に使用
することができる。 以上の如き諸性質を有する合成潤滑油を得るた
めの一方法として、水素の共存下、可溶性バナジ
ウム化合物と有機アルミニウム化合物とから形成
される触媒を用いて、液相中でエチレンとα―オ
レフインを連続的に共重合させ、その際重合系に
おけるバナジウム化合物濃度を液相1当り0.3
ミリモル以上とし、かつ重合系に供給するバナジ
ウム化合物は、重合系のバナジウム化合物濃度の
5倍以下の濃度となるように重合媒体に希釈して
供給する方法がある。 バナジウム化合物としては、VOCl3、VO
(OC2H5)Cl2、VO(OC2H51.5Cl1.5、VCl4の如
き、一般式VO(OR)oX3-o又はVX4(Rは脂肪族
炭化水素基、Xはハロゲン、O≦n≦3)で示さ
れる化合物が使用できる。また有機アルミニウム
化合物としては、(C2H53Al、(C2H52AlCl、
(C2H51.5AlCl1.5、(isoC4H91.5AlCl1.5、(C2H5

AlCl2、これらの混合物の如き一般式R1 nAlX1 3-n
(ここにR1は脂肪族炭化水素基、X1はハロゲン、
1≦m≦3)で示される化合物が使用できる。 重合媒体としては、ペンタン、ヘキサン、ヘプ
タン、灯油、シクロヘキサン、トルエンのような
炭化水素類が使用できる。液相中のバナジウム化
合物濃度は、0.3ミリモル/以上、好ましくは
0.5ないし20ミリモル/、又、有機アルミニウ
ム化合物濃度は、Al/V(原子比)が2ないし
50、とくに3ないし20の範囲となるようにすれば
よい。 共重合温度は0ないし100℃、とくに20ないし
80℃、重合圧力は0ないし50Kg/cm2(ゲージ化)、
とくに0ないし30Kg/cm2(ゲージ化)、平均滞留
時間は5ないし300分、とくに10ないし250分とす
るような重合条件を採用すればよい。 上記の如き共重合体の製造方法の詳細について
は、この出願と同日付の特許出願で明らかにして
いる。 本発明の合成潤滑油には、酸化防止剤、極圧
剤、清浄分散剤等、又特に所望の場合、流動性向
上剤、粘度指数向上剤などの添加剤を配合するこ
とができる。また他の潤滑油と混合使用すること
もできる。 次に実施例を示す。 尚、実施例、比較例の結果は第1表にまとめて
示した。 実施例 1 撹拌翼を備えた4ガラス製反応器を用い、連
続的にエチレン・プロピレン共重合体を合成し
た。すなわち、反応器上部からヘキサンを毎時2
、三塩化バナジルのヘキサン溶液(16ミリモ
ル/)を毎時1、エチルアルミニウムセスキ
クロリドのヘキサン溶液(96ミリモル/)を毎
時1をそれぞれ反応器上部から反応器中へ連続
的に供給し、一方、反応器下部から反応器中の反
応液が常に2になるように連続的に反応液を抜
き出す(反応器中の三塩化バナジル濃度:4ミリ
モル/)又、反応器上部からエチレン、プロピ
レンおよび水素の混合ガス(エチレン毎時90、
プロピレン毎時90、水素毎時120)を供給す
る。反応温度は、反応器外部にとりつけられたジ
ヤケツトに温水を循環させることにより35℃に調
節した。反応器下部から抜き出した反応液中に少
量のメタノールを添加して反応を停止させたのち
反応液を3回水洗した。そののち30mmHgの減圧
でポツト温度100℃の蒸留により溶媒ヘキサンを
除き製品油とした。 実施例 2 実施例1でエチレンガスを毎時70、プロピレ
ンガスを毎時70、水素ガスを毎時160供給し
た他は同様に行つた。 実施例 3 実施例1でエチレンガスを毎時53、プロピレ
ンガスを毎時52、水素ガスを毎時195供給し
た他は同様に行つた。 実施例 4 実施例1でエチレンガスを毎時50、プロピレ
ンガスを毎時48、水素ガスを毎時202供給し
た他は同様に行つた。 実施例 5 実施例1でエチレンガスを毎時46、プロピレ
ンガスを毎時44、水素ガスを毎時210供給し
た他は同様に行つた。 実施例 6 実施例1でエチレンガスを毎時35、プロピレ
ンガスを毎時55、水素ガスを毎時210供給し
た他は同様に行つた。 実施例 7 実施例1でエチレンガスを毎時55、プロピレ
ンガスを毎時35、水素ガスを毎時210供給し
た他は同様に行つた。 実施例 8 実施例1でエチレンガスを毎時30、水素ガス
を毎時180供給し、プロピレンガスは供給せず、
代りに1―ヘキセンのヘキサン溶液(340g/)
を毎時1、溶媒ヘキサンを毎時1供給した他
は同様に行つた。 実施例 9 実施例1でエチレンガスを毎時10、水素ガス
を毎時270供給し、プロピレンガスは供給せず、
代りに1―デセンのn―デカン溶液(0.5/
―n―デカン)を毎時1、溶媒ヘキサンの代り
にn―デカンを毎時1供給し、三塩化バナジル
およびエチルアルミニウムセスキクロリドはn―
デカン溶液として供給し、反応温度を50℃に調節
した他は同様に行つた。 比較例 1 撹拌翼を備えた2ガラス製反応器を用い、バ
ツチ方式でエチレンプロピレン共重合体を合成し
た。すなわち、反応器にエチルアルミニウムセス
キクロリドのヘキサン溶液(24ミリモル/0.75
)を調製し、反応器上部から滴下ロートにより
三塩化バナジルのヘキサン溶液(4ミリモル/
0.25)を滴下する。同時にエチレン、プロピレ
ン、水素混合ガス(エチレン毎時50、プロピレ
ン毎時62、水素毎時188)を供給し反応を開
始する。反応温度は氷水浴及び温水浴により35℃
に調節する。反応開始30分後に反応器上部より少
量のメタノールを添加し、反応を停止させたのち
実施例1と同様の後処理を行つた。反応器下部か
ら抜き出した反応液中に少量のメタノールを添加
して反応を停止させたのち反応液を3回水洗し
た。そののち30mmHgの減圧で、ポツト温度100℃
の蒸留により溶媒ヘキサンを除き製品油とした。 比較例 2 比較例1の製品油を精留塔を用い、0.06mmHg
減圧下、塔頂温度160℃から280℃までの留分を採
取した。製品油のGPCチヤートは非統計的な分
布(分子量分布)即ち吊り鐘型の分布を示した。 比較例 3 実施例1でエチレンガスを毎時18、プロピレ
ンガスを毎時22、水素ガスを毎時260とした
他は同様に行つた。 比較例 4 実施例1でエチレンガスを毎時150、プロピ
レンガスを毎時105、水素ガスを毎時90とし
た他は同様に行つた。 比較例 5 実施例1でエチレンガスを毎時73、プロピレ
ンガスを毎時32、水素ガスを毎時195とした
他は同様に行つた。 比較例 6 実施例1でエチレンガスを毎時5、プロピレ
ンガスを毎時100、水素ガスを毎時195とした
他は同様に行つた。 比較例 7 実施例5で得られたエチレン・プロピレン共重
合体(第1表)をさらに0.04mmHgの減圧下で150
度で蒸留することにより、軽留分27.5重量%を留
出させた。この蒸留で得られた残留分は統計的な
分子分布に欠除していた。この残留分の合成潤滑
油としての性能を第2表に示した。 比較例 8 比較例7で得られた残留分をさらに0.04mmHg
の減圧下で蒸留を行い、沸点が150〜290℃の留分
を留出させた。この留出分は実施例5で得られた
エチレン・プロピレン共重合体の42.1重量%に相
当し、この蒸留の結果得られた缶残留分は同様に
30.4重量%に相当した。沸点が150〜290℃/0.04
mmHgの上記留出分は統計的な分子量分布に欠除
していた。該留出分の合成潤滑油としての性能を
第2表に示した。 比較例 9 実施例5で得られたエチレン・プロピレン共重
合体(第1表)を0.04mmHgの減圧下で蒸留し、
沸点が290℃までの留出分を完全に回収した。こ
の留出液は前記エチレン・プロピレン共重合体に
対して69.6重量%に相当し、残留液は30.4重量%
に相当した。該留出液は統計的な分子量分布に欠
除しており、その合成潤滑油としての性能を第2
表に示した。 比較例 10 撹拌翼を備えた2ガラス製反応器を行い、バ
ツチ方式でエチレンプロピレン共重合体を合成し
た。すなわち、反応器にエチルアルミニウムセス
キクロリドのヘキサン溶液(10ミリモル/0.75
)を調製し、反応器上部から滴下ロートにより
四塩化チタンのヘキサン溶液(10ミリモル/0.25
)を滴下する。同時にエチレン、プロピレン、
水素混合ガス(エチレン毎時25、プロピレン毎
時25、水素毎時50)を供給し反応を開始す
る。反応温度は氷水浴及び温水浴により35℃に調
節する。反応開始120分後に反応器上部より少量
のメタノールを添加し、反応を停止させたのち実
施例1と同様の後処理を行い、エチレン組成53モ
ル%の黄色白濁液11.6gを得た。結果を第2表に
示した。
The present invention relates to synthetic lubricating oils with superior properties. According to Japanese Patent Publication No. 47-21650, an oily ethylene/propylene copolymer with a specific ethylene content has a high viscosity index, excellent oxidation stability, shear stability, and thermal stability, and has a low pour point. It is stated that it can be used as a synthetic lubricating oil. However, the synthetic lubricants specifically shown here are
When considering various properties such as viscosity index, pour point, and flash point, it cannot be said that the performance is sufficiently balanced. For example, synthetic lubricating oils shown in various publications that are not fractionated by distillation are
It has a high viscosity index, low flash point, and high pour point. For example, for this reason, oils with a viscosity of 60 cst or more at 100°C, which are useful for high-load applications such as gear oils, cannot be put to practical use because their pour points are too high.
The publication suggests the possibility of fractional distillation, and if a substance with a narrow boiling point range is obtained by this, the pour point,
Although it is possible to overcome the above-mentioned drawbacks regarding the flash point, it is also clear from the description in the publication that in this case it is unlikely that only a product with a relatively small viscosity index will be obtained. The present invention provides synthetic lubricating oils that have good viscosity index, flash point, and pour point when compared with oils of the same viscosity. Another object of the present invention is to have excellent shear stability, oxidation stability, and thermal stability;
The purpose of the present invention is to provide a synthetic lubricating oil with a high oil film strength. According to a special aspect of the present invention, it is possible to provide a high-viscosity synthetic lubricating oil for high loads that can be put to practical use. According to another particular aspect of the invention, it is possible to provide a synthetic lubricating oil with a relatively low viscosity at low temperatures. That is, the present invention has an ethylene content of 30 to 70 mol%, a number average molecular weight of 300 to 2000, and a Q value (weight average molecular weight/
The present invention relates to an ethylene/α-olefin copolymer synthetic lubricating oil having a number average molecular weight (number average molecular weight) of 2.5 or less, a statistical molecular weight distribution, a pour point of -27.5°C or less, and a viscosity index of 140 or more. The synthetic lubricating oil of the present invention contains 30 to 70 mol% ethylene, preferably 40 to 60 mol% ethylene.
It is an α-olefin copolymer. Those with an ethylene content of less than 30 mol% are unfavorable because of their low viscosity index, and those with an ethylene content of 70 mol%
A larger amount is not preferable because fluidity at low temperatures is poor. The α-olefin which is a copolymerization component includes propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-
These are α-olefins having 3 to 20 carbon atoms such as octadecene and 4-methyl-1-pentene, and these may be composed of two or more types. Among these, α-olefins having 3 to 14 carbon atoms are particularly preferred, and ethylene/α-olefin copolymer oils containing α-olefins having 8 to 14 carbon atoms as a constituent have excellent low-temperature viscosity characteristics. The number average molecular weight of the ethylene/α-olefin copolymer is 300 to 2000, preferably 500 to 2000.
It is 1800. That is, those with a number average molecular weight of less than 300 have a low flash point and are therefore not suitable, and those with a number average molecular weight of more than 2,000 have poor fluidity and are not practical. On the other hand, Q value (weight average molecular weight/
number average molecular weight) is preferably 2.5 or less,
Furthermore, it shows a statistical molecular weight distribution. Those with a Q value larger than the above range have the disadvantage of having a low flash point and a high pour point when compared with those having the same molecular weight. In addition, in order to have a good viscosity index despite the small Q value, it is important to exhibit a statistical molecular weight distribution. For example, by precision distilling a copolymer with a large Q value,
Those having a Q value of 2.5 or less and in which the low molecular weight side and the high molecular weight side of the molecular weight distribution curve are almost perpendicular are undesirable because they have a small viscosity index. The ethylene content in the ethylene/α-olefin copolymer is measured by 13 C-NMR analysis. The number average molecular weight was determined using GPC (Gel Permeation), which was calibrated in advance using standard substances with known molecular weights (monodisperse polystyrene and squalane).
Chromatograph). Also Q
Values were determined by GPC using standard substances with known molecular weights (monodisperse polystyrene Mw500~840× 104 , 16 pieces).
(Gel Permeation Chromatograph) Measure the counts and create a correlation diagram (calibration curve) between molecular weight and EV (Elution Volume). Then, a GPC pattern of the sample is taken using the GPC method, the molecular weight is determined from the calibration curve, and then the Q value is calculated. Furthermore, a statistical molecular weight distribution is one that shows a log-normal distribution or a distribution close to this, such as that of a copolymer obtained directly by polymerization, and a substantial amount, for example, 10% by weight or more of low molecular weight components ( and/or high molecular weight components) are not cut. The synthetic lubricating oil of the present invention has a pour point of -27.5°C or lower and a viscosity index of 140 or higher, preferably 160 or higher. Further, the kinematic viscosity at 100°C is usually in the range of 4 to 200 cst. In particular, even those with a kinematic viscosity of 60 cst or more at 100°C have good fluidity at low temperatures and can be suitably used as high-load lubricating oils. One method for obtaining a synthetic lubricating oil having the above-mentioned properties is to synthesize ethylene and α-olefin in a liquid phase using a catalyst formed from a soluble vanadium compound and an organoaluminum compound in the coexistence of hydrogen. Continuous copolymerization, at which time the vanadium compound concentration in the polymerization system is 0.3 per liquid phase.
There is a method of diluting the vanadium compound in the polymerization medium to a concentration of not more than 5 times the concentration of the vanadium compound in the polymerization system, and supplying the vanadium compound in the amount of millimole or more and to the polymerization system. Vanadium compounds include VOCl 3 and VO
(OC 2 H 5 )Cl 2 , VO(OC 2 H 5 ) 1.5 Cl 1.5 , VCl 4 , etc. , with the general formula VO(OR) o Halogen, a compound represented by O≦n≦3) can be used. In addition, organic aluminum compounds include (C 2 H 5 ) 3 Al, (C 2 H 5 ) 2 AlCl,
(C 2 H 5 ) 1.5 AlCl 1.5 , (isoC 4 H 9 ) 1.5 AlCl 1.5 , (C 2 H 5
)
General formula R 1 n AlX 1 3-n such as AlCl 2 and mixtures thereof
(Here, R 1 is an aliphatic hydrocarbon group, X 1 is a halogen,
1≦m≦3) can be used. Hydrocarbons such as pentane, hexane, heptane, kerosene, cyclohexane, toluene can be used as polymerization medium. The concentration of vanadium compound in the liquid phase is 0.3 mmol/or more, preferably
0.5 to 20 mmol/, and the organoaluminum compound concentration has an Al/V (atomic ratio) of 2 to 20 mmol/
50, especially in the range of 3 to 20. The copolymerization temperature is 0 to 100℃, especially 20 to 100℃.
80℃, polymerization pressure 0 to 50Kg/cm 2 (gauged),
In particular, polymerization conditions such as 0 to 30 Kg/cm 2 (gauge) and average residence time of 5 to 300 minutes, particularly 10 to 250 minutes may be adopted. Details of the method for producing the above copolymer are disclosed in a patent application dated the same date as this application. The synthetic lubricating oil of the present invention may contain additives such as antioxidants, extreme pressure agents, detergent-dispersing agents, and, if desired, additives such as fluidity improvers and viscosity index improvers. It can also be used in combination with other lubricating oils. Next, examples will be shown. The results of Examples and Comparative Examples are summarized in Table 1. Example 1 An ethylene-propylene copolymer was continuously synthesized using a four-glass reactor equipped with a stirring blade. That is, hexane is pumped from the top of the reactor at 2 hrs.
, a hexane solution of vanadyl trichloride (16 mmol/hour) and a hexane solution of ethylaluminum sesquichloride (96 mmol/hour) were continuously fed into the reactor from the top of the reactor. The reaction liquid is continuously drawn out from the bottom of the reactor so that the amount of reaction liquid in the reactor is always 2 (concentration of vanadyl trichloride in the reactor: 4 mmol/). Also, ethylene, propylene and hydrogen are mixed from the top of the reactor. Gas (ethylene 90 per hour,
90% of propylene per hour and 120% of hydrogen per hour). The reaction temperature was controlled at 35° C. by circulating hot water through a jacket attached to the outside of the reactor. A small amount of methanol was added to the reaction liquid taken out from the bottom of the reactor to stop the reaction, and the reaction liquid was washed three times with water. Thereafter, the hexane solvent was removed by distillation at a reduced pressure of 30 mmHg and a pot temperature of 100°C to obtain a product oil. Example 2 The same procedure as in Example 1 was carried out except that ethylene gas was supplied at 70/hour, propylene gas at 70/hour, and hydrogen gas at 160/hour. Example 3 The same procedure as in Example 1 was carried out except that ethylene gas was supplied at a rate of 53 per hour, propylene gas at a rate of 52 per hour, and hydrogen gas at a rate of 195 per hour. Example 4 The same procedure as in Example 1 was carried out except that ethylene gas was supplied at 50 g/hr, propylene gas at 48 g/hr, and hydrogen gas at 202 g/hr. Example 5 The same procedure as in Example 1 was carried out except that ethylene gas was supplied at 46 times per hour, propylene gas was supplied at 44 times per hour, and hydrogen gas was supplied at 210 times per hour. Example 6 The same procedure as in Example 1 was carried out except that ethylene gas was supplied at a rate of 35% per hour, propylene gas was supplied at a rate of 55% per hour, and hydrogen gas was supplied at a rate of 210% per hour. Example 7 The same procedure as in Example 1 was carried out except that ethylene gas was supplied at 55 times per hour, propylene gas at 35 times per hour, and hydrogen gas at 210 times per hour. Example 8 In Example 1, ethylene gas was supplied at 30 times per hour, hydrogen gas was supplied at 180 times per hour, and propylene gas was not supplied.
Instead, 1-hexene in hexane solution (340g/)
The same procedure was carried out except that the solvent was supplied once per hour and the solvent hexane was supplied once per hour. Example 9 In Example 1, ethylene gas was supplied at 10 times per hour, hydrogen gas was supplied at 270 times per hour, and propylene gas was not supplied.
Instead, a solution of 1-decene in n-decane (0.5/
-n-decane) was fed once per hour, n-decane was fed once per hour instead of the solvent hexane, and vanadyl trichloride and ethylaluminum sesquichloride were fed n-
The same procedure was carried out except that the solution was supplied as a decane solution and the reaction temperature was adjusted to 50°C. Comparative Example 1 An ethylene propylene copolymer was synthesized in batch mode using a two-glass reactor equipped with a stirring blade. That is, a hexane solution of ethylaluminum sesquichloride (24 mmol/0.75
) was prepared, and a hexane solution of vanadyl trichloride (4 mmol/
0.25). At the same time, a mixed gas of ethylene, propylene, and hydrogen (50% ethylene/hour, 62% propylene/hour, 188% hydrogen/hour) is supplied to start the reaction. The reaction temperature was 35℃ using an ice water bath and a hot water bath.
Adjust to After 30 minutes from the start of the reaction, a small amount of methanol was added from the top of the reactor to stop the reaction, and the same post-treatment as in Example 1 was performed. A small amount of methanol was added to the reaction liquid taken out from the bottom of the reactor to stop the reaction, and the reaction liquid was washed three times with water. After that, reduce the pressure to 30mmHg and the pot temperature to 100℃.
The hexane solvent was removed by distillation to obtain a product oil. Comparative Example 2 The product oil of Comparative Example 1 was purified at 0.06 mmHg using a rectification column.
Under reduced pressure, a fraction with a tower top temperature of 160°C to 280°C was collected. The GPC chart of the product oil showed a non-statistical distribution (molecular weight distribution), ie a bell-shaped distribution. Comparative Example 3 The same procedure as in Example 1 was carried out except that the ethylene gas was changed to 18 mph per hour, the propylene gas was changed to 22 mph, and the hydrogen gas was changed to 260 mph. Comparative Example 4 The same procedure as in Example 1 was carried out except that the ethylene gas was changed to 150 m/h, the propylene gas was changed to 105 m/h, and the hydrogen gas was changed to 90 m/h. Comparative Example 5 The same procedure as in Example 1 was carried out except that the ethylene gas was changed to 73 per hour, the propylene gas was changed to 32 per hour, and the hydrogen gas was changed to 195 per hour. Comparative Example 6 The same procedure as in Example 1 was carried out except that the ethylene gas rate was changed to 5% per hour, the propylene gas rate was changed to 100% per hour, and the hydrogen gas rate was changed to 195% per hour. Comparative Example 7 The ethylene-propylene copolymer (Table 1) obtained in Example 5 was further heated to 150 ml under a reduced pressure of 0.04 mmHg.
A light fraction of 27.5% by weight was distilled by distillation at 100°C. The residue obtained from this distillation lacked a statistical molecular distribution. The performance of this residual component as a synthetic lubricating oil is shown in Table 2. Comparative Example 8 The residual amount obtained in Comparative Example 7 was further increased by 0.04 mmHg.
Distillation was carried out under reduced pressure, and a fraction with a boiling point of 150 to 290°C was distilled out. This distillate corresponds to 42.1% by weight of the ethylene-propylene copolymer obtained in Example 5, and the can residue obtained as a result of this distillation is similarly
This corresponded to 30.4% by weight. Boiling point is 150-290℃/0.04
The above distillate fraction of mmHg was missing from the statistical molecular weight distribution. The performance of the distillate as a synthetic lubricating oil is shown in Table 2. Comparative Example 9 The ethylene-propylene copolymer obtained in Example 5 (Table 1) was distilled under reduced pressure of 0.04 mmHg,
Distillates with boiling points up to 290°C were completely recovered. This distillate is equivalent to 69.6% by weight of the ethylene-propylene copolymer, and the residual liquid is 30.4% by weight.
It was equivalent to The distillate lacks a statistical molecular weight distribution, and its performance as a synthetic lubricating oil is
Shown in the table. Comparative Example 10 An ethylene propylene copolymer was synthesized in batches using a two-glass reactor equipped with stirring blades. That is, a hexane solution of ethylaluminum sesquichloride (10 mmol/0.75
) was prepared, and a hexane solution of titanium tetrachloride (10 mmol/0.25
). At the same time, ethylene, propylene,
Supply hydrogen mixed gas (ethylene 25/hr, propylene 25/hr, hydrogen 50/hr) to start the reaction. The reaction temperature is adjusted to 35°C using an ice water bath and a hot water bath. After 120 minutes from the start of the reaction, a small amount of methanol was added from the top of the reactor to stop the reaction, and the same post-treatment as in Example 1 was carried out to obtain 11.6 g of a cloudy yellow liquid with an ethylene composition of 53 mol%. The results are shown in Table 2.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 エチレン含有量30ないし70モル%、数平均分
子量300ないし2000、Q値(重量平均分子量/数
平均分子量)2.5以下であつて統計的な分子量分
布を有し、流動点が−27.5℃以下であり、かつ粘
度指数が140以上であるエチレン・α―オレフイ
ン共重合油からなる合成潤滑油。
1. Ethylene content of 30 to 70 mol%, number average molecular weight of 300 to 2000, Q value (weight average molecular weight/number average molecular weight) of 2.5 or less, with statistical molecular weight distribution, and pour point of -27.5°C or less. Synthetic lubricating oil made of ethylene/α-olefin copolymer oil with a viscosity index of 140 or higher.
JP260481A 1981-01-13 1981-01-13 Synthetic lubricating oil Granted JPS57117595A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP260481A JPS57117595A (en) 1981-01-13 1981-01-13 Synthetic lubricating oil
DE8282300109T DE3270823D1 (en) 1981-01-13 1982-01-08 Novel ethylene/alpha-olefin copolymer
EP82300109A EP0060609B2 (en) 1981-01-13 1982-01-08 Process for producing an ethylene/alpha-olefin copolymer
CA000393987A CA1169102A (en) 1981-01-13 1982-01-12 Ethylene/alpha-olefin copolymer
US08/091,733 US6153807A (en) 1981-01-13 1993-07-14 Process for producing ethylene/alpha-olefin copolymer
US08/098,236 US5955639A (en) 1981-01-13 1993-07-29 Ethylene/alpha-olefin copolymer
US08/449,282 US5767331A (en) 1981-01-13 1995-05-24 Ethylene/alpha-olefin copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP260481A JPS57117595A (en) 1981-01-13 1981-01-13 Synthetic lubricating oil

Publications (2)

Publication Number Publication Date
JPS57117595A JPS57117595A (en) 1982-07-22
JPH027998B2 true JPH027998B2 (en) 1990-02-21

Family

ID=11533988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP260481A Granted JPS57117595A (en) 1981-01-13 1981-01-13 Synthetic lubricating oil

Country Status (1)

Country Link
JP (1) JPS57117595A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7795194B2 (en) 2004-11-26 2010-09-14 Mitsui Chemicals, Inc. Synthetic lubricating oil and lubricating oil composition
WO2018131543A1 (en) 2017-01-16 2018-07-19 三井化学株式会社 Lubricant oil composition for automobile gears
US10040884B2 (en) 2014-03-28 2018-08-07 Mitsui Chemicals, Inc. Ethylene/α-olefin copolymers and lubricating oils
US10227543B2 (en) 2014-09-10 2019-03-12 Mitsui Chemicals, Inc. Lubricant compositions
WO2022154126A1 (en) 2021-01-18 2022-07-21 三井化学株式会社 AQUEOUS DISPERSION COMPOSITION, METHOD FOR PRODUCING SAID AQUEOUS DISPERSION COMPOSITION, AND ACID-MODIFIED ETHYLENE·α-OLEFIN COPOLYMER
WO2022186053A1 (en) 2021-03-05 2022-09-09 三井化学株式会社 Thermoplastic elastomer composition
US11767404B2 (en) 2018-03-07 2023-09-26 Mitsui Chemicals, Inc. Resin composition for masterbatch

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06821B2 (en) * 1985-11-21 1994-01-05 三井石油化学工業株式会社 Liquid ethylene random copolymer and its use
US4749504A (en) * 1985-09-19 1988-06-07 Mitsui Petrochemical Industries, Ltd. Oil-in-water emulsion and use thereof as metal processing oil or the like
JPH086113B2 (en) * 1986-07-11 1996-01-24 三井石油化学工業株式会社 hydraulic oil
CA2601291A1 (en) * 2005-03-17 2006-09-28 Dow Global Technologies Inc. Low molecular weight ethylene/alpha-olefin interpolymer as base lubricant oils
JP5547391B2 (en) * 2008-10-20 2014-07-09 コスモ石油ルブリカンツ株式会社 Power-saving gear oil composition
KR101394943B1 (en) 2012-11-19 2014-05-14 대림산업 주식회사 Copolymer of ethylene and alpha-olefin and method for producing the same
KR101568186B1 (en) 2014-01-06 2015-11-11 대림산업 주식회사 Apparatus and method for polymerizing ethylene and alpha-olefin

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7795194B2 (en) 2004-11-26 2010-09-14 Mitsui Chemicals, Inc. Synthetic lubricating oil and lubricating oil composition
US10040884B2 (en) 2014-03-28 2018-08-07 Mitsui Chemicals, Inc. Ethylene/α-olefin copolymers and lubricating oils
US10329366B2 (en) 2014-03-28 2019-06-25 Mitsui Chemicals, Inc. Ethylene/α-olefin copolymers and lubricating oils
US10227543B2 (en) 2014-09-10 2019-03-12 Mitsui Chemicals, Inc. Lubricant compositions
WO2018131543A1 (en) 2017-01-16 2018-07-19 三井化学株式会社 Lubricant oil composition for automobile gears
US11155768B2 (en) 2017-01-16 2021-10-26 Mitsui Chemicals, Inc. Lubricant oil compositions for automotive gears
US11767404B2 (en) 2018-03-07 2023-09-26 Mitsui Chemicals, Inc. Resin composition for masterbatch
WO2022154126A1 (en) 2021-01-18 2022-07-21 三井化学株式会社 AQUEOUS DISPERSION COMPOSITION, METHOD FOR PRODUCING SAID AQUEOUS DISPERSION COMPOSITION, AND ACID-MODIFIED ETHYLENE·α-OLEFIN COPOLYMER
WO2022186053A1 (en) 2021-03-05 2022-09-09 三井化学株式会社 Thermoplastic elastomer composition

Also Published As

Publication number Publication date
JPS57117595A (en) 1982-07-22

Similar Documents

Publication Publication Date Title
EP0060609B1 (en) Process for producing an ethylene/alpha-olefin copolymer
US5420372A (en) Alpha-olefin oligomers useful as base stocks and viscosity index improvers, and lubricating oils containing same and method of making the oligomers
US6525007B2 (en) Viscosity modifier for lubricating oil and lubricating oil composition
EP1529067B1 (en) Process for the oligomerization of a olefins having low unsaturation
FI95925B (en) Lubricant mixtures with high viscosity indices
CA2579879C (en) Ethylene/.alpha.- olefin copolymer for use as viscosity modifier
JPH027998B2 (en)
CN1035062C (en) Lubricating oils
JPH09235568A (en) Lubricating oil
US4613712A (en) Alpha-olefin polymers as lubricant viscosity properties improvers
US3637503A (en) Lubricating composition
US5315053A (en) Normally liquid alpha-olefin oligomers useful as base stocks and viscosity index improvers, and lubricating oils containing same
US6063973A (en) Synthesis of branched polyethylene fluids for use in lubricant compositions
US20080125561A1 (en) Copolymer, lubricating oil viscosity modifier, and lubricating oil composition
JPH021163B2 (en)
EP0422019B1 (en) Olefinic oligomers having lubricating properties and process of making such oligomers
EP0041423A2 (en) Ethylene copolymers that can be moulded and/or injected, and process for their production
US3157624A (en) Copolymer of a straight chain olefin and a styrene
US3884988A (en) Production of synthetic lubricants from alpha-olefins through a ternary catalytic system
JPS5814407B2 (en) Method for producing catalyst for olefin polymerization
US4006199A (en) Method for preparation of liquid polyolefin oil
WO2002088205A2 (en) Method for preparing polyalphaolefin from 1-octene
US3449249A (en) Lubricant compositions
JPS6043393B2 (en) synthetic lubricant
CA1300804C (en) Alpha-olefin oligomers useful as base stocks and viscosity index improvers, and lubricating oils containing same