JPH027788B2 - - Google Patents

Info

Publication number
JPH027788B2
JPH027788B2 JP57007233A JP723382A JPH027788B2 JP H027788 B2 JPH027788 B2 JP H027788B2 JP 57007233 A JP57007233 A JP 57007233A JP 723382 A JP723382 A JP 723382A JP H027788 B2 JPH027788 B2 JP H027788B2
Authority
JP
Japan
Prior art keywords
surface roughness
finished surface
screen
menus
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57007233A
Other languages
Japanese (ja)
Other versions
JPS58126039A (en
Inventor
Junichi Kamata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57007233A priority Critical patent/JPS58126039A/en
Publication of JPS58126039A publication Critical patent/JPS58126039A/en
Publication of JPH027788B2 publication Critical patent/JPH027788B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4093Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine
    • G05B19/40937Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine concerning programming of machining or material parameters, pocket machining
    • G05B19/40938Tool management
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/36Nc in input of data, input key till input tape
    • G05B2219/36129Menu keys, function of keys soft defined
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は数値制御加工機械(以下NC加工機械
という)の仕上面粗度設定方式に関するものであ
る。 NC加工機械は、被加工物に対する工具の位置
をそれに対応する数値情報で指令制御し、被加工
物の加工を行なうものであり、NC加工機械によ
れば、複雑な形状のものを容易かつ高精度に加工
することができ、さらに生産性を向上させること
ができる。そして、NC加工機械においては、加
工に先立つて予め仕上面粗度を設定する必要があ
り、この仕上面粗度の設定は重要なことである。 しかし、従来のNC加工機械においては、仕上
面粗度の設定が煩雑であるという問題があつた。
すなわち、従来のNC加工機械においては、オペ
レータは、指図書によつて指示された仕上面粗度
を得るために、主軸の送り速度及び主軸回転数を
複雑な計算によつて求めその値を数値キーで入力
しており、仕上面粗度の設定が実際の加工現場で
オフラインにより行なわれていたので、仕上面粗
度の設定が煩雑であるという欠点があつた。 本発明は前記従来の課題に鑑み為されたもので
あり、その目的は、仕上面粗度を自動的に設定す
ることができるNC加工機械の仕上面粗度設定方
式を提供することにある。 前記目的を達成するために、本発明は、複数種
類の仕上面粗度のメニユーを画面上の数コラムに
表示するデイスプレイと、メニユーに対応して設
けられた複数個のキースイツチと、を有し、デイ
スプレイの画面上に表示される複数種類の仕上面
粗度から対応する一つのキースイツチの操作によ
つて所望の仕上面粗度を選択指定すると、当該仕
上面粗度を得るために必要な加工条件である加工
工具の主軸1回転あたりの工具送り量が選択され
た仕上面粗度と加工工具のノーズ半径とから自動
的に演算され、所望の仕上面粗度を自動的に設定
することができることを特徴とする。 以下、図面に基づいて本発明の好適な実施例を
説明する。 第1図には、本発明の実施例による操作ボード
の構成が示されている。 第1図において、操作ボード10には、デイス
プレイとしてのCRT12が設けられ、CRT12
の画面は、例えば24行80列の文字が表示されるよ
う構成されている。さらに、CRT12の画面内
の下部には、メニユー14−1,14−2,…,
14−9を数コラムに表示するメニユー表示部1
4がリザーブされている。また、CRT12の下
部には、前記メニユー14−1,14−2,…,
14−9を選択するためのキースイツチ16−1
+16−2,…,16−9が、メニユー14−
1,14−2,…,14−9に対応して設けられ
ている。 第2図には、複数種類の仕上面粗度のメニユー
14−1,14−2,…,14−9がCRT12
の画面上に表示された状態が示されている。ここ
で、第2図のメニユー14−1,…,14−9
は、表1の面粗さコード、面粗さ(μ)、三角信
号を参考にして定められている。なお、表1は、
毎回転送り(主軸の1回転当りの工具の送りをい
う)の場合であり、面粗さコードは、研削ぬすみ
無しの場
The present invention relates to a finishing surface roughness setting method for numerically controlled processing machines (hereinafter referred to as NC processing machines). NC processing machines control the position of the tool relative to the workpiece using corresponding numerical information to process the workpiece. According to NC processing machines, it is possible to easily and efficiently machine objects with complex shapes. It can be processed with precision and productivity can be further improved. In NC machining machines, it is necessary to set the finished surface roughness in advance prior to machining, and setting the finished surface roughness is important. However, conventional NC machining machines have had the problem that setting the finished surface roughness is complicated.
In other words, in conventional NC processing machines, in order to obtain the finished surface roughness specified in the instructions, the operator calculates the spindle feed rate and spindle rotation speed through complex calculations, and calculates the values numerically. Since input was made using keys, and the setting of the finished surface roughness was done off-line at the actual processing site, there was a drawback that setting the finished surface roughness was complicated. The present invention has been made in view of the above-mentioned conventional problems, and its purpose is to provide a finished surface roughness setting method for an NC processing machine that can automatically set the finished surface roughness. In order to achieve the above object, the present invention includes a display that displays menus of a plurality of types of finished surface roughness in several columns on the screen, and a plurality of key switches provided corresponding to the menus. When a desired surface roughness is selected and specified from multiple types of surface roughness displayed on the display screen by operating a corresponding key switch, the processing necessary to obtain the desired surface roughness is displayed. The tool feed amount per spindle rotation of the machining tool, which is a condition, is automatically calculated from the selected finished surface roughness and the nose radius of the machining tool, and the desired finished surface roughness can be automatically set. It is characterized by what it can do. Hereinafter, preferred embodiments of the present invention will be described based on the drawings. FIG. 1 shows the configuration of an operation board according to an embodiment of the present invention. In FIG. 1, the operation board 10 is provided with a CRT 12 as a display.
The screen is configured to display, for example, 24 rows and 80 columns of characters. Furthermore, at the bottom of the screen of the CRT 12, menus 14-1, 14-2,...,
Menu display section 1 that displays 14-9 in several columns
4 is reserved. Also, at the bottom of the CRT 12, the menus 14-1, 14-2,...,
Key switch 16-1 for selecting 14-9
+16-2,...,16-9 are menu 14-
1, 14-2, . . . , 14-9. In Figure 2, menus 14-1, 14-2, ..., 14-9 for multiple types of finished surface roughness are displayed on the CRT12.
The state displayed on the screen is shown. Here, the menus 14-1,..., 14-9 in FIG.
is determined with reference to the surface roughness code, surface roughness (μ), and triangular signal in Table 1. In addition, Table 1 is
This is the case of every transfer (meaning the tool feed per rotation of the spindle), and the surface roughness code is the case of no grinding undercut.

【表】 合である。 また、操作ボード10には、データ設定キー群
20が設けられ、データ設定キー群20により所
望のデータが入力される。 次に、仕上面粗度の設定方法を、第3図のフロ
ーチヤート、第1図、及び第2図に基づいて説明
する。 仕上面粗度を設定する場合は、加工プログラム
を入力していく過程で、仕上面粗度のデータを入
力する段になると、自動的に仕上面粗度メニユー
(第2図)がCRT画面上に表示される。すなわ
ち、第2図に示されるように、CRT12の画面
上には、複数種類の仕上面粗度のメニユー14−
1,…,14−9が表示される。操作者は、画面
上の複数種類の仕上面粗度から所望の仕上面粗度
を選択して、所望の仕上面粗度のメニユーに対応
するキースイツチを操作する。例えば、「▽2」
を選択した場合には、メニユー14−2に対応す
るキースイツチ16−2を操作することとなる。
これにより、数値制御装置の所定の演算処理によ
つて、所望の仕上面粗度、例えば「▽2」を得る
ための加工機械の主軸の送り速度及び主軸回転数
が自動的に求められる。 以上のように、本発明の実施例によれば、所望
の仕上面粗度を得るための加工機械の主軸の送り
速度及び主軸回転数が自動的に求められるので、
所望の仕上面粗度を自動的に設定することができ
る。 次に、加工機械の主軸の送り速度及び主軸回転
数を求めるための所定の演算処理方法について説
明する。 第4図には、被加工物の仕上面が示されてお
り、 H:仕上面粗度(mm) F:毎回転送り(mm)、(主軸の1回転当りの工
具の送りをいう) r:工具のノーズR(mm) とすれば、H、F、rの間には、 H=F2/8r …(1) の関係がある。したがつて、上記(1)式によれば、
工具のノーズrは既知なので、仕上面粗度Hを指
示することにより毎回転送りFすなわち主軸の送
り速度が求められる。なお、主軸回転数は予め定
められているものとする。 以上の演算処理により、所望の仕上面粗度を得
るための加工機械の主軸の送り速度及び主軸回転
数が求められる。 以上説明したように、本発明によれば、所望の
仕上面粗度を得るための加工機械の加工条件、例
えば主軸の送り速度及ぼ主軸回転数が自動的に求
められるので、所望の仕上面粗度を自動的に設定
することができる。したがつて、仕上面粗度の設
定がオンラインで行なわれ、容易になるという利
点を有する。
[Table] Further, the operation board 10 is provided with a data setting key group 20, and desired data is inputted using the data setting key group 20. Next, a method for setting the finished surface roughness will be explained based on the flowchart of FIG. 3, FIGS. 1 and 2. When setting the surface roughness, when entering the machining program, the surface roughness menu (Figure 2) will automatically appear on the CRT screen when you enter the surface roughness data. will be displayed. That is, as shown in FIG.
1,..., 14-9 are displayed. The operator selects a desired finished surface roughness from a plurality of types of finished surface roughness on the screen, and operates a key switch corresponding to a menu of the desired finished surface roughness. For example, "▽2"
If , the key switch 16-2 corresponding to the menu 14-2 is operated.
As a result, the feed rate and rotational speed of the main spindle of the processing machine to obtain a desired finished surface roughness, for example "▽2", are automatically determined through predetermined arithmetic processing of the numerical control device. As described above, according to the embodiment of the present invention, the feed rate and spindle rotation speed of the main spindle of the processing machine to obtain the desired finished surface roughness are automatically determined.
Desired surface roughness can be automatically set. Next, a predetermined arithmetic processing method for determining the feed rate and rotational speed of the main spindle of the processing machine will be explained. Figure 4 shows the finished surface of the workpiece, where H: Finished surface roughness (mm) F: Each transfer (mm) (referring to the tool feed per spindle rotation) r : Tool nose R (mm) Then, there is a relationship between H, F, and r as follows: H=F 2 /8r...(1). Therefore, according to equation (1) above,
Since the nose r of the tool is known, by specifying the finished surface roughness H, the transfer rate F, that is, the feed rate of the main spindle, can be determined each time. Note that it is assumed that the spindle rotation speed is predetermined. Through the above calculation processing, the feed rate and rotational speed of the main spindle of the processing machine to obtain the desired finished surface roughness are determined. As explained above, according to the present invention, the processing conditions of the processing machine to obtain the desired finished surface roughness, such as the spindle feed rate and spindle rotation speed, are automatically determined, so that the desired finished surface roughness can be obtained. The degree can be set automatically. Therefore, it has the advantage that the finished surface roughness can be easily set online.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例による操作ボードの構
成説明図、第2図は複数種類の仕上面粗度のメニ
ユーがCRTの画面上に表示された状態を示す説
明図、第3図は仕上面粗度の設定方法を示すフロ
ーチヤート図、第4図は被加工物の仕上面を示す
説明図である。 各図中同一部材には同一符号を付し、10は操
作ボード、12はCRT、14−1,…,14−
9はメニユー、16−1,…,16−9はキース
イツチである。
Fig. 1 is an explanatory diagram of the configuration of an operation board according to an embodiment of the present invention, Fig. 2 is an explanatory diagram showing a menu of multiple types of finished surface roughness displayed on a CRT screen, and Fig. 3 is an explanatory diagram showing a state in which a menu of multiple types of finished surface roughness is displayed on a CRT screen. FIG. 4 is a flowchart showing a method for setting the surface roughness, and FIG. 4 is an explanatory diagram showing the finished surface of the workpiece. The same members in each figure are given the same reference numerals, 10 is the operation board, 12 is the CRT, 14-1,..., 14-
9 is a menu, and 16-1, . . . , 16-9 are key switches.

Claims (1)

【特許請求の範囲】[Claims] 1 複数種類の仕上面粗度のメニユーを画面上の
数コラムに表示するデイスプレイと、メニユーに
対応して設けられた複数個のキースイツチと、を
有し、デイスプレイの画面上に表示される複数種
類の仕上面粗度から対応する一つのキースイツチ
の操作によつて所望の仕上面粗度を選択指定する
と、当該仕上面粗度を得るために必要な加工条件
である加工工具の主軸1回転あたりの工具送り量
が選択された仕上面粗度と加工工具のノーズ半径
とから自動的に演算され、所望の仕上面粗度を自
動的に設定することができることを特徴とする数
値制御加工機械の仕上面粗度設定方式。
1 It has a display that displays menus of multiple types of finished surface roughness in several columns on the screen, and multiple key switches provided corresponding to the menus, and has multiple types of surface roughness displayed on the screen of the display. When a desired finished surface roughness is selected and specified by operating one of the corresponding key switches, the machining conditions required to obtain the desired finished surface roughness, which are the machining conditions per spindle rotation of the processing tool, are Finishing of a numerically controlled processing machine characterized in that the tool feed rate is automatically calculated from the selected finished surface roughness and the nose radius of the processing tool, and the desired finished surface roughness can be automatically set. Surface roughness setting method.
JP57007233A 1982-01-20 1982-01-20 Degree of surface roughness setting system for numerical control working machine Granted JPS58126039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57007233A JPS58126039A (en) 1982-01-20 1982-01-20 Degree of surface roughness setting system for numerical control working machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57007233A JPS58126039A (en) 1982-01-20 1982-01-20 Degree of surface roughness setting system for numerical control working machine

Publications (2)

Publication Number Publication Date
JPS58126039A JPS58126039A (en) 1983-07-27
JPH027788B2 true JPH027788B2 (en) 1990-02-20

Family

ID=11660271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57007233A Granted JPS58126039A (en) 1982-01-20 1982-01-20 Degree of surface roughness setting system for numerical control working machine

Country Status (1)

Country Link
JP (1) JPS58126039A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0767659B2 (en) * 1986-09-04 1995-07-26 ソニー株式会社 Free curved surface machining information generation system considering finish surface roughness
JPH04331037A (en) * 1991-04-26 1992-11-18 Okuma Mach Works Ltd Numerical control system
EP1048400A1 (en) * 1998-08-28 2000-11-02 Mori Seiki Co., Ltd. Method and apparatus for optimizing nc programs in nc machining
WO2020217498A1 (en) * 2019-04-26 2020-10-29 三菱電機株式会社 Machining condition determination assistance device and machining condition determination device
WO2024062607A1 (en) * 2022-09-22 2024-03-28 ファナック株式会社 Machine tool control device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52112181A (en) * 1976-03-17 1977-09-20 Daihatsu Motor Co Ltd Method of putting fixed cycles in nc machine tool

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52112181A (en) * 1976-03-17 1977-09-20 Daihatsu Motor Co Ltd Method of putting fixed cycles in nc machine tool

Also Published As

Publication number Publication date
JPS58126039A (en) 1983-07-27

Similar Documents

Publication Publication Date Title
KR850000362B1 (en) Background of the invention
US4788636A (en) Interactive device for entering graphic data
US4794514A (en) NC program editing method for four-axis lathes
JPH03265906A (en) Programming system for interactive numerical controller
JP4059411B2 (en) NC machine tool controller
JPH027788B2 (en)
EP0425674A1 (en) Automatic tool selecting system
JPH06202721A (en) Numerical control information generating device
KR890001355B1 (en) Numerical control device
US5270940A (en) Contour configuration machining method
EP0397884B1 (en) Profile-shape machining system
EP0519077A1 (en) Conversational type numerical control device
EP0453570A1 (en) Nc program preparation method of interactive numeric controller or automatic programming apparatus
JPS5882308A (en) Display controlling method for work information of numerical control machine tool
JPS58143941A (en) Numerically controlled processing system
JPS61257740A (en) Tool selection system
JP2618724B2 (en) NC data creation method and apparatus
EP0455816A1 (en) End shape data input system
JPH04201046A (en) Preparation device for work data
JPH04256545A (en) Tool automatic decision of interactive numerical control device
JPS62292309A (en) Pocket working method
JPH079302A (en) Single item machining method of machining center or the like
JPH03156507A (en) Programming system for interactive numerical controller or automatic programming device
EP0394454A1 (en) Surface notching
JPH10138133A (en) Multiple groove grinding method by nc grinding machine, and nc grinding machine