JPH0274615A - Carbon fiber-based porous hollow fiber membrane and production thereof - Google Patents

Carbon fiber-based porous hollow fiber membrane and production thereof

Info

Publication number
JPH0274615A
JPH0274615A JP1060648A JP6064889A JPH0274615A JP H0274615 A JPH0274615 A JP H0274615A JP 1060648 A JP1060648 A JP 1060648A JP 6064889 A JP6064889 A JP 6064889A JP H0274615 A JPH0274615 A JP H0274615A
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
polymer
acrylonitrile
thermally decomposable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1060648A
Other languages
Japanese (ja)
Inventor
Hiroaki Yoneyama
米山 弘明
Yoshihiro Nishihara
良浩 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP1060648A priority Critical patent/JPH0274615A/en
Publication of JPH0274615A publication Critical patent/JPH0274615A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Artificial Filaments (AREA)
  • Inorganic Fibers (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To obtain the subject hollow fiber membrane having excellent heat-resistance by mixing an acrylonitrile(AN) polymer, a thermally decomposable polymer and a solvent, spinning and drawing the mixture and subjecting the obtained AN hollow fiber to flame-resistant treatment and carbonization treatment to make a porous membrane. CONSTITUTION:An AN hollow fiber is produced by mixing (A) an AN polymer containing 90-100mol% of AN unit with (B) a thermally decomposable polymer decomposed at <=600 deg.C to form a low-molecular weight compound (preferably polystyrene, etc.) and (C) a solvent (preferably DMF, etc.) and spinning and drawing the mixture. The obtained hollow fiber is subjected to flame-resistant treatment and then carbonized at >=400 deg.C to make a porous membrane. The objective hollow fiber membrane produced by the above process contains small pores continuously connected from the inner wall surface to the outer wall surface of the hollow fiber membrane, has a peak of the pore radius at 10-1,000nm (determined by a differential curve of pore volume) and a total pore volume of 0.1-1cm<3>/g, is bendable with a radius of curvature of <=10cm and exhibits a decomposition temperature of >=300 deg.C corresponding to the temperature to decompose 10wt.% of the hollow fiber membrane measured by TGA.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、耐熱性に優れた新規な炭素繊維系多孔質中空
糸膜およびその製法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a novel carbon fiber-based porous hollow fiber membrane with excellent heat resistance and a method for producing the same.

〔従来の技術〕[Conventional technology]

吸着分離のための活性炭素繊維は、既に数種のものが知
られている。例えば再生セルロース系繊維、アクリロニ
トリル系繊維、フェノール系繊維およびピッチ系繊維を
原料とするもの等である。繊維状活性炭は粒状活性炭に
比較して、接触面積が著しく大きく、吸着や脱着の速度
が早い等の形態上の利点が多い。さらに中空糸にするこ
とKより、吸着、脱着等の繁雑な工程から解放され、流
体を加圧下で中空糸内部を通過させるだけで、流体から
の分離を可能とし、省エネルギープロセスを可能とする
Several types of activated carbon fibers for adsorption separation are already known. Examples include those made from regenerated cellulose fibers, acrylonitrile fibers, phenol fibers, and pitch fibers. Fibrous activated carbon has many advantages over granular activated carbon, such as a significantly larger contact area and faster adsorption and desorption rates. Furthermore, by using hollow fibers, it is freed from complicated processes such as adsorption and desorption, and by simply passing the fluid through the inside of the hollow fibers under pressure, it is possible to separate the fluid from the fluid, making an energy-saving process possible.

一方、中空状活性炭素繊維については、特開昭48−8
7121号公報に中空率10〜80%で、比表面積40
0 m27g以上の炭素材中にボイドを形成した、気体
や液体中の微量物質を吸着する機能を有する、中空繊維
が開示されている。この中空繊維の製法は、フェノール
を原料とする繊維のスキン部分を架橋させ、未架橋のコ
ア部を溶媒で溶出して得た中空繊維を炭素化し、さらに
水蒸気等の酸化性ガスで賦活処理して多孔質化する方法
である。そのため細孔半径も10〜20Xのミクロ孔で
あり、しかも得られる中空繊維の中空部は均一性に欠は
流体抵抗が大きく、透過速度も小さいものである。
On the other hand, regarding hollow activated carbon fiber, Japanese Patent Application Laid-Open No. 48-8
Publication No. 7121 has a hollow ratio of 10 to 80% and a specific surface area of 40%.
A hollow fiber is disclosed in which voids are formed in a carbon material of 0 m27 g or more and has the function of adsorbing trace substances in gas or liquid. The manufacturing method for this hollow fiber is to crosslink the skin part of a fiber made from phenol, elute the uncrosslinked core part with a solvent, carbonize the obtained hollow fiber, and then activate it with an oxidizing gas such as water vapor. This method makes the material porous. Therefore, the pore radius is micropores of 10 to 20×, and the hollow portions of the hollow fibers obtained lack uniformity, have high fluid resistance, and have a low permeation rate.

特開昭58−91826号公報には、ピッチ系中空炭素
繊維が開示されているが、中空内径が10μm以下と小
さく、膜壁への細孔もな(、分離膜を意図したものでは
ない。
JP-A-58-91826 discloses a pitch-based hollow carbon fiber, but the hollow inner diameter is as small as 10 μm or less, and there are no pores in the membrane wall (it is not intended as a separation membrane.

また特開昭60−179102号公報および特開昭60
−202703号公報には多層構造の炭素膜が開示され
ているが、前者の炭素膜は、微多孔質緻密層を少なくと
も一層有し、また少なくとも一層は透過速度を早める為
の大きな細孔を有し、しかも多層構造全体としての配向
係数が0.7と小さいものである。さらに後者の炭素膜
も、分離能を有する多孔質層と透過速度を早めるための
最大孔直径5μm以上のボイドな有するスポンジ構造の
多孔質層とからなるものであり、極めて脆弱な膜構造で
あり実用に耐えないものである。
Also, JP-A-60-179102 and JP-A-60
Publication No. 202703 discloses a carbon membrane with a multilayer structure, but the former carbon membrane has at least one microporous dense layer, and at least one layer has large pores to accelerate the permeation rate. Moreover, the orientation coefficient of the multilayer structure as a whole is as small as 0.7. Furthermore, the latter carbon membrane also has an extremely fragile membrane structure, consisting of a porous layer with separation ability and a sponge-structured porous layer with voids with a maximum pore diameter of 5 μm or more to accelerate the permeation rate. It is impractical.

さらに特開昭61−47827号公報には、ポリビニル
アルコール系繊維からの炭素化中空繊維が開示されてい
るが、脱水剤を表層部のみに浸透させ、乾留工程で不融
化し、脱水剤の浸透しなかった中心部分を溶融除去して
中空状とするものであり、しかも、水蒸気で賦活処理し
て多孔質中空炭素繊維を製造するものである。
Furthermore, Japanese Patent Application Laid-open No. 61-47827 discloses carbonized hollow fibers made from polyvinyl alcohol fibers, in which a dehydrating agent is infiltrated only into the surface layer, and the dehydrating agent is infusible in the carbonization process. The remaining central portion is melted and removed to make it hollow, and the porous hollow carbon fiber is produced by activation treatment with steam.

また特開昭63−4812号公報には、孔を有する炭素
膜の製法として、予め抽出法で孔を設けた中空糸膜をヒ
ドラジン水溶液で処理してから耐炎化および炭素化する
ことが提案されている。
Furthermore, JP-A No. 63-4812 proposes a method for producing a carbon membrane with pores, in which a hollow fiber membrane in which pores have been previously formed by an extraction method is treated with an aqueous hydrazine solution, and then flame-resistant and carbonized. ing.

しか1−ながらこれらの従来技術からの多孔質中空炭素
繊維は、孔の形態はいずれも1〜5 nmのミクロ孔が
多(また実用見地からは強度等の物性が不足している。
However, these porous hollow carbon fibers from the prior art have many micropores with a size of 1 to 5 nm (and from a practical standpoint, they lack physical properties such as strength).

従来技術による活性炭素繊維および多孔質中空炭素繊維
の細孔の平均半径は、何れも1〜5nmと小さいため、
分子量が比較的小さい物質の気相からの吸着や分離には
適するが、本発明が意図する比較的大きい分子量を有す
る物質の気相や液相からの吸着、分離には適さない。ま
た、これら従来技術による繊維はその伸度が低く、しな
やかさに欠けるものがほとんどである。
The average radius of the pores of activated carbon fibers and porous hollow carbon fibers according to the prior art are both as small as 1 to 5 nm.
Although it is suitable for the adsorption and separation of substances with a relatively small molecular weight from the gas phase, it is not suitable for the adsorption and separation of substances with a relatively large molecular weight from the gas and liquid phases as intended by the present invention. Furthermore, most of the fibers produced by these prior art techniques have low elongation and lack flexibility.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

かかる現状に鑑み、本発明は細孔半径が10〜1100
0nのマクロ孔と称される範囲に鋭いピークの細孔分布
を有する、炭素繊維系多孔質中空糸膜、およびその効率
的な製法を提供することにある。
In view of this current situation, the present invention has a pore radius of 10 to 1100.
The object of the present invention is to provide a carbon fiber-based porous hollow fiber membrane having a pore distribution with a sharp peak in a range called 0n macropores, and an efficient method for producing the same.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、中空糸膜の内壁表面から外壁表面に連続的に
つながった細孔を有し、細孔容積微分曲線から求めた細
孔半径の極大値が10〜1000 nmに存在し、全細
孔容積が0.1〜1crn3/Iで、屈曲時の曲率半径
が10cm以下であり、かつTGAにより測定した中空
糸膜の10重量%分解する温度が少なくとも約300°
Cである耐熱性に優れた炭素繊維系多孔質中空糸膜であ
る。
The present invention has pores that are continuously connected from the inner wall surface to the outer wall surface of the hollow fiber membrane, and the maximum value of the pore radius determined from the pore volume differential curve exists in the range of 10 to 1000 nm, and the total pore diameter is 10 to 1000 nm. The pore volume is 0.1 to 1 crn3/I, the radius of curvature when bent is 10 cm or less, and the temperature at which 10% by weight of the hollow fiber membrane decomposes as measured by TGA is at least about 300°.
It is a carbon fiber porous hollow fiber membrane with excellent heat resistance.

なお本発明の炭素繊維系多孔質中空糸膜はその単繊維の
引張伸度が少なくとも0.8%であることが好ましい。
In the carbon fiber porous hollow fiber membrane of the present invention, it is preferable that the tensile elongation of the single fibers is at least 0.8%.

本発明における細孔容積微分曲線から求めた細孔半径の
極大値とは、水銀圧入法により測定される円筒換算細孔
の細孔半径分布曲線の極大値を示すものである。また全
細孔容積は、細孔容積の累積値を示すものである。
The maximum value of the pore radius determined from the pore volume differential curve in the present invention refers to the maximum value of the pore radius distribution curve of cylindrical equivalent pores measured by mercury intrusion method. Further, the total pore volume indicates the cumulative value of pore volumes.

本発明の炭素繊維系多孔質中空糸膜の最も犬きな特色は
前記の中空糸膜の内壁表面から外壁表面に連通した細孔
を有し、しかも細孔容積微分曲線から求めた細孔半径の
極大値が10〜1D 00 nmであるため、従来の活
性炭素繊維に比較して大きな細孔半径を有するものであ
り、比較的大きい分子量を有する物質を含有する気相や
液相からの該物質の吸着、分離に好適である。
The most important feature of the carbon fiber porous hollow fiber membrane of the present invention is that it has pores that communicate from the inner wall surface to the outer wall surface of the hollow fiber membrane, and the pore radius determined from the pore volume differential curve. Since the maximum value of is 10 to 1D00 nm, it has a large pore radius compared to conventional activated carbon fibers, and it is difficult to absorb substances from the gas phase or liquid phase that contain substances with relatively large molecular weights. Suitable for adsorption and separation of substances.

しかも特に屈曲時の曲率半径が10crn以下であるた
め柔軟性にも優れたものである。炭素繊維系多孔質中空
糸膜が前記の種々の物性のいずれか一つでも満たされな
い場合には、本発明の目的とする多孔質中空糸膜として
の効果を発揮しに(いため好ましくない。
In addition, it has excellent flexibility, especially since the radius of curvature when bent is 10 crn or less. If the carbon fiber-based porous hollow fiber membrane does not satisfy any one of the various physical properties described above, it is not preferable because it will not be able to exhibit the effects as a porous hollow fiber membrane that is the object of the present invention.

本発明の炭素繊維系多孔質中空糸膜を製造する好ましい
方法としては、例えばアクリロニトリル単位が90〜1
00モル%であるアクリロニトリル系重合体(A)と6
00°C以下の温度で熱分解して低分子量化する熱分解
性重合体(B)および溶剤(C)とを混合した後、紡糸
し、延伸して得たアクリロニトリル系中空繊維を耐炎化
処理し、次いで400℃以上の温度で炭素化処理して多
孔質化する方法が挙げられる。
As a preferable method for producing the carbon fiber porous hollow fiber membrane of the present invention, for example, the acrylonitrile unit is 90 to 1
00 mol% acrylonitrile polymer (A) and 6
The acrylonitrile-based hollow fiber obtained by mixing the pyrolyzable polymer (B), which is thermally decomposed to lower the molecular weight at a temperature of 00°C or less and the solvent (C), and then spinning and drawing, is subjected to flame-retardant treatment. An example of this method is to perform a carbonization treatment at a temperature of 400° C. or higher to make the material porous.

炭素繊維系多孔質中空糸膜を製造するに際しては、アク
リロニトリル系重合体(Nの溶解パラメーターδは一般
に15.4付近であり、また熱分解性重合体(B)のそ
れは9〜12.2の範囲のものがほとんどであることが
多く、お互いに相溶性に乏しい場合が多いため、アクリ
ロニトリル系重合体囚と熱分解性重合体(B)との組み
合わせ如何によっては、さらに任意成分として相溶剤(
D)を混合することによってお互いの相溶性を向上させ
ることができる。
When producing a carbon fiber porous hollow fiber membrane, the solubility parameter δ of the acrylonitrile polymer (N is generally around 15.4, and that of the thermally decomposable polymer (B) is 9 to 12.2. Most of them are within this range, and they are often poorly compatible with each other. Therefore, depending on the combination of the acrylonitrile polymer prisoner and the thermally decomposable polymer (B), a compatibilizer (
By mixing D), mutual compatibility can be improved.

本発明の実施に際して用いるアクリロニトリル系重合体
(A)とは、アクリロニトリル単位が90〜100モル
%と、アクリロニトリルと共重合可能な単量体0〜10
モル%とから構成されるアクリロニトリル単独重合体ま
たは共重合体である。共重合可能な単量体の具体例とし
ては、アクリル酸、メタクリル酸、イタコン酸およびそ
れらの誘導体、例えばメチルアクリレート、エチルアク
リレート、ベンジルアクリレート、メチルメタクリレー
ト、エチルメタクリレート等、またアクリルアミド、メ
タクリルアミド等のアミド誘導体、酢酸ビニル、塩化ビ
ニル、塩化ビニリデン等のハロゲン化単量体、メタクリ
ルスルホン酸ソーダやスチレンスルホン酸ソーダ等のス
ルホン酸誘導体等が挙げられるが、必ずしもこれらに限
定されるものでない。
The acrylonitrile polymer (A) used in the practice of the present invention includes 90 to 100 mol% of acrylonitrile units and 0 to 10% of monomers copolymerizable with acrylonitrile.
It is an acrylonitrile homopolymer or copolymer composed of mol%. Specific examples of copolymerizable monomers include acrylic acid, methacrylic acid, itaconic acid and derivatives thereof, such as methyl acrylate, ethyl acrylate, benzyl acrylate, methyl methacrylate, ethyl methacrylate, and acrylamide, methacrylamide, etc. Examples include amide derivatives, halogenated monomers such as vinyl acetate, vinyl chloride, and vinylidene chloride, and sulfonic acid derivatives such as sodium methacrylsulfonate and sodium styrene sulfonate, but are not necessarily limited to these.

アクリロニトリル系重合体(A)としてはポリアクリロ
ニトリル、アクリロニトリル−メタクリル酸共重合体、
アクリロニトリル−メチルアクリレート−イタコン酸共
重合体、アクリロニトリル−メチルアクリレート−メタ
クリル酸共重合体等が特に好ましい。アクリロニトリル
系重合体(ロ)の比粘度で示される重合度としては、比
粘度が0.1〜0.4特に0.2〜0.3の範囲のもの
が好ましい。この範囲を外れると、紡糸操作が困難にな
ったり、また紡糸して得られる繊維の性能も劣悪なもの
になったりする傾向があるため好ましくない。
As the acrylonitrile polymer (A), polyacrylonitrile, acrylonitrile-methacrylic acid copolymer,
Particularly preferred are acrylonitrile-methyl acrylate-itaconic acid copolymer, acrylonitrile-methyl acrylate-methacrylic acid copolymer, and the like. The degree of polymerization indicated by the specific viscosity of the acrylonitrile polymer (b) is preferably from 0.1 to 0.4, particularly from 0.2 to 0.3. If it is outside this range, it is not preferable because the spinning operation becomes difficult and the performance of the fiber obtained by spinning tends to be poor.

熱分解性重合体(B)とは、600℃以下の温度で熱分
解して低分子量化するものであり、かつアクリロニトリ
ル系重合体囚の溶剤に溶解し得るものである。このよう
な熱分解性重合体の具体例としては、スチレン、α−メ
チルスチレン、ビニルトルエン等の芳香族ビニル系単量
体、ビニルクロライド、ビニルアルコール、ビニルアセ
テート等の脂肪族ビニル系単量体、メチルメタクリレー
ト、エチルメタクリレート、n−メチルメタクリレート
等のメタクリレート系単量体等の単独重合体もしくはこ
れらの単量体単位51モル%以上と、アクリロニトリル
以外の他の共重合可能な単量体単位49モル%以下とか
ら構成される共重合体が挙げられる。特にスチレン系重
合体、ビニルクロライド系重合体、またはメチルメタク
リレート系重合体が好ましく・。
The thermally decomposable polymer (B) is one that is thermally decomposed at a temperature of 600° C. or lower to reduce its molecular weight, and is soluble in the solvent of the acrylonitrile polymer. Specific examples of such thermally decomposable polymers include aromatic vinyl monomers such as styrene, α-methylstyrene, and vinyltoluene, and aliphatic vinyl monomers such as vinyl chloride, vinyl alcohol, and vinyl acetate. , a homopolymer of methacrylate monomers such as methyl methacrylate, ethyl methacrylate, n-methyl methacrylate, or 51 mol% or more of these monomer units, and other copolymerizable monomer units other than acrylonitrile 49 Examples include copolymers composed of mol% or less. Particularly preferred are styrene polymers, vinyl chloride polymers, and methyl methacrylate polymers.

共重合可能な他の単量体の具体例としてはメチルアクリ
レート、エチルアクリレート、n−フチルアクリレート
等のアクリレート系単量体ならびにアクリル酸、メタク
リル酸等が挙げられる。
Specific examples of other copolymerizable monomers include acrylate monomers such as methyl acrylate, ethyl acrylate, and n-phthyl acrylate, as well as acrylic acid and methacrylic acid.

熱分解性重合体(B)の比粘度で示される重合度として
はアクリロニトリル系重合体(Alと混合分散液とする
とき粘度の調整を容易にするために上記アクリロニトリ
ル系重合体(A)の比粘度の測定法と同じ方法で求めら
れる比粘度が0,1〜0゜4特に0.2〜0.6の範囲
のものが好ましい。
The degree of polymerization indicated by the specific viscosity of the thermally decomposable polymer (B) is determined by adjusting the ratio of the acrylonitrile polymer (A) to facilitate adjustment of the viscosity when preparing a mixed dispersion with the acrylonitrile polymer (Al). It is preferable that the specific viscosity determined by the same method as the viscosity measuring method is in the range of 0.1 to 0.4, particularly 0.2 to 0.6.

溶剤(C)は、前記アクリロニトリル系重合体(Nおよ
び熱分解性重合体(B)ならびに相溶剤(D)に対して
共通の溶剤となり得るものである。このような溶剤(C
)としてはジメチルアセトアミド、ジメチルホルムアミ
ドおよびジメチルスルホキシド等が好ましい。
The solvent (C) can be a common solvent for the acrylonitrile polymer (N) and the thermally decomposable polymer (B) and the compatibilizer (D).
) is preferably dimethylacetamide, dimethylformamide, dimethylsulfoxide, or the like.

相溶剤(D)は、アクリロニ) IJル系重合体(A)
および熱分解性重合体CB)の両者に対して相溶効果を
示す相溶化剤となり得る重合体である。相溶効果を示す
ものとしてはオリゴマーのような低分子のものから高分
子のものまで種々あるが具体的にはアクリロニトリル系
重合体(A)と相溶性を有するか、あるいは同一の単量
体から構成されるセグメン) (a)と、同様に熱分解
性重合体(B)と相溶性を有するか、または同一の単量
体から構成されるセグメン) (b)とを、同一重合体
鎖中に含む重合体、例えばブロック共重合体あるいはグ
ラフト共重合体が好ましく用いられる。このようなブロ
ック共重合体或いはグラフト共重合体は公知の方法、例
えば特公昭61−39978号公報に記載のブロック共
重合体或いはグラフト共重合体の製造例の方法により製
造することができる。
Compatibility agent (D) is acrylonitrile) IJ-based polymer (A)
and thermally decomposable polymer CB), which can act as a compatibilizer that exhibits a compatibility effect with both. There are a variety of substances that exhibit a compatibility effect, from low molecular weight ones such as oligomers to high molecular weight ones, but specifically, those that are compatible with the acrylonitrile polymer (A), or those that are made from the same monomer. Segment composed of (a) and segment) (b) that is similarly compatible with the thermally decomposable polymer (B) or composed of the same monomer, in the same polymer chain. For example, a block copolymer or a graft copolymer is preferably used. Such a block copolymer or graft copolymer can be produced by a known method, for example, by the method described in Japanese Patent Publication No. 61-39978 as an example of producing a block copolymer or graft copolymer.

相溶剤(D)は、アクリロニトリル系重合体(A)と熱
分解性重合体(B)とを溶剤(C)と共に混合する際に
7クリロニトリル系重合体囚溶液と熱分解性重合体(B
)溶液とを均一な小さな分散粒子とし、得られる分散溶
液を安定な状態にする作用を有するものである。さらに
この相溶剤(D)は相溶効果を上げるばかりでなく、島
成分となる熱分解性重合体(B)の分散相としての大き
さの制御にも用いられ、このことは最終的に得られる炭
素繊維系多孔質中空糸膜の細孔径の基となる熱分解性重
合体(B)のフィブリルの大きさを制御することにつな
がる。従ってこの相溶剤(DJの使用量の多少は最終的
に得られる。多孔質中空糸膜の細孔半径の大小にも関係
し、その使用量が多くなると細孔の半径を小さくし、細
孔の大きさの分布を小さ(し、細孔半径が均一な分布傾
向となる。
The compatibilizer (D) is used to mix the acrylonitrile polymer (A) and the thermally decomposable polymer (B) together with the solvent (C).
) It has the effect of making the solution into uniform small dispersed particles and making the resulting dispersion solution stable. Furthermore, this compatibilizer (D) not only improves the compatibility effect, but also controls the size of the dispersed phase of the thermally decomposable polymer (B), which becomes the island component, which ultimately improves the compatibility effect. This leads to controlling the size of the fibrils of the thermally decomposable polymer (B), which is the basis of the pore diameter of the carbon fiber porous hollow fiber membrane. Therefore, the amount of compatibilizer (DJ) used depends on the final amount obtained.It is also related to the size of the pore radius of the porous hollow fiber membrane. The size distribution of the pores becomes small (and the pore radius tends to be uniformly distributed).

相溶剤(D)としてはアクリロニトリル60モル%以上
、熱分解性重合体(B)の構成成分である単量体10モ
ル%以上およびこれらと共重合可能な他の単量体10モ
ル%以下から構成されるブロック共重合体やグラフト共
重合体が好ましい。
The compatibilizer (D) includes 60 mol% or more of acrylonitrile, 10 mol% or more of monomers that are constituent components of the thermally decomposable polymer (B), and 10 mol% or less of other monomers copolymerizable with these. A block copolymer or a graft copolymer composed of these materials is preferred.

炭素繊維系多孔質中空糸膜を製造するに際してのアクリ
ロニトリル系重合体(A)、熱分解性重合体(B)およ
び相溶剤(DJの好ましい混合割合はアクリロニトリル
系重合体(A)が10〜90重量%好ましくは20〜8
0重量%、熱分解性重合体(B)が10〜90重量%好
ましくは20〜80重量%、相溶剤(D)が0〜・、1
0重量%好ましくは0〜5重量%〔ただしくA)成分、
(B)成分および(D)成分の合計量が100重量%〕
である。
When producing a carbon fiber porous hollow fiber membrane, the preferred mixing ratio of the acrylonitrile polymer (A), the thermally decomposable polymer (B), and the compatibilizer (DJ) is 10 to 90% of the acrylonitrile polymer (A). Weight% preferably 20-8
0% by weight, 10 to 90% by weight of the thermally decomposable polymer (B), preferably 20 to 80% by weight, and 0 to 1% of the compatibilizer (D)
0% by weight, preferably 0 to 5% by weight [with the exception of component A),
The total amount of component (B) and component (D) is 100% by weight]
It is.

熱分解性重合体(B)の混合量が10重量%より少ない
と、最終的に得られる多孔質中空糸膜の内壁表面から外
壁表面に連通ずる細孔が得られにくいので好ましくない
。また熱分解性重合体(B)の混合量が多くなるに従っ
て連通孔が増加し細孔容積も増加し、その混合量が90
重量%を超えると全細孔容積が大きくなり、その結果最
終的に得られる多孔質中空糸膜の強度が低下するので好
ましくない。
If the amount of the thermally decomposable polymer (B) mixed is less than 10% by weight, it is not preferable because it is difficult to obtain pores communicating from the inner wall surface to the outer wall surface of the porous hollow fiber membrane finally obtained. Furthermore, as the amount of the thermally decomposable polymer (B) mixed increases, the number of communicating pores increases and the pore volume also increases.
If it exceeds % by weight, the total pore volume increases, resulting in a decrease in the strength of the finally obtained porous hollow fiber membrane, which is not preferable.

相溶剤(D)はその混合量が増加するに従って分散粒子
の大きさが小さくなり、この結果、分散溶液の安定性が
増加する。そしてこのことは最終的に得られる多孔質中
空糸膜の細孔の半径を小さくし、細孔の大きさの分布を
小さくするのに寄与するが、その混合量が5重量%を超
えるとその添加効果は飽和するため5重量%までの混合
量で十分である。
As the mixing amount of the compatibilizer (D) increases, the size of the dispersed particles decreases, and as a result, the stability of the dispersion solution increases. This contributes to reducing the radius of the pores and the distribution of pore sizes in the porous hollow fiber membrane that is finally obtained, but if the mixing amount exceeds 5% by weight, Since the effect of addition is saturated, a mixing amount of up to 5% by weight is sufficient.

混合重合体と溶剤(C)との混合溶液中の重合体濃度は
10〜65重量%、好ましくは15〜30重量%である
。混合は溶解時に同時に行ってもよい。またそれぞれ単
独で溶解し、紡糸直前に公知の駆動部分不要の静的混練
素子等を用いて溶液同志の混合を行ってもよい。この場
合相溶剤(DJは必ずしも必要ではない。混合の効果は
エレメントの個数で制御される。即ち、エレメントの数
が多くなると最終的に得られる多孔質中空糸膜の細孔の
半径は小さくなる。
The polymer concentration in the mixed solution of mixed polymer and solvent (C) is 10 to 65% by weight, preferably 15 to 30% by weight. Mixing may be performed simultaneously during dissolution. Alternatively, each may be dissolved individually, and the solutions may be mixed together immediately before spinning using a known static kneading element that does not require a driving part. In this case, a compatibilizer (DJ is not necessarily required). The effect of mixing is controlled by the number of elements. In other words, as the number of elements increases, the radius of the pores of the porous hollow fiber membrane finally obtained becomes smaller. .

混合溶液中の重合体の濃度が10重量%より少ないと最
終的に得られる多孔質中空糸膜の強度特性が低下するた
め好ましくない。また35重量%を超えると混合溶液の
粘度が高くなり、混合溶液の安定性が欠け、濾過が困難
になる等のトラブルの要因となるため好ましくない。
If the concentration of the polymer in the mixed solution is less than 10% by weight, the strength characteristics of the finally obtained porous hollow fiber membrane will deteriorate, which is not preferable. Moreover, if it exceeds 35% by weight, the viscosity of the mixed solution becomes high, which causes problems such as lack of stability of the mixed solution and difficulty in filtration, which is not preferable.

混合分散溶液は、例えば環状スリット、あるいは硝石型
のノズル等を用いて中空状に紡糸する。紡糸方式は湿式
紡糸、乾湿式紡糸、乾式紡糸の何れかで紡糸することが
できるが、特に乾湿式紡糸が好ましい。
The mixed dispersion solution is spun into a hollow shape using, for example, an annular slit or a saltpeter-type nozzle. The spinning method can be any of wet spinning, wet-dry spinning, and dry spinning, and wet-dry spinning is particularly preferred.

乾湿式紡糸法で紡糸する場合を例にして説明すると、例
えば硝石型ノズルから吐出された溶液は、いったん空気
中を走行した後、凝固浴中に導かれ凝固される。凝固剤
は、比較的凝固力のゆるやかなものが、相分離も穏やか
に進み強靭な膜が得られやすいので好ましい。通常は溶
剤の水溶液が用いられ、溶剤濃度40〜85重量%特に
60〜80重量%、40℃以下特に20℃以下の温度で
凝固することが好ましい。この範囲を外れると脆弱な中
空糸膜と成りやすいので好ましくない。
To explain the case of spinning using a dry-wet spinning method, for example, a solution discharged from a saltpeter type nozzle once travels in the air, and then is introduced into a coagulation bath and coagulated. It is preferable to use a coagulant that has a relatively gentle coagulating force because phase separation proceeds gently and a strong film is easily obtained. Usually, an aqueous solution of a solvent is used, and the solvent concentration is preferably 40 to 85% by weight, particularly 60 to 80% by weight, and solidification is preferably carried out at a temperature of 40°C or lower, particularly 20°C or lower. If it is outside this range, it is not preferable because the hollow fiber membrane tends to be fragile.

次いで温水又は熱水中で洗浄され、延伸される。延伸は
二段階以上で施し、全延伸倍率3倍以上、好ましくは5
倍以上た延伸される。延伸は繊維の構造の破壊が生じな
い範囲で高いほど好ましいが全延伸倍率の上限は延伸法
、延伸媒体により異なるが、延伸破断が生じる延伸倍率
の約8割が目安となる。次いで得られた延伸糸は乾燥さ
れて、主にアクリロニトリル系重合体(ト)と熱分解性
重合体(B)とのブレンド中空糸膜が製造される。
It is then washed in warm or hot water and stretched. Stretching is performed in two or more stages, and the total stretching ratio is 3 times or more, preferably 5 times.
Stretched more than twice as long. It is preferable that the stretching is as high as possible without causing destruction of the fiber structure, but the upper limit of the total stretching ratio varies depending on the stretching method and the stretching medium, but a guideline is approximately 80% of the stretching ratio at which stretch breakage occurs. Next, the obtained drawn fiber is dried to produce a hollow fiber membrane blend mainly of an acrylonitrile polymer (I) and a thermally decomposable polymer (B).

中空糸膜の大きさは、ノズル、溶液吐出量、および延伸
条件等により変更できるが、おおよそ内径20〜100
0μm1膜厚は内径の174〜1/10の範囲が製造し
易い。次いで得られた前記重合体のブレンド中空糸膜は
、例えば200〜300℃の温度の酸化性ガス(02、
o8、S、 No、 So□等を含むガス)雰囲気中、
通常は空気中で処理して耐炎化処理を施す。なお耐炎化
処理を施す際には、中空糸膜繊維は長さ方向に収縮が生
じないように制御する。耐炎化工程での過度の収縮は中
空糸膜繊維の機械的強度を低下させるので好ましくない
。また過度の伸張は中空糸膜繊維の切断の要因になるの
で好ましくない。従って耐炎化工程での伸張は0〜15
%の範囲に制御して耐炎化処理することが好ましい。
The size of the hollow fiber membrane can be changed depending on the nozzle, solution discharge amount, stretching conditions, etc., but the inner diameter is approximately 20 to 100 mm.
It is easy to manufacture a film thickness of 0 μm in a range of 174 to 1/10 of the inner diameter. Then, the obtained polymer blend hollow fiber membrane is heated with an oxidizing gas (02,
gas containing o8, S, No, So□, etc.) in the atmosphere,
It is usually treated in air to make it flame resistant. When flame-retardant treatment is performed, the hollow fiber membrane fibers are controlled so as not to shrink in the length direction. Excessive shrinkage in the flameproofing process is undesirable because it reduces the mechanical strength of the hollow fiber membrane fibers. Excessive stretching is also undesirable as it may cause the hollow fiber membrane fibers to break. Therefore, the elongation during the flameproofing process is 0 to 15
It is preferable to carry out the flame-retardant treatment by controlling the amount within a range of 1.

次いで得られた耐炎化処理を施した中空糸膜を400〜
1200°C1好ましくは600〜1200℃の温度の
不活性ガス(N2、Ar、He等)雰囲気中でまたは不
活性ガスと酸化性ガス(HCI、N20、C010□等
)の混合ガス中で、好ましくは不活性ガス中で、通常は
窒素ガス中で張力を制御しつつ炭素化処理する。この過
程で熱分解性重合体(B)の、繊維軸に配列したフイフ
リル成分は熱分解、解重合し、単量体等の低分子に分解
し逃散することにより本発明の炭素繊維系多孔質中空糸
膜とすることができる。
Next, the obtained hollow fiber membrane subjected to flame-retardant treatment was heated to 400~
1200°C1 Preferably in an inert gas (N2, Ar, He, etc.) atmosphere at a temperature of 600 to 1200°C or in a mixed gas of an inert gas and an oxidizing gas (HCI, N20, CO10□, etc.) is carbonized in an inert gas, usually nitrogen gas, while controlling the tension. In this process, the fifuryl components of the thermally decomposable polymer (B), which are arranged along the fiber axis, are thermally decomposed and depolymerized, decomposed into low molecules such as monomers, and released. It can be a hollow fiber membrane.

本発明の炭素繊維系多孔質中空糸膜の多孔質構造は、ス
ポンジ構造とは異なり、繊維軸に並行な無数の細孔より
構成され、しかもこの細孔が中空糸膜の内壁表面から外
壁表面に連続的につながった細孔である。これはX線小
角の散乱強度または走査型電子顕微鏡によって観測する
ことができる。かかる特異な多孔質構造は次のような理
由により形成されるものと考えられる。
Unlike a sponge structure, the porous structure of the carbon fiber-based porous hollow fiber membrane of the present invention is composed of countless pores parallel to the fiber axis, and these pores extend from the inner wall surface to the outer wall surface of the hollow fiber membrane. These are pores that are connected continuously. This can be observed by small-angle X-ray scattering intensity or by a scanning electron microscope. It is thought that such a unique porous structure is formed for the following reasons.

即ち混合溶液からの紡糸に際して、それぞれの分散粒子
は剪断応力や延伸の作用を受けて、繊維軸に並行に配列
し、それぞれの重合体のフィブリルは互いに相分離し、
絡み合い網目構造な形成する。従って炭素化での熱分へ
重合体(BJの繊維軸に平行に配列したフィブリルが熱
分解して逃散して無数の細孔が形成される結果、このよ
うな多孔質構造が最終的に得られ多孔質中空糸膜の強度
特性並びに柔軟特性に優れたものとしている。アクリロ
ニトリル系重合体(匂のフィブリル構造よりなる炭素質
構造もまた繊維軸に平行に細く連なった構造であり、こ
のことが本発明の中空糸膜を強靭なものとしている。さ
らに炭素質であるため耐熱性にも優れている。
That is, during spinning from a mixed solution, each dispersed particle is subjected to the action of shear stress and stretching, and is arranged parallel to the fiber axis, and the fibrils of each polymer phase separate from each other.
Intertwined to form a network structure. Therefore, due to the heat generated during carbonization, the fibrils arranged parallel to the fiber axis of the polymer (BJ) thermally decompose and escape, forming countless pores, and as a result, such a porous structure is finally obtained. This makes the porous hollow fiber membrane superior in strength and flexibility properties.The carbonaceous structure of the acrylonitrile polymer (which has a fibrillar structure) is also a structure in which thin fibrils are connected parallel to the fiber axis; The hollow fiber membrane of the present invention is made strong.Furthermore, since it is carbonaceous, it also has excellent heat resistance.

本発明の炭素繊維系多孔質中空糸膜の特徴は、細孔容積
微分曲線から求めた細孔半径の孔径分布が非常にシャー
プであるため、高い分離性能を示し、全細孔容積が大き
く単位膜厚当りの孔数が多く透水速度を高いものにして
いる。また本発明の炭素膜は化学的な安定性も高(、あ
らゆるI)H領域及びほとんどの薬液に対して強い抵抗
力を示す。
The carbon fiber porous hollow fiber membrane of the present invention is characterized by a very sharp pore size distribution of pore radii determined from a pore volume differential curve, so it exhibits high separation performance and has a large total pore volume per unit. The number of pores per membrane thickness is large, making the water permeation rate high. The carbon film of the present invention also has high chemical stability (and exhibits strong resistance to all I)H regions and most chemical solutions.

本発明の炭素繊維系多孔質中空糸膜は空気中での重量減
少が10%に達する温度は600℃から650℃の範囲
でより高い温度で使用可能なモジュールを提供すること
が可能である。このように優れた性質を有するため、種
々の用途例えば薬品工業分野におけるパイロジエン、高
分子物質等の分離および精製、化学工業分野におけるガ
ス分離、特に有機ガスの分離および有機薬品の精製等、
食料品工業分野における酒類、清涼飲料水、醤油、酢等
の清澄に効果的に用いることができる。さらにはパイオ
ニ業分野における酵素からの生成物の精製、蛋白質や酵
素等の分離等、メディカル分野における蛋白質やウィル
ス、菌等の分離や、高温度での滅菌、殺菌を必要とする
分野で特に有用である。耐熱性を必要とする分野例えば
発電所の復水タービンヒータードレイン用濾過膜として
も使用できる。
The carbon fiber porous hollow fiber membrane of the present invention can provide a module that can be used at a higher temperature in the range of 600°C to 650°C at which the weight loss in air reaches 10%. Because of these excellent properties, it is used for various purposes, such as the separation and purification of pyrogenes and polymer substances in the pharmaceutical industry, gas separation in the chemical industry, especially the separation of organic gases and the purification of organic chemicals.
It can be effectively used for clarifying alcoholic beverages, soft drinks, soy sauce, vinegar, etc. in the food industry. Furthermore, it is particularly useful in fields that require purification of products from enzymes and separation of proteins and enzymes in the pioneering industry, separation of proteins, viruses, bacteria, etc. in the medical field, and fields that require sterilization and sterilization at high temperatures. It is. It can also be used in fields that require heat resistance, such as filtration membranes for condensate turbine heater drains in power plants.

〔実施例〕〔Example〕

以下、実施例により本発明を具体的に説明する。なお以
下の記載中「部」は重量部を示す。
Hereinafter, the present invention will be specifically explained with reference to Examples. Note that "parts" in the following description indicate parts by weight.

1)重合体の比粘度は、重合体0.1yを0.1Nのロ
ダンノーダを含むジメチルホルムアミド100m1に溶
解し25°Cで測定した。
1) The specific viscosity of the polymer was measured at 25°C by dissolving 0.1y of the polymer in 100ml of dimethylformamide containing 0.1N Rodan Noda.

2)炭素繊維系多孔質中空糸膜の細孔分布構造はCAR
LOERBA社製ポロシメーター200を用いて測定し
、細孔半径は円筒換算半径として求めた。
2) The pore distribution structure of the carbon fiber porous hollow fiber membrane is CAR
It was measured using Porosimeter 200 manufactured by LOERBA, and the pore radius was determined as a cylindrical equivalent radius.

3)比表面積はメタノール等温吸着曲線を測定、BET
の式を適用して計算した。
3) Specific surface area is measured by methanol isothermal adsorption curve, BET
Calculated by applying the formula.

4)単繊維強伸度は、テンシロンUTM −II型(東
洋側機(株)製)を用いて、引張速度100%/分で測
定した。
4) Single fiber strength and elongation were measured using Tensilon UTM-II type (manufactured by Toyo Sideki Co., Ltd.) at a tensile rate of 100%/min.

5)屈曲時の曲率半径は、半径只のシリンダに多孔質中
空糸膜を1800以上巻きつけたとき、折れや、切断が
生じないとき、その最低の半径を曲率半径とし、柔軟性
の目安とした。
5) The radius of curvature at the time of bending is the minimum radius of curvature when no bending or cutting occurs when the porous hollow fiber membrane is wound around a cylinder with a radius of 1800 or more, and is used as a guideline for flexibility. did.

6)耐熱性は、試料を動的熱重サオ分析(ダイナミック
・サーモ・グラピメトリック・アナリシス(TGA))
により空気雰囲気中で昇温速度10℃/分で測定したと
きの、試料が10重量%分解するときの温度で示した。
6) Heat resistance was determined by dynamic thermograpimetric analysis (TGA) of the sample.
It is shown as the temperature at which 10% by weight of the sample decomposes when measured in an air atmosphere at a heating rate of 10° C./min.

7)透水速度は、有効長さ10crn、実効表面積1 
mlの試作モジュールの一方から圧力1kg/crn2
で中空糸の内壁から外壁へ通過した水の透過量を測定し
て求めた。
7) Water permeation rate is effective length 10 crn, effective surface area 1
Pressure 1kg/crn2 from one side of ml prototype module
The amount of water permeated from the inner wall of the hollow fiber to the outer wall was measured.

実施例1 アクリロニトリル(以下ANと略記する)98モル%、
メタクリル酸(以下MAAと略記する)2モル%から構
成される比粘度0.24のAN/MAA共重合体(A)
60部とメチルメタクリレート(以下−と略記する)9
9モル%、アクリル酸メチル(以下MAと略記する)1
モル%から構成される比粘度0.21のMMA / M
A共重合体である熱分解性共重合体(B) 40部と、
下記の方法にて調製した相溶剤(D、)の混合量を0〜
5部変更して、第1表に示した4種類の混合溶液を調製
した。
Example 1 Acrylonitrile (hereinafter abbreviated as AN) 98 mol%,
AN/MAA copolymer (A) with a specific viscosity of 0.24 composed of 2 mol% of methacrylic acid (hereinafter abbreviated as MAA)
60 parts and methyl methacrylate (hereinafter abbreviated as -) 9
9 mol%, methyl acrylate (hereinafter abbreviated as MA) 1
MMA with specific viscosity 0.21 composed of mol%/M
40 parts of a thermally decomposable copolymer (B) which is a copolymer A;
The mixing amount of the compatibilizer (D,) prepared by the following method is 0 to 0.
Four types of mixed solutions shown in Table 1 were prepared by changing 5 parts.

なお、溶剤(C)はジメチルホルムアミド(以下DMF
と略記する)を用い、重合体濃度26重量%とし、混合
溶液は温度60℃に保持し脱泡した。
Note that the solvent (C) is dimethylformamide (hereinafter referred to as DMF).
), the polymer concentration was set to 26% by weight, and the mixed solution was kept at a temperature of 60° C. to defoam.

相溶剤(Dl)の調製ニ ジクロヘキサノ/パーオキシド(バーオキサI(、日本
油脂社製)1部を、馬仏100部に溶かし、純水800
部と乳化剤としてペレックスOTP (日本油脂社製)
1部を反応釜に加えて、不活性ガスで十分に置換した後
、40°Cに保持し、ロンガリット0.76部と硫酸水
溶液でpH3とした後、重合を開始した。そのまま攪拌
を続け150分で第一段目の乳化重合を完結させた。次
いで第二段目として、この乳化液にハフ2部を加えた後
、温度を70℃に昇温して、再び150分攪拌を続け、
さらに芒硝4部を加え30分攪拌して重合を完了させた
。重合体を取出し、濾過、水洗および乾燥して重合率6
5゜7%の比粘度0.19のブロック共重合体の相溶剤
(D、)を得た。
Preparation of compatibilizer (Dl) Dissolve 1 part of dichlorohexano/peroxide (Veroxa I (manufactured by NOF Corporation) in 100 parts of Mabutsu, and add 800 parts of pure water.
and Pellex OTP as an emulsifier (manufactured by NOF Corporation)
After adding 1 part to the reaction vessel and sufficiently purging with an inert gas, the temperature was maintained at 40°C, and the pH was adjusted to 3 with 0.76 parts of Rongalit and an aqueous sulfuric acid solution, and then polymerization was started. Stirring was continued to complete the first stage emulsion polymerization in 150 minutes. Next, in the second stage, after adding 2 parts of Hough to this emulsion, the temperature was raised to 70°C and stirring was continued for 150 minutes again.
Furthermore, 4 parts of Glauber's salt was added and stirred for 30 minutes to complete the polymerization. The polymer was taken out, filtered, washed with water, and dried until the polymerization rate was 6.
A block copolymer compatibilizer (D,) with a specific viscosity of 0.19 and 5.7% was obtained.

外形’1. Ommφ、内径1.5朋φの鞘部と1.0
m尻φの8部よりなる、硝石型ノズルの鞘部より調整し
た4種類の混合溶液を1種類毎に、8部より空気を10
朋の水注圧でそれぞれ吐出し、空気中を5c7n走行さ
せた後、DMF 70重量%水溶液、2℃の温度の凝固
浴に導き紡糸し、凝固させ、次いで60°Cの温水中で
洗浄と2.8倍の延伸を施した。次いで、98℃の熱水
中で2倍延伸した。この全延伸倍率5.6倍の繊維を1
60℃の熱ロールを通して乾燥して、4種類の重合体ブ
レンド系中空糸を製造した。
Outline '1. Ommφ, inner diameter 1.5mmφ sheath and 1.0
For each type of mixed solution prepared from the sheath of the saltpetre nozzle, which consists of 8 parts of m-butt φ, 10 parts of air is mixed with 8 parts of the mixed solution.
After each was discharged with water injection pressure and run in the air for 5c7n, it was introduced into a coagulation bath containing a 70% by weight DMF solution at a temperature of 2°C, spun and coagulated, and then washed in warm water at 60°C. It was stretched 2.8 times. Then, it was stretched twice in hot water at 98°C. This fiber with a total stretching ratio of 5.6 times is
The fibers were dried through a hot roll at 60° C. to produce four types of polymer blend hollow fibers.

これら4種類の中空糸を、それぞれ長さ50mのステン
レススチール製の枠にセットして定長で230℃の温度
、空気雰囲気中で3時間処理し耐炎化した。次いで窒素
ガス雰囲気中で常温から800℃まで50分、800℃
で20分炭素化処理して乳化して、本発明の炭素繊維系
多孔質中空糸膜を製造した。
These four types of hollow fibers were each set in a stainless steel frame with a length of 50 m, and were treated at a constant length in an air atmosphere at a temperature of 230° C. for 3 hours to make them flame resistant. Then, in a nitrogen gas atmosphere, the temperature was raised from room temperature to 800°C for 50 minutes at 800°C.
The mixture was carbonized and emulsified for 20 minutes to produce the carbon fiber porous hollow fiber membrane of the present invention.

これら4種類の中空糸膜はそれぞれ内径が380±10
μm、膜厚が50±5μmであった。
Each of these four types of hollow fiber membranes has an inner diameter of 380±10
The film thickness was 50±5 μm.

これら中空糸膜の単繊維強伸度、比表面積、細孔半径極
大値、全細孔容積、屈曲時の曲率半径、透水速度および
耐熱性を測定した結果を第1表に示した。
Table 1 shows the results of measuring single fiber strength and elongation, specific surface area, maximum pore radius, total pore volume, radius of curvature when bent, water permeation rate, and heat resistance of these hollow fiber membranes.

第1表より、相溶剤(D、)である(AN/MMA)ブ
ロック共重合体の混合量が多くなるに従って細孔半径極
大値が小さくなることがわかる。
From Table 1, it can be seen that the maximum value of the pore radius becomes smaller as the amount of the (AN/MMA) block copolymer that is the compatibilizer (D) increases.

なお、第1図にこれら4種類の中空糸膜(実験腐1〜4
)の細孔容積微分曲線を示す。
Furthermore, Figure 1 shows these four types of hollow fiber membranes (experimental corrosion 1 to 4).
) shows the pore volume differential curve.

第  1 表 実施例2 AN 95モル%、MA4モル%、イタコン酸(以下I
Aと略記する)1モル%から構成される比粘度0.21
のAN/MA/IA共重合体囚と凪仏87モル%、MA
13モル%から構成される比粘度0.19のMMA/M
A共重合体である熱分解性重合体′(B)および下記の
方法で調製したAN 30モル%、 MMA 65モル
%、酢酸ビニル(以下VAcと略記する)5モル%から
構成される比粘度0゜18のブロック重合体である相溶
剤(D2)とを、第2表に示した混合比で、溶剤(C)
であるジメチルアセトアミド(以下DMAcと略記する
)に、重合体濃度24重量%で溶解した。
Table 1 Example 2 AN 95 mol%, MA 4 mol%, itaconic acid (hereinafter referred to as I
Specific viscosity 0.21 composed of 1 mol% (abbreviated as A)
AN/MA/IA copolymer and Nagibutsu 87 mol%, MA
MMA/M with a specific viscosity of 0.19 composed of 13 mol%
A specific viscosity composed of a thermally decomposable polymer '(B) which is a copolymer and 30 mol% of AN prepared by the method below, 65 mol% of MMA, and 5 mol% of vinyl acetate (hereinafter abbreviated as VAc). Solvent (C) was mixed with compatibilizer (D2), which is a block polymer of 0°18, at the mixing ratio shown in Table 2.
The polymer was dissolved in dimethylacetamide (hereinafter abbreviated as DMAc) at a polymer concentration of 24% by weight.

相溶剤(D2)の調製ニ ジクロヘキサノンパーオキシド(パーオキサH1日本油
脂社製)1部をMMA 100部に溶かし、純水800
部と乳化剤としてペレックス0TP(日本油脂社製)1
部を反応釜に加えて、不活性ガスで十分に置換した後、
40℃に保持し、ロンガリツ) 0.、76部と硫酸水
溶液でpH3とした後、重合を開始した。そのまま攪拌
を続け120分で第一段目の乳化重合を完結させた。
Preparation of compatibilizer (D2) Dissolve 1 part of dichlorohexanone peroxide (Peroxa H1 manufactured by NOF Corporation) in 100 parts of MMA, and dissolve 800 parts of pure water.
and Pellex 0TP (manufactured by Nippon Oil & Fats Co., Ltd.) as an emulsifier.
After adding part to the reaction vessel and thoroughly replacing with inert gas,
0. After adjusting the pH to 3 with 76 parts of sulfuric acid and an aqueous sulfuric acid solution, polymerization was started. Stirring was continued to complete the first stage emulsion polymerization in 120 minutes.

次いで第二段目としてこの乳化液にAN 60部、VA
c 10部を加えた後、温度を70℃に昇温して、再び
150分攪拌を続け、さらに芒硝4部を加え30分攪拌
して重合を完了させた。重合体を取出し、濾過、水洗お
よび乾燥して重合率65%の比粘度0.18、組成AN
 30モル%/MMA 65モル%/ V’Ac 5モ
ル%のブロック重合体の相溶剤(D2)を得た。
Then, in the second stage, 60 parts of AN and VA were added to this emulsion.
After adding 10 parts of C, the temperature was raised to 70°C and stirring was continued again for 150 minutes.Furthermore, 4 parts of Glauber's salt was added and stirred for 30 minutes to complete polymerization. The polymer was taken out, filtered, washed with water, and dried to give a polymerization rate of 65%, a specific viscosity of 0.18, and a composition of AN.
A block polymer compatibilizer (D2) of 30 mol%/MMA 65 mol%/V'Ac 5 mol% was obtained.

実施例1と同様のノズルを用いて実施例1と同様に吐出
し、空気中を5C!n走行させた後、DMAc 72重
量%水溶液、温度7°Cの凝固浴中に導き紡糸し、凝固
させた。次いで60℃の温水中で洗浄し、2倍の延伸を
施した。さらに98℃の熱水中で6.2倍延伸した。一
方、比較試料(実験A69)として、熱水中で延伸せず
、定長で通過させる以外は全て同じ条件で処理し、それ
ぞれ乾燥させて5種類の重合体ブレンド系中空糸を製造
した。実施例1と同じ方法により、これら5種類の中空
糸を金枠にセットして、240℃の温度の空気雰囲気中
で3時間耐炎化処理した。
Using the same nozzle as in Example 1, discharge in the same manner as in Example 1, and 5C! After running for n times, the fiber was introduced into a coagulation bath containing a 72% by weight DMAc aqueous solution at a temperature of 7°C, and was spun and coagulated. Then, it was washed in warm water at 60°C and stretched twice. Furthermore, it was stretched 6.2 times in hot water at 98°C. On the other hand, as a comparative sample (Experiment A69), five types of polymer blend hollow fibers were manufactured by processing under the same conditions except that the fibers were not stretched in hot water and passed through at a constant length, and then dried. By the same method as in Example 1, these five types of hollow fibers were set in a metal frame and flame resistant treated in an air atmosphere at a temperature of 240° C. for 3 hours.

次いで窒素雰囲気中900℃の温度で10分間炭素化処
理して、炭素繊維系多孔質中空糸膜を製造した。第2表
に得られた5種類の中空糸膜の各種性能を示す。
Next, carbonization treatment was performed at a temperature of 900° C. for 10 minutes in a nitrogen atmosphere to produce a carbon fiber-based porous hollow fiber membrane. Table 2 shows various performances of the five types of hollow fiber membranes obtained.

第2表 系中空繊維目付 第2表より、熱分解性重合体のブレンド量が多くなると
、全細孔容積が増加することがわかる。比較試料の実験
/165は閉孔で連通孔のないものであった。比較試料
である実験層9のものは柔軟性に劣るため使用に耐えな
いものであった。
Table 2 Hollow fiber basis weight Table 2 shows that as the blend amount of the thermally decomposable polymer increases, the total pore volume increases. The comparative sample Experiment/165 had closed pores and no communicating pores. The comparative sample, Experimental Layer 9, had poor flexibility and could not be used.

なお第2図にこれら5種類の中空糸膜(実験A5〜9)
の細孔容積累積分布曲線を示す。
Figure 2 shows these five types of hollow fiber membranes (Experiments A5 to 9).
The pore volume cumulative distribution curve of FIG.

実施例3 実施例2の実験屋7で製造されたアクリル系中空糸を用
いて、256/239/242/250 ’Cの4段階
の温度分布の空気雰囲気中を、20 m/ Hrの速度
で耐炎化処理した。次いで第3表に示した窒素雰囲気の
炭素化温度中を15m/Hrの速度で多孔質化処理して
、本発明の多孔質中空糸膜を製造した。これらの繊維の
各種性能を第3表に示す。
Example 3 Using the acrylic hollow fiber manufactured in Experimental Shop 7 of Example 2, it was heated at a speed of 20 m/Hr in an air atmosphere with a four-stage temperature distribution of 256/239/242/250'C. Flame resistant treated. Next, porous hollow fiber membranes of the present invention were manufactured by performing porous treatment at a rate of 15 m/Hr at the carbonization temperature in a nitrogen atmosphere shown in Table 3. Table 3 shows the various performances of these fibers.

また、第6図にこれら4種類の中空糸膜(実験A 10
〜16)の細孔容積累積分布曲線を示す。
Figure 6 also shows these four types of hollow fiber membranes (Experiment A 10
The pore volume cumulative distribution curves of ~16) are shown.

第  6  表 第3表より、炭素化温度が高くなるに従って、細孔半径
極大値は小さく、全細孔容積も小さくなるが、耐熱性は
高くなることがわかる。
Table 6 From Table 3, it can be seen that as the carbonization temperature increases, the maximum value of the pore radius decreases and the total pore volume decreases, but the heat resistance increases.

付記 1、 アクリロニトリル系重合体(A)がポリアクリロ
ニトリル、アクリロニトリル−メタクリル酸共重合体、
アクリロニトリル−メチルアクリレート−イタコン酸共
重合体またはアクリロニトリル−メチルアクリレート−
メタクリル酸共重合体であることを特徴とする第3項ま
たは第4項記載の製法。
Additional note 1, the acrylonitrile polymer (A) is polyacrylonitrile, acrylonitrile-methacrylic acid copolymer,
Acrylonitrile-methyl acrylate-itaconic acid copolymer or acrylonitrile-methyl acrylate-
4. The method according to item 3 or 4, wherein the copolymer is a methacrylic acid copolymer.

2、熱分解性重合体(B)が芳香族ビニル系単量体、脂
肪族ビニル系単量体もしくはメタクリレート系単量体の
単独重合体またはこれら単量体単位51モル%以上とア
クリロニトリル以外の他の共重合可能な単量体単位49
モル%以下から構成される共重合体であることを特徴と
する第3項または第4項記載の製法。
2. The thermally decomposable polymer (B) is a homopolymer of an aromatic vinyl monomer, an aliphatic vinyl monomer, or a methacrylate monomer, or a polymer containing 51 mol% or more of these monomer units and a polymer other than acrylonitrile. Other copolymerizable monomer units 49
5. The method according to item 3 or 4, wherein the copolymer is composed of mol % or less.

6、 熱分解性重合体(B)がスチレン系重合体、ビニ
ルクロライド系重合体またはメチルメタクリレート系重
合体であることを特徴とする第3項または第4項記載の
製法。
6. The method according to item 3 or 4, wherein the thermally decomposable polymer (B) is a styrene polymer, a vinyl chloride polymer, or a methyl methacrylate polymer.

4、 アクリロニトリル系重合体(A)の比粘度が0゜
1〜0.4であることを特徴とする第3項または第4項
記載の製法。
4. The method according to item 3 or 4, wherein the acrylonitrile polymer (A) has a specific viscosity of 0°1 to 0.4.

5、 アクリロニトリル系重合体(A)の比粘度が0゜
2〜0.6であることを特徴とする第6項または第4項
記載の製法。
5. The method according to item 6 or 4, wherein the acrylonitrile polymer (A) has a specific viscosity of 0°2 to 0.6.

6、熱分解性重合体(B)の比粘度が0.1〜0.4で
あることを特徴とする第3項または第4項記載の製法。
6. The method according to item 3 or 4, wherein the thermally decomposable polymer (B) has a specific viscosity of 0.1 to 0.4.

Z 熱分解性重合体(B)の比粘度が0.2〜0.3で
あることを特徴とする第3項または第4項記載の製法。
Z. The method according to item 3 or 4, wherein the thermally decomposable polymer (B) has a specific viscosity of 0.2 to 0.3.

8、相溶剤(D)が、アクリロニトリル系重合体(蜀と
相溶性を有するか、あるいは同一の単量体から構成され
るセグメント仏)と、熱分解性重合体(B)と相溶性を
有するか、あるいは同一の単量体から構成されるセグメ
ント(b)とを同一重合体鎖中に含むグラフト共重合体
またはブロック共重合体であることを特徴とする第4項
記載の製法。
8. The compatibilizer (D) is compatible with the acrylonitrile polymer (segmented polymer that is compatible with Shu or composed of the same monomer) and the thermally decomposable polymer (B). or a graft copolymer or a block copolymer containing segment (b) composed of the same monomer in the same polymer chain.

9 相溶剤(D)が、アクリロニトリル60モル%以上
、熱分解性重合体(B)の構成成分である単量体10モ
ル%以上及びこれらと共重合可能な他の単量体10モル
%以下から構成されたものであることを特徴とする第4
項記載の製法。
9 The compatibilizer (D) is 60 mol% or more of acrylonitrile, 10 mol% or more of monomers that are constituent components of the thermally decomposable polymer (B), and 10 mol% or less of other monomers copolymerizable with these. The fourth item is characterized in that it is composed of
Manufacturing method described in section.

10、アクリロニトリル系重合体(A110〜90重量
%、熱分解性重合体(B) 10〜90重量%及び相溶
剤(D)0〜5重量%〔ただしくA)成分、(B)成分
及びCD)成分の合計量が100重量%〕となるように
混合することを特徴とする第3項または第4項記載の製
法。
10. Acrylonitrile polymer (A1 10-90% by weight, thermally decomposable polymer (B) 10-90% by weight, and compatibilizer (D) 0-5% by weight [A) component, (B) component and CD) The method according to item 3 or 4, characterized in that the ingredients are mixed so that the total amount of the ingredients is 100% by weight.

11、アクリロニトリル系重合体fA) 20〜80重
量%、熱分解性重合体(B) 20〜80重量%及び相
溶剤(D)0〜5重量%〔ただしくA)成分、(Bl成
分及び(D)成分の合計量が100重量%〕となるよう
に混合することを特徴とする第3項または第4項記載の
製法。
11. Acrylonitrile polymer fA) 20 to 80% by weight, thermally decomposable polymer (B) 20 to 80% by weight, and compatibilizer (D) 0 to 5% by weight [provided that A) component, (Bl component and (D 4. The method according to item 3 or 4, characterized in that the ingredients are mixed so that the total amount of the components is 100% by weight.

12゜溶剤(C)がジメチルホルムアミド、ジメチルア
セトアミド及びジメチルスルホキシドから選ばれたもの
であることを特徴とする第6項または第4項記載の製法
12. The process according to item 6 or 4, wherein the solvent (C) is selected from dimethylformamide, dimethylacetamide and dimethyl sulfoxide.

13、乾湿式紡糸法により紡糸することを特徴とする第
3項または第4項記載の製法。
13. The manufacturing method according to item 3 or 4, characterized in that spinning is performed by a dry-wet spinning method.

14、多段延伸法により全延伸倍率が3倍以上の条件で
延伸することを特徴とする第6項または第4項記載の製
法。
14. The manufacturing method according to item 6 or 4, characterized in that the film is stretched by a multi-stage stretching method at a total stretching ratio of 3 times or more.

15、耐炎化処理での伸張を15%以下の範囲に制御し
て耐炎化処理することを特徴とする第6項または第4項
記載の製法。
15. The manufacturing method according to item 6 or 4, wherein the flame resistant treatment is performed by controlling the elongation in the flame resistant treatment to a range of 15% or less.

16、張力を制御しながら炭素化処理することを特徴と
する第3項または第4項記載の製法。
16. The manufacturing method according to item 3 or 4, characterized in that the carbonization treatment is carried out while controlling tension.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例1の実験A1〜4で得られた中空糸膜
の細孔容積微分曲線、第2図は、実施例2の実験&5〜
9で得られた中空糸膜の細孔容積累積積分右曲線、第6
図は、実施例6の実験煮10〜13で得られた中空糸膜
の細孔容積累積分布曲線である。
Figure 1 shows the pore volume differential curves of hollow fiber membranes obtained in experiments A1 to A4 of Example 1, and Figure 2 shows the pore volume differential curves of experiments A1 to A4 of Example 2.
Hollow fiber membrane pore volume cumulative integral right curve obtained in 9, No. 6
The figure shows the pore volume cumulative distribution curves of the hollow fiber membranes obtained in Experiments 10 to 13 of Example 6.

Claims (1)

【特許請求の範囲】 1、中空糸膜の内壁表面から外壁表面に連続的につなが
つた細孔を有し、細孔容積微分曲線から求めた細孔半径
の極大値が10〜1000nmに存在し、全細孔容積が
0.1〜1cm^3/gで、屈曲時の曲率半径が10c
m以下であり、かつTGAにより測定した中空糸膜の1
0重量%分解する温度が少なくとも約300℃である耐
熱性に優れた炭素繊維系多孔質中空糸膜。 2、引張伸度が少なくとも0.8%である第1項記載の
中空糸膜。 3、アクリロニトリル単位が90〜100モル%である
アクリロニトリル系重合体(A)と600℃以下の温度
で熱分解して低分子量化する熱分解性重合体(B)およ
び溶剤(C)とを混合した後、紡糸し、延伸して得たア
クリロニトリル系中空繊維を耐炎化処理し、次いで40
0℃以上の温度で炭素化処理して多孔質化することを特
徴とする、第1項記載の中空糸膜の製法。 4、アクリロニトリル系重合体(A)、熱分解性重合体
(B)および溶剤(C)に、さらに相溶剤(D)を混合
することを特徴とする第3項記載の製法。
[Claims] 1. The hollow fiber membrane has pores continuously connected from the inner wall surface to the outer wall surface, and the maximum value of the pore radius determined from the pore volume differential curve exists in the range of 10 to 1000 nm. , the total pore volume is 0.1~1cm^3/g, and the radius of curvature when bent is 10c.
1 of the hollow fiber membrane measured by TGA.
A carbon fiber porous hollow fiber membrane having excellent heat resistance and having a decomposition temperature of 0% by weight of at least about 300°C. 2. The hollow fiber membrane according to item 1, which has a tensile elongation of at least 0.8%. 3. Mixing an acrylonitrile polymer (A) containing 90 to 100 mol% of acrylonitrile units, a thermally decomposable polymer (B) that is thermally decomposed at a temperature of 600°C or lower to reduce its molecular weight, and a solvent (C). After that, the acrylonitrile-based hollow fibers obtained by spinning and drawing were subjected to flame-retardant treatment, and then
2. The method for producing a hollow fiber membrane according to item 1, wherein the hollow fiber membrane is made porous by carbonization treatment at a temperature of 0° C. or higher. 4. The method according to item 3, characterized in that a compatibilizer (D) is further mixed with the acrylonitrile polymer (A), the thermally decomposable polymer (B), and the solvent (C).
JP1060648A 1988-03-15 1989-03-15 Carbon fiber-based porous hollow fiber membrane and production thereof Pending JPH0274615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1060648A JPH0274615A (en) 1988-03-15 1989-03-15 Carbon fiber-based porous hollow fiber membrane and production thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-60928 1988-03-15
JP6092888 1988-03-15
JP1060648A JPH0274615A (en) 1988-03-15 1989-03-15 Carbon fiber-based porous hollow fiber membrane and production thereof

Publications (1)

Publication Number Publication Date
JPH0274615A true JPH0274615A (en) 1990-03-14

Family

ID=26401716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1060648A Pending JPH0274615A (en) 1988-03-15 1989-03-15 Carbon fiber-based porous hollow fiber membrane and production thereof

Country Status (1)

Country Link
JP (1) JPH0274615A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0398624A (en) * 1989-09-11 1991-04-24 Mitsubishi Rayon Co Ltd Carbon fiber-based porous hollow fiber membrane and its preparation
WO2011004660A1 (en) * 2009-07-10 2011-01-13 日本碍子株式会社 Method for producing carbon film, carbon film and separator
JP2013071073A (en) * 2011-09-28 2013-04-22 Toyobo Co Ltd Hollow fiber carbon membrane, separation membrane module and method for producing hollow fiber carbon membrane
WO2015129488A1 (en) * 2014-02-26 2015-09-03 東レ株式会社 Porous carbon material, composite material reinforced with carbon material, porous carbon material precursor, porous carbon material precursor production method, and porous carbon material production method
WO2016013676A1 (en) * 2014-07-24 2016-01-28 東レ株式会社 Carbon film for fluid separation, fluid separation film module, and method for producing carbon film for fluid separation
JP2016060991A (en) * 2014-09-19 2016-04-25 東レ株式会社 Polyacrylonitrile-based flame resistant fiber, sheet like article using the same and manufacturing method of polyacrylonitrile-based flame resistant fiber
WO2017126501A1 (en) * 2016-01-22 2017-07-27 東レ株式会社 Fluid separation membrane, fluid separation membrane module, and porous carbon fiber
JP2018126732A (en) * 2017-02-08 2018-08-16 東レ株式会社 Manufacturing method of carbon film for fluid separation
WO2019036064A1 (en) * 2017-08-14 2019-02-21 Dow Global Technologies Llc Improved method to make carbon molecular sieve hollow fiber membranes

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0398624A (en) * 1989-09-11 1991-04-24 Mitsubishi Rayon Co Ltd Carbon fiber-based porous hollow fiber membrane and its preparation
WO2011004660A1 (en) * 2009-07-10 2011-01-13 日本碍子株式会社 Method for producing carbon film, carbon film and separator
US8343348B2 (en) 2009-07-10 2013-01-01 Ngk Insulators, Ltd. Method for producing carbon film, carbon film and separator
JP5624542B2 (en) * 2009-07-10 2014-11-12 日本碍子株式会社 Carbon membrane manufacturing method, carbon membrane, and separation apparatus
JP2013071073A (en) * 2011-09-28 2013-04-22 Toyobo Co Ltd Hollow fiber carbon membrane, separation membrane module and method for producing hollow fiber carbon membrane
WO2015129488A1 (en) * 2014-02-26 2015-09-03 東レ株式会社 Porous carbon material, composite material reinforced with carbon material, porous carbon material precursor, porous carbon material precursor production method, and porous carbon material production method
US10131770B2 (en) 2014-02-26 2018-11-20 Toray Industries, Inc. Porous carbon material, composite material reinforced with carbon material, porous carbon material precursor, porous carbon material precursor production method, and porous carbon material production method
EA034212B1 (en) * 2014-02-26 2020-01-17 Торэй Индастриз, Инк. Porous carbon material, composite material reinforced with carbon material, porous carbon material precursor, porous carbon material precursor production method, and porous carbon material production method
WO2016013676A1 (en) * 2014-07-24 2016-01-28 東レ株式会社 Carbon film for fluid separation, fluid separation film module, and method for producing carbon film for fluid separation
JPWO2016013676A1 (en) * 2014-07-24 2017-07-20 東レ株式会社 Fluid separation carbon membrane, fluid separation membrane module, and method for producing fluid separation carbon membrane
KR20170036682A (en) * 2014-07-24 2017-04-03 도레이 카부시키가이샤 Carbon film for fluid separation, fluid separation film module, and method for producing carbon film for fluid separation
US10159943B2 (en) 2014-07-24 2018-12-25 Toray Industries, Inc. Carbon membrane for fluid separation, fluid separation membrane module, and method for producing carbon membrane for fluid separation
JP2016060991A (en) * 2014-09-19 2016-04-25 東レ株式会社 Polyacrylonitrile-based flame resistant fiber, sheet like article using the same and manufacturing method of polyacrylonitrile-based flame resistant fiber
WO2017126501A1 (en) * 2016-01-22 2017-07-27 東レ株式会社 Fluid separation membrane, fluid separation membrane module, and porous carbon fiber
JPWO2017126501A1 (en) * 2016-01-22 2018-11-08 東レ株式会社 Fluid separation membrane, fluid separation membrane module, and porous carbon fiber
US10835874B2 (en) 2016-01-22 2020-11-17 Toray Industries, Inc. Fluid separation membrane, fluid separation membrane module, and porous carbon fiber
JP2018126732A (en) * 2017-02-08 2018-08-16 東レ株式会社 Manufacturing method of carbon film for fluid separation
WO2019036064A1 (en) * 2017-08-14 2019-02-21 Dow Global Technologies Llc Improved method to make carbon molecular sieve hollow fiber membranes
JP2020530811A (en) * 2017-08-14 2020-10-29 ダウ グローバル テクノロジーズ エルエルシー Improved method for making carbon molecular sieve hollow fiber membranes
US11517857B2 (en) 2017-08-14 2022-12-06 Dow Global Technologies Llc Method to make carbon molecular sieve hollow fiber membranes

Similar Documents

Publication Publication Date Title
US5089135A (en) Carbon based porous hollow fiber membrane and method for producing same
US5547756A (en) Porous polypropylene hollow fiber membrane of large pore diameter, production process thereof, and hydrophilized porous hollow fiber membranes
EP0665049A1 (en) Microporous membrane made of non-crystalline polymers and method of producing the same
JPH02302449A (en) Preparation of microporous film
JPS6335726B2 (en)
JPH0274615A (en) Carbon fiber-based porous hollow fiber membrane and production thereof
JPH04187224A (en) Production of fluorine-based porous hollow yarn membrane
JP2867043B2 (en) Carbon fiber-based porous hollow fiber membrane and method for producing the same
JPH02160924A (en) Porous carbon fiber and production thereof
EP0394449A1 (en) Porous hollow carbon fiber film and method of manufacturing the same
JPH04265132A (en) Production of porous hollow fiber membrane
JPH04277023A (en) Production of heat-resistant porous hollow fiber membrane
JPH02221404A (en) Porous hollow fiber and production thereof
JPH03161030A (en) Preparation of porous carbon composite membrane
JP6145960B2 (en) Method for producing acrylonitrile polymer solution and method for producing carbon fiber precursor acrylonitrile fiber
JPS6320339A (en) Production of porous membrane
NL7907769A (en) PROCESS FOR PREPARING A POLYACRYLONITRIL MEMBRANE USE FOR REVERSE OSMOSIS.
JPH02160923A (en) Porous carbon fiber and production thereof
JPH09225274A (en) Membrane forming raw liquid and production of ethylene-vinyl alcohol copolymer membrane
JPH0822934B2 (en) Method for producing polyacrylonitrile-based porous body
JPH0398625A (en) Preparation of carbon fiber-based porous hollow fiber membrane
JP2018122293A (en) Method for manufacturing carbon film for gas separation and infusible fiber
JPH04265133A (en) Production of porous hollow fiber membrane
JPH027690B2 (en)
JPH0345717A (en) Flameproof fiber and production thereof