JPH021163B2 - - Google Patents

Info

Publication number
JPH021163B2
JPH021163B2 JP260381A JP260381A JPH021163B2 JP H021163 B2 JPH021163 B2 JP H021163B2 JP 260381 A JP260381 A JP 260381A JP 260381 A JP260381 A JP 260381A JP H021163 B2 JPH021163 B2 JP H021163B2
Authority
JP
Japan
Prior art keywords
concentration
molecular weight
ethylene
hour
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP260381A
Other languages
Japanese (ja)
Other versions
JPS57123205A (en
Inventor
Hidekuni Oda
Tatsuo Kinoshita
Akyoshi Shimizu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP260381A priority Critical patent/JPS57123205A/en
Priority to EP82300109A priority patent/EP0060609B2/en
Priority to DE8282300109T priority patent/DE3270823D1/en
Priority to CA000393987A priority patent/CA1169102A/en
Publication of JPS57123205A publication Critical patent/JPS57123205A/en
Publication of JPH021163B2 publication Critical patent/JPH021163B2/ja
Priority to US08/091,733 priority patent/US6153807A/en
Priority to US08/098,236 priority patent/US5955639A/en
Priority to US08/449,282 priority patent/US5767331A/en
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、低分子量エチレン共重合体の新規な
製造方法に関する。さらに詳しくは、とくに潤滑
油、潤滑油添加剤、或いは燃料油添加剤として使
用した場合に優れた特性を発揮するエチレン共重
合体を工業的に有利に製造する方法に関する。 水素の共存下、可溶性バナジウム化合物と有機
アルミニウム化合物とから形成される触媒を用い
て液相中でエチレンと炭素数3以上のα―オレフ
インを共重合させることによつて低分子量共重合
体が得られることはすでに知られている。なかん
ずく合成潤滑油に適用しうる共重合体に関して
は、特公昭47−21650号の提案がある。しかしな
がらこの公報に具体的に開示された方法にしたが
つて該共重合を行つたとしても、得られる共重合
体の均一性が悪く、低粘度品にあつては低分子量
部をカツトしなければ高引火点のものが得られ
ず、また高粘度品にあつては流動点が高すぎるた
めに実用に耐えるものが得られない。特公昭50−
37237号や特公昭51−7717号にも低分子量共重合
体の製造方法が提案され分子量分布の狭い重合媒
体の製造が可能である旨の記載があるが、特殊な
化合物を使用しなければならないという欠点に加
え、その具体的開示にしたがつて分子量の充分に
小さい潤滑油グレードの如き低分子量共重合体を
製造するときには分子量分布の充分に狭いものは
得られず、したがつて前記公報と同様の欠陥を生
ずる。 本発明は、エチレンとα―オレフインの共重合
によつて直接潤滑油、潤滑油添加剤、或いは燃料
添加剤用途に好適な低分子量共重合体を製造する
方法を提供せんとするものである。すなわち本発
明によつて得られる低分子量共重合体を潤滑油と
して使用した場合、分子量の割に加熱減量が少な
くて引火点が高く、しかも低温における流動性が
優れている。さらに剪断安定性や油性が良好で、
粘度指数が高いという特性をも発揮するものであ
る。又、潤滑油添加剤或いは燃料油添加剤として
用いた場合、基油へ均一に溶解するため不溶物の
析出がなく、その効力を十分に発揮することがで
きる。 本発明によれば、水素の共存下、一般式VO
(OR)oX3-oまたは、VX4(ここでRは脂肪族系炭
化水素基を表わし、Xは、ハロゲン原子を表わ
し、0≦n≦3である)で表わされる可溶性バナ
ジウム化合物と有機アルミニウム化合物とから形
成される触媒を用いて、液相中でエチレンと炭素
数3以上のα―オレフインを共重合させる方法に
おいて、該共重合を連続的に行うとともに重合系
におけるバナジウム化合物濃度を液相1当り
0.3ミリモル以上とし、かつ重合系に供給するバ
ナジウム化合物は、重合系のバナジウム化合物濃
度の5倍以下の濃度となるように重合媒体に希釈
して用い、エチレン含有量30ないし90モル%、数
平均分子量300ないし30000の共重合体を製造する
ことを特徴とする低分子量共重合体の製造方法が
提供される。 第1図に本発明の製造方法のフローチヤートを
示す。 本発明において用いられる可溶性バナジウム化
合物の好適例としてはVO(OR)oX3-o又はVX4
(ここでRは脂肪族系炭化水素基、Xはハロゲン、
0≦n≦3)なる式で示されるバナジウム化合物
を挙げることができる。より具体的には、
VOCl3、VO(OCH3)Cl2、VO(OCH32Cl、VO
(OCH33、VO(OC2H5)Cl2、VO(OC2H51.5
Cl1.5、VO(OC2H52Cl、VO(OC2H53、VO
(OC2H51.5Br1.5、VO(OC3H7)Cl2、VO
(OC3H71.5Cl1.5、VO(OC3H72Cl、VO
(OC3H73、VO(On−C4H9)Cl2、VO(On―
C4H92Cl、VO(OCiso―C4H92Cl、VO(Osec―
C4H93、VO(OC5H111.5Cl1.5、JCl4あるいはこ
れらの混合物などを挙げることができる。これら
の中でVOCl3、VO(OC2H5)Cl2、VCl4などがと
くに好ましい。 また前記バナジウム化合物と共に用いられる有
機アルミニウム化合物としては、式R1nAlX13-n
(ここにR1は脂肪族炭化水素基、X1はハロゲン1
≦m≦3)で示される化合物が好適である。より
具体的には、(C2H53Al、(isoC3H73Al、
(isoC4H93Alのようなトリアルキルアルミニウ
ム、(C2H52AlCl、(C2H52AlBr、
(isoC4H92AlClのようなジアルキルアルミニウ
ムハライド、(C2H51.5AlCl1.5、(C2H51.5
AlBr1.5、(isoC4H91.5AlCl1.5のようなアルキル
アルミニウムセキスハライド、(C2H5)AlCl2
(isoC3H7)AlCl2、(isoC4H9)AlCl2のようなア
ルキルアルミニウムジハライドあるいはこれらの
任意割合の混合物などを例示することができる。 共重合は、前記各触媒成分、エチレン、α―オ
レフイン、水素及び場合により不活性溶媒成分を
連続的に重合系に供給し、重合系から実質的に連
続的に重合液を抜き出す連続重合方式によつて行
われる。この連続重合方式の代りに回分重合方式
を採用しても、均一性の優れた分子量分布の充分
に小さい共重合体を得ることはできない。 共重合は液相中で行われる。重合媒体としては
不活性溶媒の使用が好ましいが、α―オレフイン
の過剰を用いて重合媒体としてもよい。上記目的
に使用される不活性溶媒としては、ブタン、ペン
タン、ヘキサン、ヘプタン、オクタン、デカン、
ドデカン、灯油のような脂肪族炭化水素、シクロ
ペンタン、メチルシクロペンタン、シクロヘキサ
ン、メチルシクロヘキサンのような脂肪族炭化水
素、ベンゼン、トルエン、キシレン、エチルベン
ゼンのような芳香族炭化水素あるいはこれらの混
合物などを例示することができる。 本発明の実施に際して、連続重合方式の採用と
ともに重合系中のバナジウム化合物濃度とバナジ
ウム化合物の供給方式の選定が重要である。重合
系におけるバナジウム化合物濃度は、液相1当
り0.3ミリモル以上、通常30ミリモル以下、好ま
しくは0.5ないし20ミリモルに調節する必要があ
る。バナジウム化合物濃度を上記範囲より薄くし
た場合、重合媒体当りの収率を低下せしめないた
めには、エチレンとα―オレフインの分圧をあま
り下げることができない。その結果、低分子量の
共重合体を得るためには非常に高い水素分圧が必
要となり、装置及び操作の上から不利となる。高
圧を避けるためにエチレンやα―オレフインの分
圧を下げると低分子量の共重合体は比較的低圧で
製造することが可能であるが、重合媒体当りの収
率が低く、したがつて巨大な重合装置が必要とな
るとともに共重合体の分離コストが嵩むことにな
る。重合系におけるバナジウム化合物を前記の如
く高濃度に維持することにより上述のような欠点
が解消され、比較的低い水素分圧にもかかわらず
低分子量の共重合体を高い反応媒体収率で製造す
ることができる。 バナジウム化合物を重合系に供給するに当つて
は、一般に重合媒体、好ましくは不活性溶媒の溶
液の形で供給されるが、高分子量の共重合体を製
造する場合のように重合系の濃度に比べ著しく濃
厚な状態で供給してはならず、重合系のバナジウ
ム化合物の濃度の5倍以下の濃度の溶液として重
合系に供給する必要がある。そして重合系のバナ
ジウム化合物濃度が5ミリモル/を越えるよう
な高濃度の場合は、とくに3倍以下の濃度で供給
することが好ましい。バナジウム化合物をこのよ
うに希釈しないで濃厚な状態で重合系に供給した
場合には、均一にして分子量分布の狭い共重合体
が得られない。 有機アルミニウム化合物の使用量は、重合液中
におけるAl/v(原子比)が2ないし50、とくに
3ないし20となるようにするのが好ましい。重合
系に供給する有機アルミニウム化合物は、バナジ
ウム化合物と同様に重合媒体、好ましくは不活性
溶媒に溶解して用いるのが望ましいが、バナジウ
ム化合物の供給の場合のように厳密な濃度調整は
必要でなく、例えば重合系における濃度の50倍以
下の任意の濃度に調整して重合系に供給するのが
よい。 本発明においてエチレンとの共重合に用いるα
―オレフインとしては炭素数3ないし20のものが
好ましく、例えばプロピレン、1―ブテン、1―
ペンテン、1―ヘキセン、1―オクテン、1―デ
セン、1―ドデセン、1―テトラデセン、1―オ
クタデセン、1―エイコセン、4―メチル―1―
ペンテンなどを単独であるいは2種以上混合して
用いることができる。とくに好ましいのは炭素数
3ないし12のα―オレフイン、例えばプロピレ
ン、1―ブテン、1―ヘキセン、1―オクテン、
1―デセン、1―ドデセン等である。エチレンと
α―オレフインの重合系への供給比率は、α―オ
レフインの種類や重合条件によつて異なり一概に
規定できないが、共重合体中のエチレン成分含有
量が30ないし90モル%、好ましくは35ないし85モ
ル%となるように調節されるものであり、例えば
エチレン/α―オレフイン(供給モル比)を10/
1ないし1/10程度にすればよい。 また水素の供給量も重合条件によつて異なる
が、共重合体の分子量が300ないし30000、好まし
くは350ないし25000となるように調節されるもの
であり、例えば水素/エチレン+α―オレフイン
(供給モル比)が1/100ないし100/1程度とな
るような割合で供給するのがよい。 共重合温度は、0ないし100℃、とくに20ない
し80℃の範囲が好ましく、また重合圧力は重合温
度によつても異なるが、0ないし50Kg/cm2(ケー
ジ圧)、とくに0ないし30Kgcm2(ケージ圧)の範
囲が好適である。重合系における平均滞留時間
は、5ないし300分、とくに10ないし250分とする
のがよい。連続的に抜き出される重合液にアルコ
ールなどを添加することにより重合を停止するこ
とができる。 本発明において、共重合体中のエチレン含有量
を30モル%より少なくすると、単触媒当りの共重
合体収率が悪くなり、しかも潤滑油用途に供した
としても粘度指数が小さいために好ましくない。
またエチレン含有量が90モル%より多いものは、
潤滑油用途として用いる場合低温での流動性が悪
く、又、潤滑油或いは燃料油添加剤用途として用
いる場合、基油への溶解性が悪く好適でない。潤
滑油として好適なものは、エチレン含有量が30な
いし70モル%、また潤滑剤添加剤として好適なも
のは、エチレン含有量が50ないし80モル%、燃料
油添加剤として好適なものは、エチレン含有量が
70ないし90モル%のものである。なお共重合体中
のエチレン含有量は、 13C−NMR分析により容
易に測定することができる。 共重合体として分子量が300より小さいものを
製造しても引火点の低いものしか得られず実用的
ではないし、また分子量が30000を越えるような
ものを得るには、本発明のような高濃度の触媒を
使用する必要はない。なお本発明でいう分子量は
数平均分子量であり、分子量既知の標準物質(単
分散ポリスチレン及びスクラアン)を用いて予め
較正されたGPC(Gel Permeation
Chromatograph)によつて測定される。 本発明によつて得られる共重合体の分子量分布
は狭く、GPCにより求めたQ値(重量平均分子
量/数平均分子量)は通常3以下、多くの場合
2.8以下である。かかる均一性の優れた共重合体
は、潤滑油、潤滑油添加剤、或いは燃料油添加剤
として好適あるばかりでなく、グリースの基油、
繊維処理油剤、熱媒体油などの用途に供すること
もできる。 次に実施例を示す。 実施例 1 撹拌翼を備えた4ガラス製反応器を用い、連
続的にエチレン―プロピレン共重合体を合成し
た。すなわち、反応器上部からヘキサン毎時2
、三塩化バナジルのヘキサン溶液(16ミリモ
ル/)毎時1、エチルアルミニウムセスキク
ロリドのヘキサン溶液(96ミリモル/)毎時1
をそれぞれ反応器上部から反応器中へ連続的に
供給し、一方、反応器下部から反応器中の反応液
が常に2になるように連続的に反応液を抜き出
す。又、反応器上部からエチレン、プロピレンお
よび水素の混合ガス(エチレン毎時50、プロピ
レン毎時62、水素毎時188)を供給する。反
応温度は反応器外部にとりつけられたジヤケツト
に温水を循環させることにより35℃に調節した。
反応器下部から抜き出した反応液中に少量のメタ
ノールを添加して反応を停止させたのち反応液を
3回水洗した。そののち30mmHgの減圧でポツト
温度100℃の蒸留により溶媒ヘキサンを除き製品
油とした。 実施例 2 実施例1で、三塩化バナジルのヘキサン溶液濃
度を20ミリモル/とし、毎時2、エチルアル
ミニウムセスキクロリドのヘキサン溶液濃度を
240ミリモル/と毎時1、溶媒ヘキサン毎時
1供給した他は同様に行つた。 実施例 3 実施例1でエチレン毎時62、プロピレン毎時
42、水素毎時195とした他は同様に行つた。 実施例 4 実施例1で三塩化バナジルの代りに四塩化バナ
ジウムを用いた他は同様に行つた。 実施例 5 実施例1で三塩化バナジルの代りにエトキシ二
塩化バナジル(VO(OEt)Cl2)を用いた他は同
様に行つた。 実施例 6 実施例1でエチレン毎時30、水素毎時180、
ヘキセン―1のヘキセン溶液(340g/)毎時
1、溶媒ヘキサン毎時1とした他は同様に行
つた。 実施例 7 実施例1でエチレン毎時36、水素毎時180、
デセン―1毎時1、溶媒ヘキセン毎時1とし
た他は同様に行つた。 比較例 1 実施例1で三塩化バナジルのヘキサン溶液濃度
を160ミリモル/として毎時0.1供給し、溶媒
ヘキセン毎時2.9供給した他は同様に行つた。 比較例 1′ 比較例1の製品油をMEK脱ろう法(堀口博著、
「潤滑油とグリース」に準じた)によつて脱ろう
したのち0.1mmHgの減圧で、ポツト温度200℃で
トツピングを行つた。 比較例 2 実施例1で三塩化バナジルのヘキサン溶液濃度
を100ミリモル/とし毎時0.4、溶媒ヘキセン
毎時2.6供給した他は同様に行つた。 比較例 3 実施例1でエチレン毎時5、プロピレン毎時
100、水素毎時195とした他は同様に行つた。 比較例 4 実施例1でエチレン毎時21、プロピレン毎時
24、水素毎時225とした他は同様に行つた。 比較例 5 撹拌翼を供えた2ガラス製反応器を用いバツ
チ方式でエチレンプロピレン共重合体を合成し
た。すなわち、反応器にエチレンアルミニウムセ
スキクロリドのヘキサン溶液(24ミリモル/0.75
)を調製し、反応器上部から滴下ロートにより
三塩化バナジルのヘキサン溶液(4ミリモル/
0.25)を滴下する。同時にエチレン、プロピレ
ン、水素混合ガス(エチレン毎時50、プロピレ
ン毎時62、水素毎時188)を供給し反応を開
始する。反応温度は氷水浴及び温水浴により35℃
に調節する。反応開始30分後に反応開始30分後に
反応器上部より少量のメタノールを添加し反応を
停止させたのち実施例1と同様の後処理を行つ
た。
The present invention relates to a novel method for producing low molecular weight ethylene copolymers. More specifically, the present invention relates to an industrially advantageous method for producing an ethylene copolymer that exhibits excellent properties particularly when used as a lubricating oil, a lubricating oil additive, or a fuel oil additive. A low molecular weight copolymer is obtained by copolymerizing ethylene and an α-olefin having 3 or more carbon atoms in a liquid phase using a catalyst formed from a soluble vanadium compound and an organoaluminum compound in the presence of hydrogen. It is already known that In particular, regarding copolymers that can be applied to synthetic lubricating oils, there is a proposal in Japanese Patent Publication No. 21650/1983. However, even if the copolymerization is carried out according to the method specifically disclosed in this publication, the uniformity of the resulting copolymer is poor, and in the case of low viscosity products, the low molecular weight portion must be cut off. It is not possible to obtain a product with a high flash point, and in the case of a high viscosity product, the pour point is too high, making it impossible to obtain a product that can withstand practical use. Tokuko Showa 50-
37237 and Japanese Patent Publication No. 51-7717 also propose a method for producing low molecular weight copolymers and state that it is possible to produce a polymerization medium with a narrow molecular weight distribution, but special compounds must be used. In addition to this drawback, when producing a low molecular weight copolymer such as a lubricating oil grade with a sufficiently small molecular weight according to the specific disclosure, a sufficiently narrow molecular weight distribution cannot be obtained. produce similar defects. The present invention aims to provide a method for directly producing a low molecular weight copolymer suitable for use as a lubricating oil, lubricating oil additive, or fuel additive by copolymerizing ethylene and α-olefin. That is, when the low molecular weight copolymer obtained according to the present invention is used as a lubricating oil, the loss on heating is small relative to the molecular weight, the flash point is high, and the fluidity at low temperatures is excellent. Furthermore, it has good shear stability and oiliness,
It also exhibits the property of having a high viscosity index. Furthermore, when used as a lubricating oil additive or a fuel oil additive, since it is uniformly dissolved in the base oil, there is no precipitation of insoluble matter, and the effect can be fully exhibited. According to the present invention, in the coexistence of hydrogen, the general formula VO
(OR) o X 3-o or VX 4 (where R represents an aliphatic hydrocarbon group, X represents a halogen atom, and 0≦n≦3) and an organic In a method of copolymerizing ethylene and α-olefin having 3 or more carbon atoms in a liquid phase using a catalyst formed from an aluminum compound, the copolymerization is carried out continuously and the vanadium compound concentration in the polymerization system is controlled by controlling the concentration of vanadium compound in the liquid phase. per phase
The vanadium compound, which is 0.3 mmol or more and is supplied to the polymerization system, is diluted in the polymerization medium so that the concentration is 5 times or less than the vanadium compound concentration in the polymerization system, and the ethylene content is 30 to 90 mol%, number average. A method for producing a low molecular weight copolymer is provided, which is characterized by producing a copolymer having a molecular weight of 300 to 30,000. FIG. 1 shows a flowchart of the manufacturing method of the present invention. Preferred examples of soluble vanadium compounds used in the present invention include VO(OR) o X 3-o or VX 4
(Here, R is an aliphatic hydrocarbon group, X is a halogen,
Examples include vanadium compounds represented by the formula: 0≦n≦3). More specifically,
VOCl3 , VO( OCH3 ) Cl2 , VO( OCH3 ) 2Cl , VO
( OCH3 ) 3 , VO ( OC2H5 ) Cl2 , VO( OC2H5 ) 1.5
Cl 1 . 5 , VO (OC 2 H 5 ) 2 Cl, VO (OC 2 H 5 ) 3 , VO
(OC 2 H 5 ) 1.5 Br 1.5 , VO ( OC 3 H 7 ) Cl 2 , VO
(OC 3 H 7 ) 1.5 Cl 1.5 , VO ( OC 3 H 7 ) 2 Cl , VO
(OC 3 H 7 ) 3 , VO (On−C 4 H 9 )Cl 2 , VO (On−
C 4 H 9 ) 2 Cl, VO (OCiso―C 4 H 9 ) 2 Cl, VO (Osec―
Examples include C 4 H 9 ) 3 , VO(OC 5 H 11 ) 1 .5 Cl 1 .5 , JCl 4 or a mixture thereof. Among these, VOCl 3 , VO(OC 2 H 5 )Cl 2 , VCl 4 and the like are particularly preferred. Furthermore, the organoaluminum compound used together with the vanadium compound has the formula R 1n AlX 13-n
(Here, R 1 is an aliphatic hydrocarbon group, and X 1 is a halogen 1
Compounds represented by ≦m≦3) are suitable. More specifically, (C 2 H 5 ) 3 Al, (isoC 3 H 7 ) 3 Al,
Trialkyl aluminum such as (isoC 4 H 9 ) 3 Al, (C 2 H 5 ) 2 AlCl, (C 2 H 5 ) 2 AlBr,
Dialkyl aluminum halides such as ( isoC4H9 ) 2AlCl , ( C2H5 ) 1.5 AlCl1.5 , ( C2H5 ) 1.5
Alkylaluminum sexhalides such as AlBr 1.5 , ( isoC4H9 ) 1.5 AlCl1.5 , ( C2H5 ) AlCl2 ,
Examples include alkyl aluminum dihalides such as (isoC 3 H 7 )AlCl 2 and (isoC 4 H 9 )AlCl 2 or mixtures thereof in arbitrary proportions. The copolymerization is a continuous polymerization method in which each of the catalyst components, ethylene, α-olefin, hydrogen, and optionally an inert solvent component are continuously supplied to the polymerization system, and the polymerization liquid is substantially continuously extracted from the polymerization system. It is done by folding. Even if a batch polymerization method is adopted instead of this continuous polymerization method, a copolymer with excellent uniformity and a sufficiently small molecular weight distribution cannot be obtained. Copolymerization takes place in the liquid phase. Although it is preferred to use an inert solvent as the polymerization medium, an excess of α-olefin may also be used as the polymerization medium. Inert solvents used for the above purpose include butane, pentane, hexane, heptane, octane, decane,
aliphatic hydrocarbons such as dodecane, kerosene, aliphatic hydrocarbons such as cyclopentane, methylcyclopentane, cyclohexane, methylcyclohexane, aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, or mixtures thereof. I can give an example. In carrying out the present invention, it is important to adopt a continuous polymerization method and to select the vanadium compound concentration in the polymerization system and the vanadium compound supply method. The concentration of the vanadium compound in the polymerization system must be adjusted to 0.3 mmol or more, usually 30 mmol or less, preferably 0.5 to 20 mmol per liquid phase. When the vanadium compound concentration is lower than the above range, the partial pressure of ethylene and α-olefin cannot be lowered too much in order not to reduce the yield per polymerization medium. As a result, a very high hydrogen partial pressure is required to obtain a low molecular weight copolymer, which is disadvantageous in terms of equipment and operation. Low molecular weight copolymers can be produced at relatively low pressures by lowering the partial pressure of ethylene or α-olefin to avoid high pressures, but the yield per polymerization medium is low and, therefore, large A polymerization device is required, and the cost for separating the copolymer increases. By maintaining the vanadium compound in the polymerization system at such a high concentration, the above-mentioned drawbacks are overcome, and a low molecular weight copolymer can be produced with a high reaction medium yield despite a relatively low hydrogen partial pressure. be able to. When a vanadium compound is supplied to a polymerization system, it is generally supplied in the form of a solution in a polymerization medium, preferably an inert solvent. It must not be supplied in an extremely concentrated state, but must be supplied to the polymerization system as a solution with a concentration less than 5 times the concentration of the vanadium compound in the polymerization system. When the vanadium compound concentration in the polymerization system is high, such as exceeding 5 mmol, it is particularly preferable to supply the vanadium compound at a concentration of 3 times or less. If the vanadium compound is supplied to the polymerization system in a concentrated state without being diluted in this way, a copolymer with a uniform and narrow molecular weight distribution cannot be obtained. The amount of the organoaluminum compound used is preferably such that Al/v (atomic ratio) in the polymerization solution is from 2 to 50, particularly from 3 to 20. The organoaluminum compound to be supplied to the polymerization system is preferably used after being dissolved in a polymerization medium, preferably an inert solvent, like the vanadium compound, but strict concentration adjustment is not required as in the case of supplying the vanadium compound. For example, it is preferable to adjust the concentration to an arbitrary concentration of 50 times or less than the concentration in the polymerization system and supply it to the polymerization system. α used in copolymerization with ethylene in the present invention
- The olefin preferably has 3 to 20 carbon atoms, such as propylene, 1-butene, 1-
Pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-octadecene, 1-eicosene, 4-methyl-1-
Pentene and the like can be used alone or in combination of two or more. Particularly preferred are α-olefins having 3 to 12 carbon atoms, such as propylene, 1-butene, 1-hexene, 1-octene,
1-decene, 1-dodecene, etc. The ratio of ethylene and α-olefin to be supplied to the polymerization system varies depending on the type of α-olefin and polymerization conditions and cannot be unconditionally defined, but it is preferable that the ethylene component content in the copolymer be 30 to 90 mol%. For example, ethylene/α-olefin (supplied molar ratio) is adjusted to 35 to 85 mol%.
It should be about 1 to 1/10. The amount of hydrogen supplied also varies depending on the polymerization conditions, but is adjusted so that the molecular weight of the copolymer is 300 to 30,000, preferably 350 to 25,000. For example, hydrogen/ethylene + α-olefin (supplied mol. It is preferable to supply at a ratio such that the ratio (ratio) is about 1/100 to 100/1. The copolymerization temperature is preferably in the range of 0 to 100°C, particularly 20 to 80°C, and the polymerization pressure varies depending on the polymerization temperature, but is preferably 0 to 50 kg/cm 2 (cage pressure), particularly 0 to 30 kg/cm 2 (cage pressure). cage pressure) is suitable. The average residence time in the polymerization system is preferably 5 to 300 minutes, particularly 10 to 250 minutes. Polymerization can be stopped by adding alcohol or the like to the polymerization liquid that is continuously extracted. In the present invention, if the ethylene content in the copolymer is less than 30 mol%, the yield of the copolymer per single catalyst will be poor, and even if it is used for lubricating oil, the viscosity index will be low, which is not preferable. .
Also, those with an ethylene content of more than 90 mol%,
When used as a lubricating oil, it has poor fluidity at low temperatures, and when used as a lubricating oil or fuel oil additive, it has poor solubility in base oil, making it unsuitable. The preferred lubricating oil has an ethylene content of 30 to 70 mol%, the preferred lubricant additive has an ethylene content of 50 to 80 mol%, and the preferred fuel oil additive has an ethylene content of 50 to 80 mol%. The content is
70 to 90 mol%. Note that the ethylene content in the copolymer can be easily measured by 13 C-NMR analysis. Even if a copolymer with a molecular weight of less than 300 is produced, it is not practical because only a product with a low flash point can be obtained, and in order to obtain a copolymer with a molecular weight of more than 30,000, high concentration as in the present invention is required. It is not necessary to use a catalyst. The molecular weight referred to in the present invention is the number average molecular weight, and GPC (Gel Permeation
Chromatograph). The molecular weight distribution of the copolymer obtained by the present invention is narrow, and the Q value (weight average molecular weight/number average molecular weight) determined by GPC is usually 3 or less, in many cases.
2.8 or less. Such copolymers with excellent uniformity are not only suitable as lubricating oils, lubricating oil additives, or fuel oil additives, but also as base oils for greases,
It can also be used as a fiber treatment oil, heat transfer oil, etc. Next, examples will be shown. Example 1 An ethylene-propylene copolymer was continuously synthesized using a four-glass reactor equipped with a stirring blade. That is, 2 hexane per hour from the top of the reactor.
, a hexane solution of vanadyl trichloride (16 mmol/) per hour, a hexane solution of ethylaluminum sesquichloride (96 mmol/) per hour
are continuously fed into the reactor from the upper part of the reactor, and on the other hand, the reaction liquid is continuously drawn out from the lower part of the reactor so that the amount of reaction liquid in the reactor is always 2. Also, a mixed gas of ethylene, propylene and hydrogen (50 ethylene/hour, 62 propylene/hour, 188 hydrogen/hour) is supplied from the top of the reactor. The reaction temperature was controlled at 35°C by circulating hot water through a jacket attached to the outside of the reactor.
A small amount of methanol was added to the reaction liquid taken out from the bottom of the reactor to stop the reaction, and the reaction liquid was washed three times with water. Thereafter, the hexane solvent was removed by distillation at a reduced pressure of 30 mmHg and a pot temperature of 100°C to obtain a product oil. Example 2 In Example 1, the concentration of vanadyl trichloride in hexane was 20 mmol/hour, and the concentration of ethylaluminum sesquichloride in hexane was increased every hour.
The same procedure was carried out except that 240 mmol/h was fed once per hour and the solvent hexane was fed once per hour. Example 3 Example 1: 62 ethylene/hour, propylene/hour
42, hydrogen per hour was changed to 195, but the same procedure was followed. Example 4 The same procedure as in Example 1 was carried out except that vanadium tetrachloride was used instead of vanadyl trichloride. Example 5 The same procedure as in Example 1 was carried out except that ethoxyvanadyl dichloride (VO(OEt)Cl 2 ) was used instead of vanadyl trichloride. Example 6 In Example 1, ethylene was 30 per hour, hydrogen was 180 per hour,
The same procedure was carried out except that the hexene solution (340 g/h) of hexene-1 was changed to 1 hour/h and the solvent was hexane at 1 hour/h. Example 7 In Example 1, ethylene was 36 per hour, hydrogen was 180 per hour,
The same procedure was carried out except that the solvent was changed to 1 hour of decene-1 and 1 hour of hexene as the solvent. Comparative Example 1 The same procedure as in Example 1 was carried out except that the hexane solution concentration of vanadyl trichloride was 160 mmol/hour and 0.1 was supplied per hour, and the solvent hexene was supplied at 2.9 times per hour. Comparative Example 1' MEK dewaxing method for the product oil of Comparative Example 1 (written by Hiroshi Horiguchi,
After dewaxing with ``Lubricating oil and grease''), topping was performed at a reduced pressure of 0.1 mmHg and a pot temperature of 200°C. Comparative Example 2 The same procedure as in Example 1 was carried out except that the concentration of vanadyl trichloride in hexane was 100 mmol/hour and the solvent hexene was fed at 2.6/hour. Comparative example 3 Example 1: ethylene/hour 5, propylene/hour
100 and hydrogen 195 per hour. Comparative example 4 Example 1: 21 ethylene/hour, propylene/hour
24, hydrogen per hour was changed to 225, but the same procedure was followed. Comparative Example 5 An ethylene propylene copolymer was synthesized in batch mode using a two-glass reactor equipped with a stirring blade. That is, a hexane solution of ethylene aluminum sesquichloride (24 mmol/0.75
) was prepared, and a hexane solution of vanadyl trichloride (4 mmol/
0.25). At the same time, a mixed gas of ethylene, propylene, and hydrogen (50% ethylene/hour, 62% propylene/hour, 188% hydrogen/hour) is supplied to start the reaction. The reaction temperature was 35℃ using an ice water bath and a hot water bath.
Adjust to After 30 minutes from the start of the reaction, a small amount of methanol was added from the top of the reactor to stop the reaction, and the same post-treatment as in Example 1 was carried out.

【表】 実施例 8 実施例1で三塩化バナジルのヘキサン溶液濃度
を4ミリモル/、エチルアルミニウムセスキク
ロリドのヘキサン溶液濃度を24ミリモル/、エ
チレン毎時210、プロピレン毎時60、水素毎
時30とした他は同様に行つた。生成ポリマー
は、エチレン含量78モルパーセント、平均分子量
8200、Q値2.1であり、このポリマーを鉱油(150
ニユートラル油、粘度指数103)へ5重量パーセ
ントになるように添加した溶液は常温で透明であ
り、粘度指数162、超音波剪断安定性が良好であ
り、ASTM D203に従つて測定した201〓粘度低
下率が5パーセントであつた。 実施例 9 実施例1で三塩化バナジルのヘキサン溶液濃度
を4ミリモル/、エチルアルミニウムセスキク
ロリドのヘキサン溶液濃度を24ミリモル、プロピ
レン毎時32、水素毎時120とした他は同様に
行つた。生成ポリマーはエチレン含量83モルパー
セント、平均分子量5300、Q値2.2であり、この
ポリマーを軽油(流動点−2℃)へ0.05重量パー
セントになるように添加した溶液は常温で透明で
あり、流動点は−25℃であつた。 比較例 6 実施例1で、三塩化バナジルのヘキサン溶液濃
度を24ミリモル/、溶媒ヘキサン毎時2.9、
エチレン毎時210、プロピレン毎時60、水素
毎時30供給した他は同様に行つた。生成ポリマ
ーはエチレン含量77モルパーセント、平均分子量
8100、Q値3.7であり、この鉱油(150ニユートラ
ル油、粘度指数103)へ5重量パーセントになる
ように添加した溶液は常温で白濁し潤滑油として
不適であつた。 比較例 7 実施例1で、三塩化バナジルのヘキサン溶液濃
度を2.4ミリモル/、エチルアルミニウムセス
キクロリドのヘキサン溶液濃度を14.4ミリモル/
とし、エチレン毎時180、プロピレン毎時119
、水素毎時1供給した他は同様に行つた。生
成ポリマーはエチレン含量64モルパーセント、平
均分子量5万、Q値2.4であつたこのポリマーを
鉱油(150ニユートラル油、粘度指数103)へ5重
量パーセントになるように添加した溶液の超波波
剪断安定性は悪く、210〓粘度低下率が20パーセ
ントであつた。 比較例 8 実施例1で、三塩化バナジルのヘキサン溶液濃
度を4ミリモル/、エチルアルミニウムセスキ
クロリドのヘキサン溶液濃度を24ミリモル/と
し、エチレン毎時160、プロピレン毎時20、
水素毎時120供給した他は同様に行つた。生成
ポリマーはエチレン含量93モルパーセント、平均
分子量5400、Q値2.3であつた。このポリマーは
常温で軽油に殆んど溶解しなかつた。 比較例 9 実施例1で、三塩化バナジルのヘキサン溶液濃
度を40ミリモル/として毎時0.1供給し、エ
チルアルミニウムセスキクロリドのヘキサン溶液
濃度を24ミリモル/、溶媒ヘキサン毎時2.9、
エチレン毎時148、プロピレン毎時32、水素
毎時120供給した他は同様に行つた。生成ポリ
マーはエチレン含量82モルパーセント、平均分子
量5300、Q値3.8であり、このポリマーを軽油
(流動点−2℃)へ0.05重量パーセントになるよ
うに添加した溶液は常温で白濁し、流動点は−5
℃であつた。
[Table] Example 8 In Example 1, the concentration of vanadyl trichloride in hexane was 4 mmol/h, the concentration of ethylaluminum sesquichloride in hexane solution was 24 mmol/h, ethylene was 210 per hour, propylene was 60 per hour, and hydrogen was 30 per hour. I did the same. The resulting polymer has an ethylene content of 78 mole percent and an average molecular weight
8200, with a Q value of 2.1, and this polymer was mixed with mineral oil (150
A solution added to neutral oil (viscosity index 103) at 5% by weight is transparent at room temperature, has a viscosity index of 162, good ultrasonic shear stability, and has a viscosity reduction of 201〓 measured according to ASTM D203. The rate was 5%. Example 9 The same procedure as in Example 1 was carried out except that the concentration of vanadyl trichloride in hexane solution was 4 mmol/hour, the concentration of ethylaluminum sesquichloride in hexane solution was 24 mmol/hour, propylene 32/hour, and hydrogen 120/hour. The resulting polymer has an ethylene content of 83 mole percent, an average molecular weight of 5300, and a Q value of 2.2. A solution of this polymer added to light oil (pour point -2℃) at a concentration of 0.05 percent by weight is transparent at room temperature and has a pour point of The temperature was -25℃. Comparative Example 6 In Example 1, the hexane solution concentration of vanadyl trichloride was 24 mmol/h, the solvent hexane was 2.9/h,
The same procedure was carried out except that ethylene was supplied at 210/hr, propylene at 60/hr, and hydrogen at 30/hr. The resulting polymer has an ethylene content of 77 mole percent and an average molecular weight
8100 and a Q value of 3.7, and a solution added to this mineral oil (150 neutral oil, viscosity index 103) at a concentration of 5% by weight became cloudy at room temperature and was unsuitable as a lubricating oil. Comparative Example 7 In Example 1, the concentration of vanadyl trichloride in hexane solution was 2.4 mmol/, and the concentration of ethylaluminum sesquichloride in hexane solution was 14.4 mmol/
and ethylene 180 per hour, propylene 119 per hour
The same procedure was carried out except that hydrogen was supplied once per hour. The resulting polymer had an ethylene content of 64 mol percent, an average molecular weight of 50,000, and a Q value of 2.4.The ultrasonic shear stability of a solution of this polymer added to mineral oil (neutral oil 150, viscosity index 103) to a concentration of 5 percent by weight The properties were poor, with a 210% viscosity reduction rate of 20%. Comparative Example 8 In Example 1, the concentration of vanadyl trichloride in hexane was 4 mmol/, the concentration of ethylaluminum sesquichloride in hexane was 24 mmol/, ethylene was 160 per hour, propylene was 20 per hour,
The same procedure was carried out except that hydrogen was supplied at a rate of 120 per hour. The resulting polymer had an ethylene content of 93 mole percent, an average molecular weight of 5400, and a Q value of 2.3. This polymer was hardly soluble in light oil at room temperature. Comparative Example 9 In Example 1, the hexane solution concentration of vanadyl trichloride was 40 mmol/hour, and the hexane solution concentration was 24 mmol/hour, and the hexane solution concentration of ethylaluminum sesquichloride was 2.9 mmol/hour.
The same procedure was carried out except that ethylene was supplied at 148/hour, propylene at 32/hour, and hydrogen at 120/hour. The resulting polymer has an ethylene content of 82 mole percent, an average molecular weight of 5300, and a Q value of 3.8. A solution of this polymer added to light oil (pour point -2℃) at a concentration of 0.05 percent by weight becomes cloudy at room temperature, and the pour point is -5
It was warm at ℃.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る低分子量共重合体の製
造方法のフローチヤートである。
FIG. 1 is a flowchart of a method for producing a low molecular weight copolymer according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 水素の共存下、一般式VO(OR)oX3-oまた
は、VX4(ここでRは脂肪族系炭化水素基を表わ
し、Xは、ハロゲン原子を表わし、0≦n≦3で
ある)で表わされる可溶性バナジウム化合物と有
機アルミニウム化合物とから形成される触媒を用
いて、液相中でエチレンと炭素数3以上のα―オ
レフインを共重合させる方法において、該共重合
を連続的に行うとともに重合系におけるバナジウ
ム化合物濃度を液相1当り0.3ミリモル以上と
し、かつ重合系に供給するバナジウム化合物は、
重合系のバナジウム化合物濃度の5倍以下の濃度
となるように重合媒体に希釈して用い、エチレン
含有量30ないし90モル%、数平均分子量300ない
し30000の共重合体を製造することを特徴とする
低分子量共重合体の製造方法。
1 In the presence of hydrogen, the general formula VO(OR) o X 3-o or VX 4 (where R represents an aliphatic hydrocarbon group, X represents a halogen atom, and 0≦n≦3) ) A method of copolymerizing ethylene and α-olefin having 3 or more carbon atoms in a liquid phase using a catalyst formed from a soluble vanadium compound and an organoaluminum compound, in which the copolymerization is carried out continuously. At the same time, the concentration of vanadium compound in the polymerization system is set to 0.3 mmol or more per liquid phase, and the vanadium compound supplied to the polymerization system is
A copolymer having an ethylene content of 30 to 90 mol% and a number average molecular weight of 300 to 30,000 is produced by diluting it in a polymerization medium so that the concentration is 5 times or less than the vanadium compound concentration in the polymerization system. A method for producing a low molecular weight copolymer.
JP260381A 1981-01-13 1981-01-13 Production of low-molecular weight copolymer Granted JPS57123205A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP260381A JPS57123205A (en) 1981-01-13 1981-01-13 Production of low-molecular weight copolymer
EP82300109A EP0060609B2 (en) 1981-01-13 1982-01-08 Process for producing an ethylene/alpha-olefin copolymer
DE8282300109T DE3270823D1 (en) 1981-01-13 1982-01-08 Novel ethylene/alpha-olefin copolymer
CA000393987A CA1169102A (en) 1981-01-13 1982-01-12 Ethylene/alpha-olefin copolymer
US08/091,733 US6153807A (en) 1981-01-13 1993-07-14 Process for producing ethylene/alpha-olefin copolymer
US08/098,236 US5955639A (en) 1981-01-13 1993-07-29 Ethylene/alpha-olefin copolymer
US08/449,282 US5767331A (en) 1981-01-13 1995-05-24 Ethylene/alpha-olefin copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP260381A JPS57123205A (en) 1981-01-13 1981-01-13 Production of low-molecular weight copolymer

Publications (2)

Publication Number Publication Date
JPS57123205A JPS57123205A (en) 1982-07-31
JPH021163B2 true JPH021163B2 (en) 1990-01-10

Family

ID=11533958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP260381A Granted JPS57123205A (en) 1981-01-13 1981-01-13 Production of low-molecular weight copolymer

Country Status (1)

Country Link
JP (1) JPS57123205A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7795194B2 (en) 2004-11-26 2010-09-14 Mitsui Chemicals, Inc. Synthetic lubricating oil and lubricating oil composition
WO2018131543A1 (en) 2017-01-16 2018-07-19 三井化学株式会社 Lubricant oil composition for automobile gears
US10040884B2 (en) 2014-03-28 2018-08-07 Mitsui Chemicals, Inc. Ethylene/α-olefin copolymers and lubricating oils
US10227543B2 (en) 2014-09-10 2019-03-12 Mitsui Chemicals, Inc. Lubricant compositions
WO2022154126A1 (en) 2021-01-18 2022-07-21 三井化学株式会社 AQUEOUS DISPERSION COMPOSITION, METHOD FOR PRODUCING SAID AQUEOUS DISPERSION COMPOSITION, AND ACID-MODIFIED ETHYLENE·α-OLEFIN COPOLYMER
WO2022186053A1 (en) 2021-03-05 2022-09-09 三井化学株式会社 Thermoplastic elastomer composition
US11767404B2 (en) 2018-03-07 2023-09-26 Mitsui Chemicals, Inc. Resin composition for masterbatch

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4540753A (en) * 1983-06-15 1985-09-10 Exxon Research & Engineering Co. Narrow MWD alpha-olefin copolymers
US4668834B1 (en) * 1985-10-16 1996-05-07 Uniroyal Chem Co Inc Low molecular weight ethylene-alphaolefin copolymer intermediates
JPS63196690A (en) * 1987-02-12 1988-08-15 Mitsui Petrochem Ind Ltd Lubricating oil composition
JPS63210198A (en) * 1987-02-27 1988-08-31 Idemitsu Kosan Co Ltd Multigrade engine oil composition
JP2546795B2 (en) * 1987-02-27 1996-10-23 出光興産株式会社 Lubricating oil composition
JPS63227697A (en) * 1987-03-17 1988-09-21 Shin Etsu Chem Co Ltd Tacky grease composition
CN1086721C (en) * 1994-10-24 2002-06-26 旭化成株式会社 Polyoxymethylene resin composition
US20230365733A1 (en) 2020-10-15 2023-11-16 Mitsui Chemicals, Inc. Organosilicon compound graft copolymer and rubber composition for tire including the copolymer

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7795194B2 (en) 2004-11-26 2010-09-14 Mitsui Chemicals, Inc. Synthetic lubricating oil and lubricating oil composition
US10040884B2 (en) 2014-03-28 2018-08-07 Mitsui Chemicals, Inc. Ethylene/α-olefin copolymers and lubricating oils
US10329366B2 (en) 2014-03-28 2019-06-25 Mitsui Chemicals, Inc. Ethylene/α-olefin copolymers and lubricating oils
US10227543B2 (en) 2014-09-10 2019-03-12 Mitsui Chemicals, Inc. Lubricant compositions
WO2018131543A1 (en) 2017-01-16 2018-07-19 三井化学株式会社 Lubricant oil composition for automobile gears
US11155768B2 (en) 2017-01-16 2021-10-26 Mitsui Chemicals, Inc. Lubricant oil compositions for automotive gears
US11767404B2 (en) 2018-03-07 2023-09-26 Mitsui Chemicals, Inc. Resin composition for masterbatch
WO2022154126A1 (en) 2021-01-18 2022-07-21 三井化学株式会社 AQUEOUS DISPERSION COMPOSITION, METHOD FOR PRODUCING SAID AQUEOUS DISPERSION COMPOSITION, AND ACID-MODIFIED ETHYLENE·α-OLEFIN COPOLYMER
WO2022186053A1 (en) 2021-03-05 2022-09-09 三井化学株式会社 Thermoplastic elastomer composition

Also Published As

Publication number Publication date
JPS57123205A (en) 1982-07-31

Similar Documents

Publication Publication Date Title
US5767331A (en) Ethylene/alpha-olefin copolymer
US6642169B2 (en) Polymerisation catalysts
US5420372A (en) Alpha-olefin oligomers useful as base stocks and viscosity index improvers, and lubricating oils containing same and method of making the oligomers
JPH021163B2 (en)
US7820607B2 (en) Viscosity modifier for lubricating oils, additive composition for lubricating oils, and lubricating oil compositions
US7129306B2 (en) Process for the oligomerization of α-olefins having low unsaturation
US5315053A (en) Normally liquid alpha-olefin oligomers useful as base stocks and viscosity index improvers, and lubricating oils containing same
US4613712A (en) Alpha-olefin polymers as lubricant viscosity properties improvers
CA2292387A1 (en) Process for producing olefin polymer with long chain branching
US3113167A (en) High viscosity synthetic lubricants from alpha-olefins
EP0998500B1 (en) Polymerisation catalysts
NO822831L (en) PROCEDURE FOR THE PREPARATION OF ALFA-OLEPHINE COPOLYMERS
JPH027998B2 (en)
JPS61221207A (en) Production of liquid alpha-olefin copolymer
EP1464655A1 (en) PROCESS FOR PRODUCING LOW POLYMER OF a-OLEFIN
RU2185390C2 (en) Process of production of ethylene/propylene and ethylene/propylene/diene copolymers
US4469910A (en) Method for the oligomerization of alpha-olefins
US4642410A (en) Catalytic poly alpha-olefin process
EP0139343B1 (en) Method for the oligomerization of alpha-olefins
US3090821A (en) Preparation of viscous polymers
US10870098B2 (en) Method of inhibiting reactor fouling and oligomerisation of olefin using the same
US2965691A (en) Preparation of viscous polymers
CA2152492A1 (en) A method to oligomerize c4 olefins together with linear alpha olefins
JPS6043393B2 (en) synthetic lubricant
KR102275019B1 (en) Alphaolefin oligomer having low short chain branching and preparation method thereof