JPH027565A - Metal base transistor - Google Patents

Metal base transistor

Info

Publication number
JPH027565A
JPH027565A JP15866288A JP15866288A JPH027565A JP H027565 A JPH027565 A JP H027565A JP 15866288 A JP15866288 A JP 15866288A JP 15866288 A JP15866288 A JP 15866288A JP H027565 A JPH027565 A JP H027565A
Authority
JP
Japan
Prior art keywords
base
collector
emitter
interface
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15866288A
Other languages
Japanese (ja)
Inventor
Hideaki Fujitani
秀章 藤谷
Jiro Matsuo
二郎 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP15866288A priority Critical patent/JPH027565A/en
Publication of JPH027565A publication Critical patent/JPH027565A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To enable the barrier height between a base and an emitter and between the base and a collector by constituting the crystal orientation relationship between a semiconductor crystal and a metal crystal on a base-emitter interface different from that of a base-collector interface. CONSTITUTION:An interface created by allowing NiSi2 to be subject to epitaxial growth on (111) surface of Si is available in structures. namely A-type structure where growth is made with the c-axis direction of Si and that of NiSi2 being the same and B type where growth is made in double crystal type being rotated by 180 degrees around the axis which is perpendicular to the (111) surface. Approximately 20Angstrom Ni is accumulated on an Si substrate by the MBE and an NiSi2 layer is produced on a substrate when annealing is performed at approximately 450 deg.C with the interface becoming A-type. Ni is accumulated on the NiSi2 layer below 350 deg.C by the MBE up to a thickness of approximately 200Angstrom and Si is accumulated on it up to a thickness of approximately 2000Angstrom below 350 deg.C. Then, the NiSi2 layer and the Si layer above becomes the B-type interface. Thus, it is possible to make the barrier height between the base and the collector to be lower than that between the base and the emitter and to obtain an improved transistor characteristics.

Description

【発明の詳細な説明】 〔概要〕 金属ベーストランジスタに関し。[Detailed description of the invention] 〔overview〕 Regarding metal-based transistors.

ベースを一種の金属材料でエミッタとコレクタを同一種
の半導体材料で形成して、しかもベースエミッタ間の障
壁高さがペースエミッタ間の障壁高さと異なる金属ベー
ストランジスタの実現を目的とし。
The aim is to realize a metal-based transistor in which the base is formed of one kind of metal material, the emitter and collector are formed of the same kind of semiconductor material, and the barrier height between the base and emitter is different from the barrier height between the base and emitters.

同一種の半導体材料からなるエミッタ4及びコレクタ2
と、該エミッタと該コレクタに挟まれた一種の金属材料
からなるベース3とを有する金属ベーストランジスタで
あって、ベースエミッタ界面における該半導体結晶と該
金属結晶との結晶方位関係がベースコレクタ界面におけ
る該半導体結晶と該金属結晶との結晶方位関係と異なる
ことにより、ベースエミッタ間の障壁高さがベースコレ
クタ間の障壁高さと異なっていることを特徴とする金属
ベーストランジスタにより構成する。
Emitter 4 and collector 2 made of the same type of semiconductor material
and a base 3 made of a kind of metal material sandwiched between the emitter and the collector, wherein the crystal orientation relationship between the semiconductor crystal and the metal crystal at the base-emitter interface is such that the crystal orientation relationship at the base-collector interface is A metal base transistor characterized in that a base-emitter barrier height is different from a base-collector barrier height due to a different crystal orientation relationship between the semiconductor crystal and the metal crystal.

〔産業上の利用分野〕[Industrial application field]

本発明は金属ベース 第3図に金属ベース す。第3図において。 The invention is based on metal Figure 3 shows the metal base. vinegar. In fig.

21はコレクタ電極。21 is a collector electrode.

トランジスタに関する。Regarding transistors.

トランジスタの断面図を示 1は基板、2はコレクタ。A cross-sectional view of a transistor is shown. 1 is the board, 2 is the collector.

3はベース、31はベース 電極、4はエミッタ、41はエミッタ電極を表す。3 is base, 31 is base 4 represents an emitter, and 41 represents an emitter electrode.

従来、金属と半導体の間に形成されるショットキー障壁
高さは、物質特有の性質で決定されると考えられていた
。このため、コレクタ2.ベース3、エミッタ4が半導
体、金属、半導体の順に積層されてなる金属ベーストラ
ンジスタのベースエミッタ間、及びベースコレクタ間の
障壁高さはベースに用7いる金属とベース、コレクタに
用いる半導体で決まり、エミッタ晶とコレクタに同一種
の半導体材料を用い、ベースに一種の金属材料を用いる
時はベースエミッタ間、及びベースコレクタ間で同一の
障壁高さになると考えられていた。
Conventionally, it was thought that the height of the Schottky barrier formed between a metal and a semiconductor was determined by the properties specific to the material. For this reason, collector 2. The barrier heights between the base emitter and between the base and collector of a metal base transistor in which the base 3 and emitter 4 are stacked in the order of semiconductor, metal, and semiconductor are determined by the metal used for the base and the semiconductor used for the base and collector. It was thought that when the same type of semiconductor material is used for the emitter crystal and the collector and the same type of metal material is used for the base, the barrier height will be the same between the base emitter and between the base collector.

したがって、ベースエミッタ間の障壁高さとベースコレ
クタ間の障壁高さを変えるためには、エミッタに用いる
半導体とコレクタに用いる半導体の材料を違えるか、ベ
ースに用いる金属層を2種類の金属の複合層にする奔し
かなかった。
Therefore, in order to change the barrier height between the base emitter and the base collector, the semiconductor used for the emitter and the semiconductor used for the collector may be made of different materials, or the metal layer used for the base may be a composite layer of two types of metals. I had no choice but to do something.

〔従来の技術〕[Conventional technology]

従来の金属ベーストランジスタは第4図に示すようなバ
ンド構造を持っている。第4図において。
A conventional metal base transistor has a band structure as shown in FIG. In Fig. 4.

Ecは伝導帯下端エネルギー、Evは価電子帯上端エネ
ルギーを表す。
Ec represents the conduction band lower end energy, and Ev represents the valence band upper end energy.

ベースエミッタ間の障壁高さφ1は金属と半導体Iで決
まり、ベースコレクタ間の障壁高さφ2は金属と半導体
■で決まる。従って、φ1とφ2を違えるためには2組
成の異なる半導体1例えば。
The base-emitter barrier height φ1 is determined by the metal and the semiconductor I, and the base-collector barrier height φ2 is determined by the metal and the semiconductor ■. Therefore, in order to make φ1 and φ2 different, for example, semiconductors 1 with two different compositions are used.

半導体Iとしてシリコン、半導体■としてガリウム砒素
を用いる。また、エミッタとコレクタの半導体を同一種
の材料とし、ベースを2種類の金属の複合層から構成す
るようにして、φ1とφ2を違えることもできる。
Silicon is used as the semiconductor I, and gallium arsenide is used as the semiconductor (2). Alternatively, φ1 and φ2 can be made different by making the emitter and collector semiconductors of the same type of material and making the base a composite layer of two types of metals.

しかし、従来の構造では半導体■と半導体■でキャリア
の有効質量の違うことから生じるリーク電流の増加、ベ
ースの金属複合層の接合面の不完全による特性の劣化等
1問題点が多い。
However, the conventional structure has many problems, such as an increase in leakage current due to the difference in the effective mass of carriers between semiconductors (1) and (2), and deterioration of characteristics due to imperfections in the bonding surface of the base metal composite layer.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

もし、エミッタとコレクタを同一種の半導体で形成しベ
ースを一種の金属で形成して、且つベースエミッタ間の
障壁高さとベースコレクタ間の障壁高さを変えることが
できれば、エミッタとコレクタの中でのキャリアの有効
質量が等しいのでキャリアのロスがない、同一のドーパ
ントでエミッタとコレクタのフェルミレベルを同一にで
きる等。
If the emitter and collector are made of the same type of semiconductor, the base is made of a type of metal, and the barrier height between the base emitter and the base collector can be changed, then Since the effective mass of the carriers is the same, there is no loss of carriers, and the Fermi level of the emitter and collector can be made the same with the same dopant.

種々のメリットが生じる。Various benefits arise.

本発明はエミッタとコレクタを同一種の半導体で形成し
、ベースを一種の金属で形成して、且つベースエミッタ
間の障壁高さとベースコレクタ間の障壁高さを違えるこ
とを可能ならしめた金属ベーストランジスタを提供する
ものである。
The present invention provides a metal base in which the emitter and collector are formed from the same type of semiconductor, the base is formed from a type of metal, and the barrier height between the base and emitter and the barrier height between the base and collector can be made different. The present invention provides transistors.

〔課題を解決するための手段〕[Means to solve the problem]

同一種の半導体材料からなるエミッタ4及びコレクタ2
と、該エミッタと該コレクタに挟まれた一種の金属材料
からなるベース3とを有する金属ベーストランジスタで
あって、ベースエミッタ界面における該半導体結晶と該
金属結晶との結晶方位関係がベースコレクタ界面におけ
る該半導体結晶と該金属結晶との結晶方位関係と異なる
ことにより、ベースエミッタ間の障壁高さがベースコレ
クタ間の障壁高さと異なっている金属ベーストランジス
タにより、上記課題は解決される。
Emitter 4 and collector 2 made of the same type of semiconductor material
and a base 3 made of a kind of metal material sandwiched between the emitter and the collector, wherein the crystal orientation relationship between the semiconductor crystal and the metal crystal at the base-emitter interface is such that the crystal orientation relationship at the base-collector interface is The above problem is solved by a metal base transistor in which the base-emitter barrier height is different from the base-collector barrier height due to the difference in the crystal orientation relationship between the semiconductor crystal and the metal crystal.

〔作用〕[Effect]

ショットキー障壁高さは金属と半導体の接触によって半
導体のエネルギーギャップ内に形成される金属誘起準位
のエネルギー構造により決定される。この金属誘起準位
は物質の電気陰性度の相違と金属と半導体の界面の状態
により影響を受ける。
The Schottky barrier height is determined by the energy structure of the metal-induced level formed within the energy gap of the semiconductor due to the contact between the metal and the semiconductor. This metal-induced level is influenced by the difference in electronegativity of the substances and the state of the interface between the metal and the semiconductor.

このため、ベースエミッタ間の界面とベースコレクター
間の界面の構造を変えることにより、各界面の障壁高さ
を変えることが可能となる。
Therefore, by changing the structure of the interface between the base emitter and the interface between the base collector, it is possible to change the barrier height of each interface.

第1図に金属と半導体の積層構造の界面のタイプの一例
として、シリコン(Si )とニッケルシリサイド(N
iSi2 )の界面のタイプを示す。
Figure 1 shows silicon (Si) and nickel silicide (N) as an example of the type of interface in a metal and semiconductor stacked structure.
The type of interface of iSi2) is shown.

金属をN15iz +半導体をStとし9両者が界面(
111)をもって接している時9両者のエピタキシャル
整合の仕方は2種類ある。即ち、AタイプとBタイプと
があり、Siに対してAタイプのN15izとBタイプ
のNiSi2は双晶の関係にある。
The metal is N15iz + the semiconductor is St, and both are at the interface (
There are two types of epitaxial matching between the two. That is, there are A type and B type, and N15iz of the A type and NiSi2 of the B type have a twin crystal relationship with respect to Si.

Aタイプでは5iOC軸とNiSi2のC軸は平行であ
り、Bタイプでは平行でない。
In type A, the 5iOC axis and the C axis of NiSi2 are parallel, and in type B, they are not parallel.

本発明はかかる結晶方位関係を持つSiとNiSi2で
はその界面での障壁高さが異なるという新しい発見に基
づく。
The present invention is based on the new discovery that Si and NiSi2, which have such a crystal orientation relationship, have different barrier heights at the interface.

第2図に本発明の金属ベーストランジスタのバンド構造
を示す。第2図において、Ecは伝導帯下端エネルギー
、Evは価電子帯上端エネルギーを表す。金属と半導体
の界面を原子レベルで制御して、ベースエミッタ間の界
面の障壁高さφ1とベースコレクタ間の界面の障壁高さ
φ2を違える。
FIG. 2 shows the band structure of the metal base transistor of the present invention. In FIG. 2, Ec represents the lower end energy of the conduction band, and Ev represents the upper end energy of the valence band. The interface between the metal and the semiconductor is controlled at the atomic level to vary the barrier height φ1 at the base-emitter interface and the barrier height φ2 at the base-collector interface.

そのために、金属を1Jisi2 、半導体をSiとす
るとき、ベースエミッタ間の界面をBタイプの界面に、
ベースエミッタ間の界面をAタイプの界面にする。かく
して、φ1とφ2に差を生じて、φはφ2より0.14
eV大きくなる。その結果、エミッタ側からベースに入
って来た電子はコレクタ側に抜は易くなり、電流利得が
上がる。
For this purpose, when the metal is 1Jisi2 and the semiconductor is Si, the interface between the base and emitter is a B type interface,
The interface between the base and emitter is an A type interface. Thus, a difference is created between φ1 and φ2, and φ is 0.14 less than φ2.
eV increases. As a result, electrons that have entered the base from the emitter side are easily extracted to the collector side, increasing the current gain.

〔実施例〕〔Example〕

Siの(111)面にNiSi2がエピタキシャル成長
して作る界面にはAタイプとBタイプの2種類がある。
There are two types of interfaces, A type and B type, which are created by epitaxial growth of NiSi2 on the (111) plane of Si.

SiのC軸方向とNiSi2のC軸方向が同じ方向とな
るように成長するAタイプ構造と。
A type structure in which the C-axis direction of Si and the C-axis direction of NiSi2 grow in the same direction.

(111)面に垂直な軸の周りに180度回転した双晶
型に成長するBタイプ構造である。Aタイプの障壁高さ
は0.64eV、 Bタイプの障壁高さは0,78eV
となる。このため、ベースコレクタ界面をAタイプ、ベ
ースエミッタ界面をBタイプとなるようにする。それを
実現する方法を次に示す。
It is a B-type structure that grows in a twin-shaped structure rotated by 180 degrees around an axis perpendicular to the (111) plane. The barrier height of type A is 0.64eV, and the barrier height of type B is 0.78eV.
becomes. For this reason, the base-collector interface is made to be of type A, and the base-emitter interface is made to be of type B. Here's how to accomplish that.

Si基板に約20人のNiを分子線エピタキシー(MB
E)で積む。これを約450℃でアニールするとニッケ
ルシリサイド(NiSi2 )層が該基板上に生じて、
その界面はAタイプになる。該N15iz層の上にNi
を350℃以下の温度でMBEで積んで該N15iz層
を約200人に厚さまで増加させる。
Approximately 20 pieces of Ni were deposited on a Si substrate using molecular beam epitaxy (MB).
Load with E). When this is annealed at about 450°C, a nickel silicide (NiSi2) layer is formed on the substrate,
The interface becomes type A. Ni on the N15iz layer
The N15iz layer is increased to a thickness of about 200 by MBE at temperatures below 350°C.

該N15iz層の上に350℃以下の温度でSiを約2
000人の厚さにMBHにより積む。N15iz層とそ
の上のSi層の界面はBタイプの界面となる。
Approximately 20% Si is deposited on the N15iz layer at a temperature below 350°C.
Loaded by MBH to a thickness of 0,000 people. The interface between the N15iz layer and the Si layer thereon becomes a B type interface.

かくして+ Nl512層をベース、 Si層をエミッ
タ及びコレクタとし、ベースエミッタ間をBタイプの界
面、ベースコレクタ間をAタイプの界面とする金属ベー
ストランジスタを得ることができる。
In this way, a metal base transistor can be obtained in which the +Nl512 layer is used as a base, the Si layer is used as an emitter and collector, and the base-emitter is a B-type interface, and the base-collector is an A-type interface.

なお、 Si基板にNiをMBEで積み、約450℃で
アニールする時、Niの厚さが5人程度ではBタイプの
界面が実現し、50人を越えるとAタイプとBタイプの
両方の界面を持つ混晶となる。
Furthermore, when Ni is deposited on a Si substrate by MBE and annealed at approximately 450°C, a B-type interface is achieved when the Ni thickness is about 5 layers, and both A-type and B-type interfaces are achieved when the Ni thickness exceeds 50 layers. It becomes a mixed crystal with

〔発明の効果〕〔Effect of the invention〕

以上説明した様に9本発明によれば、エミッタとコレク
タを同一種の半導体材料から構成し、ベースを一種の金
属材料から構成するにもかかわらず、ベースコレクタ間
の障壁高さをベースエミッタ間の障壁高さより低くする
ことにより、ベースコレクタ界面の電子の反射を少なく
することが可能となり、良好なトランジスタ特性を持つ
金属ベーストランジスタを実現することができる。
As explained above, according to the present invention, even though the emitter and collector are made of the same type of semiconductor material and the base is made of a type of metal material, the barrier height between the base and the collector is changed between the base and the emitter. By making the barrier height lower than , it is possible to reduce the reflection of electrons at the base-collector interface, and it is possible to realize a metal base transistor with good transistor characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はSiとNiSi2の界面のタイプ。 第2図は本発明の金属ベーストランジスタのバンド構造
。 第3図は金属ベーストランジスタの断面図。 第4図は従来の金属ベーストランジスタのバンド構造 である。図において。 1は基板。 2はコレクタ。 21はコレクタ電極。 3はベース。 31はベース電極。 4はエミッタ。 41はエミンタ電極 A−タイプ (久) B−タイプ (閃 SiしN15L2のf4面のタイプ 第 1図 、i−iひ5月め企んペーストラン゛ブスタめバ′ント
J@i第 2y
Figure 1 shows the type of interface between Si and NiSi2. FIG. 2 shows the band structure of the metal base transistor of the present invention. FIG. 3 is a cross-sectional view of a metal base transistor. FIG. 4 shows the band structure of a conventional metal base transistor. In fig. 1 is the board. 2 is the collector. 21 is the collector electrode. 3 is the base. 31 is a base electrode. 4 is the emitter. 41 is the emitter electrode A-type (long) B-type (f4 side type of flash Si N15L2)

Claims (1)

【特許請求の範囲】[Claims] 同一種の半導体材料からなるエミッタ(4)及びコレク
タ(2)と、該エミッタと該コレクタに挟まれた一種の
金属材料からなるベース(3)とを有する金属ベースト
ランジスタであって、ベースエミッタ界面における該半
導体結晶と該金属結晶との結晶方位関係がベースコレク
タ界面における該半導体結晶と該金属結晶との結晶方位
関係と異なることにより、ベースエミッタ間の障壁高さ
がベースコレクタ間の障壁高さと異なっていることを特
徴とする金属ベーストランジスタ。
A metal base transistor having an emitter (4) and a collector (2) made of the same type of semiconductor material, and a base (3) made of a kind of metal material sandwiched between the emitter and the collector, the base emitter interface being Since the crystal orientation relationship between the semiconductor crystal and the metal crystal at the base-collector interface is different from the crystal orientation relationship between the semiconductor crystal and the metal crystal at the base-collector interface, the base-emitter barrier height is different from the base-collector barrier height. A metal-based transistor characterized by:
JP15866288A 1988-06-27 1988-06-27 Metal base transistor Pending JPH027565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15866288A JPH027565A (en) 1988-06-27 1988-06-27 Metal base transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15866288A JPH027565A (en) 1988-06-27 1988-06-27 Metal base transistor

Publications (1)

Publication Number Publication Date
JPH027565A true JPH027565A (en) 1990-01-11

Family

ID=15676611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15866288A Pending JPH027565A (en) 1988-06-27 1988-06-27 Metal base transistor

Country Status (1)

Country Link
JP (1) JPH027565A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4953648A (en) * 1988-04-08 1990-09-04 Mazda Motor Corporation Rear wheel steering apparatus
JP2008130874A (en) * 2006-11-22 2008-06-05 Nissan Motor Co Ltd Electrode film/silicon carbide structure, silicon carbide schottky barrier diode, field effect transistor of metal-silicon carbide semiconductor structure, optimum method for forming electrode film, and method for manufacturing electrode film/silicon carbide structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4953648A (en) * 1988-04-08 1990-09-04 Mazda Motor Corporation Rear wheel steering apparatus
JP2008130874A (en) * 2006-11-22 2008-06-05 Nissan Motor Co Ltd Electrode film/silicon carbide structure, silicon carbide schottky barrier diode, field effect transistor of metal-silicon carbide semiconductor structure, optimum method for forming electrode film, and method for manufacturing electrode film/silicon carbide structure

Similar Documents

Publication Publication Date Title
JPH0342841A (en) Hetero-junction bipolar transistor
JPH01196873A (en) Silicon carbide semiconductor device
JPS5946414B2 (en) compound semiconductor device
JPH027565A (en) Metal base transistor
JPH07245314A (en) Bipolar transistor and its manufacture
JPS6353706B2 (en)
KR102275146B1 (en) Schottky diode and method for fabricating the same
US20030011000A1 (en) Bipolar transistor device and method for fabricating the same
JPS61274369A (en) Field effect type semiconductor device
JPH0314240A (en) Heterojunction bipolar transistor
JP2757364B2 (en) Semiconductor device
JP2001298031A (en) Junction-type bipolar transistor, its manufacturing method, and semiconductor integrated circuit device
JP2619734B2 (en) Semiconductor substrate and method of manufacturing the same
JP2621854B2 (en) High mobility transistor
JPS61189619A (en) Compound semiconductor device
JPS61241972A (en) Compound semiconductor device
JPS58196057A (en) Semiconductor device
JPH03159135A (en) Semiconductor device and its manufacture
JPS6164118A (en) Manufacture of semiconductor device
JPH0515312B2 (en)
JPS60136380A (en) Semiconductor device
JPS61110467A (en) Semiconductor device
JPH0666335B2 (en) Method for manufacturing silicon carbide Schottky junction field effect transistor
JPS61284968A (en) Hetero-structure element and manufacture thereof
JP2004221462A (en) Method of manufacturing semiconductor device