JPH0271111A - Method for detecting passing position of supersonic flight body - Google Patents

Method for detecting passing position of supersonic flight body

Info

Publication number
JPH0271111A
JPH0271111A JP22375288A JP22375288A JPH0271111A JP H0271111 A JPH0271111 A JP H0271111A JP 22375288 A JP22375288 A JP 22375288A JP 22375288 A JP22375288 A JP 22375288A JP H0271111 A JPH0271111 A JP H0271111A
Authority
JP
Japan
Prior art keywords
shock wave
detection means
passing position
flight body
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22375288A
Other languages
Japanese (ja)
Inventor
Wasaburo Ichinose
一ノ瀬 和三郎
Shunzo Yoshida
吉田 俊三
Makoto Mizoe
溝江 真
Akihiro Komori
小森 昭浩
Shunichiro Takahashi
高橋 俊一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Priority to JP22375288A priority Critical patent/JPH0271111A/en
Publication of JPH0271111A publication Critical patent/JPH0271111A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Navigation (AREA)

Abstract

PURPOSE:To immediately know a result immediately after passage by detecting the passing position of a flight body by utilizing a shock wave flying at supersonic speed. CONSTITUTION:When a flight body flies at supersonic speed, a shock wave 2 having a conical shape whose apex is the flight body 1 is formed. Therefore, the passing position of the flight body 1 can be specified by detecting said shock wave 2. Linear shock wave detection means 3, 4 are provided so as to be vertical to space and a coordinates surface is formed by both means 3, 4 to set the distance between the means 3, 4 to 2a. Further, when the vertical angle of a cone is set to 2gamma and the speed of the flight body 1 is set to V, the passing time of the coordinates surface by the flight body 1 is set to t1 and the detection time of the shock wave 2 by the means 3 is set to t2, the deviation (y) from the center 0 of the flight body 1 can be calculated from a-y=Vt1tangamma, a+y=Vt2tangamma, y=V(t2-t1)tangamma/2.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、射撃場で使用する銃等で発射された弾丸等の
飛行体の通過位置を検出する飛行体の通過位置検知方法
に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for detecting the passing position of an aircraft such as a bullet fired by a gun used at a shooting range. be.

[従来の技術] 射撃場に於ける射撃練習では射撃結果を射撃手に知らせ
ることは、射撃技術を向上させる上で重要なことである
[Prior Art] In shooting practice at a shooting range, it is important to inform the shooter of the shooting results in order to improve shooting skills.

従来、射撃結果の評価については、射撃後的に残った弾
痕を双眼鏡で観察する等していた。
Conventionally, shooting results have been evaluated by observing the bullet holes left after the shot with binoculars.

又は、標的を設置する監的濠に人員を配置して弾着の評
価を行い、電話等により評価の内容を射手側連絡してい
た。
Alternatively, personnel were placed in the monitoring moat where the target was set up to evaluate the bullet impact, and the content of the evaluation was communicated to the shooter by telephone or other means.

[発明か解決しようとする課題] 然し、的に残った弾痕を双眼鏡で観察する場合、−売筋
の結果を知り得す、総合的な評価となってしまうし、後
者の方法では観察作業が煩雑であると共に時間的な遅れ
がある為、射撃中に修正して技術の向上を図るというこ
とはできなかった。
[Problem to be solved by the invention] However, when observing bullet holes left behind by a target with binoculars, it becomes a comprehensive evaluation that allows you to know the best-selling results, and the latter method requires a lot of observation work. Due to the complexity and time delay, it was not possible to make corrections during shooting to improve technique.

本発明は斯かる実情を鑑み、超音速飛行体が飛行する際
に生じる衝撃波を利用し、飛行体の通過位置を電気的に
検知可能とし、検知した電気的信号を演算表示装置等に
入力し、射撃手に射撃結果を直ちに知らせ得るようにし
ようとするものである。
In view of these circumstances, the present invention makes it possible to electrically detect the passing position of a supersonic aircraft by using shock waves generated when a supersonic aircraft flies, and inputs the detected electrical signal to a calculation display device, etc. The aim is to make it possible for the shooter to immediately be informed of the results of the shooting.

[課題を解決するための手段] 本発明は、平行に配した2つの線状の衝撃波検知手段を
少なくとも2組交差させる状態で配置し、各組の2つの
検知手段が飛行体のtr撃波をそれぞれ検知した時間差
を求め、各組の検知手段の配置中心に対する飛行体通過
位置の偏差を算出する様にしたことを特徴とし、又衝撃
波検知手段として光ビームを利用し、該光ビームか衝撃
波わを通過する時の屈折による光路ずれを検知する様に
した、或いは衝撃波検知手段として金属製バーの一端に
振動検出器を設けた感知バーを用い、衝撃波がバーに衝
突した際のバーの振動を検知する様にしたものである。
[Means for Solving the Problems] The present invention provides at least two sets of parallel linear shock wave detection means arranged in an intersecting manner, and each set of two detection means detects the tr shock wave of an aircraft. The method is characterized in that the time difference between the respective detection times is calculated, and the deviation of the flying object passing position with respect to the center of arrangement of each set of detection means is calculated.Also, a light beam is used as the shock wave detection means, and the shock wave is A sensor bar with a vibration detector installed at one end of a metal bar is used to detect the vibration of the bar when the shock wave collides with the bar. It is designed to detect.

[作  用] 各組の2つの検知手段か時間差をもって衝撃波を検知す
ることにより、飛行体の速度と飛行体か発する衝撃波の
円錐形状に基づいて各組の検知手段の中心からの偏りが
求められ、2組以上の検知手段が交差して設けられてい
ることから平面状の位置が決定される。
[Operation] By detecting shock waves with a time difference between the two detection means in each set, the deviation from the center of each set of detection means can be determined based on the speed of the aircraft and the cone shape of the shock wave emitted by the aircraft. , the planar position is determined because two or more sets of detection means are provided in an intersecting manner.

又、検知手段として光ビームを利用すれば衝撃波は高密
度の空気の層であり、衝撃波が光ビームを横切る時には
屈折が生じ、而して光ビームによる衝撃波か検知される
。或いは検知手段として感知バーを用いれば衝撃波が高
エネルギーの空気層であり、金属バーに衝突した際には
振動を与える。而して、金属バーを伝播する振動を振動
検知器でとらえれは衝撃波の到達した時を検知できる。
Furthermore, if a light beam is used as a detection means, the shock wave is a layer of high-density air, and when the shock wave crosses the light beam, refraction occurs, and thus the shock wave caused by the light beam is detected. Alternatively, if a sensing bar is used as the detection means, the shock wave is a high-energy air layer, and when it collides with the metal bar, it vibrates. If the vibrations propagating through the metal bar are captured by a vibration detector, it is possible to detect when the shock waves arrive.

[実施 例コ 以下図面を参照しつつ本発明の一実施例を説明する。[Implementation example] An embodiment of the present invention will be described below with reference to the drawings.

第1図に示す様に弾丸等の飛行体1が超音速で飛行する
と、飛行体1を頂点とする円錐状の衝撃波2か形成され
る。従って、この衝撃波2を検知することで飛行体1の
通過位置を特定することができる。
As shown in FIG. 1, when a flying object 1 such as a bullet flies at supersonic speed, a conical shock wave 2 is formed with the flying object 1 at its apex. Therefore, by detecting this shock wave 2, the passing position of the flying object 1 can be specified.

線状の衝撃波検知手段3.4を紙面に対し垂直に設け、
両手段3.4によって座標面を形成し、該両手段3と4
との距離を2aとする。
A linear shock wave detection means 3.4 is provided perpendicular to the paper surface,
A coordinate plane is formed by both means 3.4, and said means 3 and 4
Let the distance between the two points be 2a.

今、円錐の頂角を2γとし飛行体1の速度を■、飛行体
1か座標面を通過し、検出手段3が衝撃波2を検知した
時間を1+、検出手段3が衝撃波2を検知した時間をt
2とすると、該飛行体1の中心0からの閤りyは以下の
式で求められる。
Now, the apex angle of the cone is 2γ, the speed of the flying object 1 is ■, the time when the flying object 1 passes through the coordinate plane and the detection means 3 detects the shock wave 2 is 1+, the time when the detection means 3 detects the shock wave 2 t
2, the offset y from the center 0 of the aircraft 1 is determined by the following formula.

Mはマツハ数で音速を■8とすると 一− ■S である。M is Matsuha's number and the speed of sound is ■8. One- ■S It is.

従って、第2図に示す如く4本の衝撃波検知手段3.4
.5.6を井桁状に組合わせて、座標面を形成し、2組
の検知手段で2方向の閤りを求めれば、該座標面での通
過位置を特定できる。
Therefore, as shown in FIG. 2, there are four shock wave detection means 3.4.
.. 5.6 are combined in a grid pattern to form a coordinate plane, and by determining the offset in two directions using two sets of detection means, the passing position on the coordinate plane can be specified.

X方向の偏りXは偏りyと同様に で求められる。The bias in the X direction is the same as the bias y. is required.

次に、座標面に対して飛行体1がφYの角度をもって入
射した場合について説明する。
Next, a case will be described in which the flying object 1 enters the coordinate plane at an angle of φY.

(a−y) cos <r−φY ) =Vtl S 
l r17’(a  y)cos Cr十φY )=V
t2 S i n7従って、y方向の偏りは、 同様にX方向の偏りは、 式(7)より で求めることができる。
(a-y) cos <r-φY) = Vtl S
l r17'(a y)cos Cr+φY)=V
t2 S i n7 Therefore, the deviation in the y direction is similarly determined as the deviation in the x direction from equation (7).

飛行体の速度V、入射角φ8.φ7については、4本の
衝撃波検知手段で形成される座標面を飛行体の飛行方向
に2組設け、2つの座標面を通過した時の時間差、通過
位置を求めることで算出することができる。
The speed of the flying object is V, the angle of incidence is φ8. φ7 can be calculated by providing two sets of coordinate planes formed by four shock wave detection means in the flight direction of the aircraft and determining the time difference and passing position when passing through the two coordinate planes.

或いは、弾丸等初速が与えられて飛行するものは、重力
の作用を受けて落下してゆくので目標点を通過する際に
は水平に対する角度、落角φ(第4図参照)を有する。
Alternatively, an object such as a bullet that flies with a given initial velocity falls under the action of gravity, so when it passes the target point it has an angle with respect to the horizontal, a falling angle φ (see FIG. 4).

弾丸の如き飛行体は一般に速度に比例する抵抗力を受け
るとされており、この落角φは下記運動方程式より導か
れる弾道方程式より求められる。
It is generally said that a flying object such as a bullet is subjected to a resistance force proportional to its speed, and the falling angle φ is determined from the trajectory equation derived from the equation of motion below.

:飛行体の質量 :空気の粘性抵抗係数 :飛行時間 飛行体の初速度 :飛行体の速度 V=V、e−”  −(8) 又、飛行距離をD、飛行高さをH1打出角をθ。、初速
Vo、重力の加速度をgとすると、弾道方程式は下記の
通りとなる。
: Mass of the flying object: Coefficient of viscous drag of air: Flight time Initial speed of the flying object: Speed of the flying object V = V, e-" - (8) Also, the flight distance is D, the flight height is H1, and the launch angle is θ., the initial velocity Vo, and the acceleration of gravity as g, the trajectory equation is as follows.

従って、飛距離りでの落角φはdH/dDでとなる。又
、その時の飛行体の速度は、V = Vo CO8θ。
Therefore, the fall angle φ at flight distance is dH/dD. Also, the speed of the flying object at that time is V = Vo CO8θ.

−KD      ・(12>従って、射撃練習の様に
的迄の距離、飛行体の初速が分かるものについては予め
計算などで求めておけば、速度■、角度φを求める手段
は設けなくてもよい。
-KD ・(12> Therefore, in cases where the distance to the target and the initial velocity of the flying object are known, such as shooting practice, if you calculate it in advance, there is no need to provide a means to calculate the speed ■ and angle φ. .

次に、衝撃波の検知手段について説明する。Next, the shock wave detection means will be explained.

第1の例として光ビームを利用するものが挙げられ、こ
れを第5図に於いて説明する。
A first example uses a light beam, which will be explained with reference to FIG.

前記した様に飛行体1か超音速で飛行する際には、飛行
体1を頂点とする円錐状の衝撃波2が形成されるが、該
衝撃波2は高密度の空気の層であり、光ビーム7が衝撃
波2を横切ると屈折により光路かdだけずれを生ずる。
As mentioned above, when the flying object 1 flies at supersonic speed, a conical shock wave 2 is formed with the flying object 1 at the apex, but the shock wave 2 is a layer of high-density air and is a light beam. 7 crosses the shock wave 2, the optical path shifts by d due to refraction.

従って、投光器8の光軸上に受光器9を配しておけば、
衝撃波2か光ビーム7を横切っているうちは、受光器9
は光ビーム7を検知しないので、衝撃波2が光ビーム7
へ到達した瞬間が分かる。
Therefore, if the receiver 9 is placed on the optical axis of the emitter 8,
While the shock wave 2 is crossing the light beam 7, the receiver 9
does not detect light beam 7, so shock wave 2 detects light beam 7
You will know the moment you reach it.

尚、この光ビームを利用したものでは投光器8、受光器
9を飛行体の通過範囲より遠く離して配置できるので、
飛行体により損傷を受けることがない。
In addition, in the case of using this light beam, the projector 8 and the receiver 9 can be placed far away from the passing range of the aircraft, so
Cannot be damaged by flying objects.

又、第2の例として感知バ一方式について説明する。Also, as a second example, a one-sensing bar type will be explained.

これは第6図に示す如く金属製のバー10の一端に振動
検知器11を取付けたものである。
As shown in FIG. 6, this has a vibration detector 11 attached to one end of a metal bar 10.

衝撃波2がバー10に衝突した際に、バー10に振動を
与えるか、この振動は、バー10中を伝播して振動検知
器11に到達する。従って、振動検知器11の出力状態
を監視することにより、衝撃波2がバー10に到達した
ことを検知できる。
When the shock wave 2 collides with the bar 10, the bar 10 is vibrated, or the vibration propagates through the bar 10 and reaches the vibration detector 11. Therefore, by monitoring the output state of the vibration detector 11, it is possible to detect that the shock wave 2 has reached the bar 10.

而して、受光器9或いは振動検知器11からの信号を式
(2)(3)或いは(5)(6)に従って処理すれば、
飛行体1の通過位置を電気的な信号として取出すことが
可能となる。
Then, if the signal from the light receiver 9 or the vibration detector 11 is processed according to equations (2), (3), or (5) and (6),
It becomes possible to extract the passing position of the aircraft 1 as an electrical signal.

尚、上記実施例では2組の検出手段を矩形に組合わせた
が菱形状に組合わせても良く、或いは3組以上の検出手
段を格子状に組合わせてもよいことは勿論である。
In the above embodiment, two sets of detection means are combined in a rectangular shape, but it goes without saying that they may be combined in a diamond shape, or three or more sets of detection means may be combined in a lattice shape.

又、その他に受光器9、振動検知機11より得られるt
+、t2・・・を基にΔ1+、Δt2を算出する電子式
演算装置、Δtl、Δt2を基に座標の中心よりの偏差
x、yを算出する電子式演算装置、φX、φマを算出し
て偏差x、yを補正する電子式演算装置、演算結果を射
手側へ伝送する電子式伝送装置、結果を表示する電子式
表示装置等の諸装置を設けてもよいことは勿論である。
In addition, t obtained from the light receiver 9 and the vibration detector 11
+, t2..., an electronic arithmetic device that calculates Δ1+, Δt2, an electronic arithmetic device that calculates deviations x, y from the center of coordinates based on Δtl, Δt2, and an electronic arithmetic device that calculates φX, φma. Of course, it is also possible to provide various devices such as an electronic arithmetic device that corrects the deviations x and y, an electronic transmission device that transmits the arithmetic results to the shooter, and an electronic display device that displays the results.

[発明の効果] 以上述べた如く本発明によれは、超音速で飛行する飛行
体の衝撃波を利用して、飛行体の通過位置を検出する様
にしなので、射撃の完了を待って結果を評価する等の必
要かなく、通過直後に直ちに結果を知り得ると言う優れ
た効果を発揮する。
[Effects of the Invention] As described above, according to the present invention, the passing position of the flying object is detected by using the shock wave of the flying object flying at supersonic speed, so the result can be evaluated after waiting for the completion of shooting. It has the excellent effect of being able to know the results immediately after passing the test without having to do anything.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理説明図、第2図は飛行体の平面で
の位置を特定する場合の2組の検知手段の配置を示す図
、第3図は飛行体かある角度をもっていた場合の説明図
、第4図は弾道の軌跡を示す図、第5図は光ビ:ムによ
り衝撃波を検知する場合の説明図、第6図は感知バーの
説明図である。 1は飛行体、2は衝撃波、3,4,5.6は検知手段、
7は光ビーム、8は投光器、9は受光器、10は金属バ
ー、11は振動検知器を示す。 第 図
Fig. 1 is a diagram explaining the principle of the present invention, Fig. 2 is a diagram showing the arrangement of two sets of detection means when specifying the position of an aircraft on a plane, and Fig. 3 is a diagram showing the arrangement of two sets of detection means when the aircraft is at a certain angle. 4 is a diagram showing the locus of the trajectory, FIG. 5 is an explanatory diagram when shock waves are detected by an optical beam, and FIG. 6 is an explanatory diagram of the sensing bar. 1 is a flying object, 2 is a shock wave, 3, 4, 5.6 is a detection means,
7 is a light beam, 8 is a light projector, 9 is a light receiver, 10 is a metal bar, and 11 is a vibration detector. Diagram

Claims (1)

【特許請求の範囲】 1)平行に配した2つの線状の衝撃波検知手段を少なく
とも2組交差させる状態で配置し、各組の2つの検知手
段が飛行体の衝撃波をそれぞれ検知した時間差を求め、
各組の検知手段の配置中心に対する飛行体通過位置の偏
差を算出する様にしたことを特徴とする超音速飛行体の
通過位置検知方法。 2)衝撃波検知手段として光ビームを利用し、該光ビー
ムが衝撃波を通過する時の屈折による光路ずれを検知す
る様にした請求項第1項記載の超音速飛行体の通過位置
検知方法。3)衝撃波検知手段として金属製バーの一端
に振動検出器を設けた感知バーを用い、衝撃波がバーに
衝突した際のバーの振動を検知する様にした請求項第1
項記載の超音速飛行体の通過位置検知方法。
[Claims] 1) At least two sets of parallel linear shock wave detection means are arranged in a state of intersecting each other, and the time difference between when the two detection means of each set respectively detect the shock waves of the aircraft is determined. ,
A method for detecting a passing position of a supersonic flying object, characterized in that the deviation of the passing position of the flying object with respect to the center of arrangement of each set of detection means is calculated. 2) The method for detecting the passing position of a supersonic flying vehicle according to claim 1, wherein a light beam is used as the shock wave detection means, and an optical path shift due to refraction when the light beam passes through the shock wave is detected. 3) Claim 1, wherein a sensing bar having a vibration detector provided at one end of a metal bar is used as the shock wave detection means to detect the vibration of the bar when the shock wave collides with the bar.
A method for detecting the passing position of a supersonic flying vehicle as described in .
JP22375288A 1988-09-07 1988-09-07 Method for detecting passing position of supersonic flight body Pending JPH0271111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22375288A JPH0271111A (en) 1988-09-07 1988-09-07 Method for detecting passing position of supersonic flight body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22375288A JPH0271111A (en) 1988-09-07 1988-09-07 Method for detecting passing position of supersonic flight body

Publications (1)

Publication Number Publication Date
JPH0271111A true JPH0271111A (en) 1990-03-09

Family

ID=16803152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22375288A Pending JPH0271111A (en) 1988-09-07 1988-09-07 Method for detecting passing position of supersonic flight body

Country Status (1)

Country Link
JP (1) JPH0271111A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108871595A (en) * 2018-07-27 2018-11-23 中国工程物理研究院激光聚变研究中心 Super time resolution shock velocity calculation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2925582A (en) * 1956-02-22 1960-02-16 Oflice Nat D Etudes Et De Rech Acoustical firing indicator
US3778059A (en) * 1970-03-13 1973-12-11 Singer Co Automatic gunnery shock wave scoring apparatus using metallic conductors as shock wave sensors
JPS55112999A (en) * 1979-01-08 1980-09-01 Australasian Training Aids Pty Device for practicing shooting

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2925582A (en) * 1956-02-22 1960-02-16 Oflice Nat D Etudes Et De Rech Acoustical firing indicator
US3778059A (en) * 1970-03-13 1973-12-11 Singer Co Automatic gunnery shock wave scoring apparatus using metallic conductors as shock wave sensors
JPS55112999A (en) * 1979-01-08 1980-09-01 Australasian Training Aids Pty Device for practicing shooting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108871595A (en) * 2018-07-27 2018-11-23 中国工程物理研究院激光聚变研究中心 Super time resolution shock velocity calculation method

Similar Documents

Publication Publication Date Title
KR100252523B1 (en) Emergency root decision method and device of projector
US4349729A (en) Discriminatory hit detection in target apparatus
US4885725A (en) Position measuring apparatus and method
US6065342A (en) Apparatus and a method of locating a source of acoustic emissions in an article
JPS62138698A (en) Converter for detecting air carrier shock wave
CN105785064B (en) A kind of the Projectile velocity measurements device and its measurement method of any direction incidence
EP0019428B1 (en) Projectile locating apparatus
CN102175149A (en) Photoelectric measurement device and measurement method of flight projectile spatial burst point three-dimensional coordinates
EP0003095B1 (en) Indicator apparatus for determining a distance of a supersonic projectile in relation to a target
EP3599478B1 (en) Wake and shockwave gunshot detection
CN102590788A (en) Redundancy time difference positioning method and redundancy time difference positioning system
SE506657C2 (en) Method and apparatus for projectile measurement
JPH0271111A (en) Method for detecting passing position of supersonic flight body
JP2010230464A (en) Noncontact vibration measuring system, stability evaluation system, noncontact vibration measuring method, and stability evaluation method
GB2078353A (en) Target with a device for the automatic determination of the position of the shot in the target image
JPH0271114A (en) Method for detecting passing position of supersonic flight body
KR101914266B1 (en) Apparatus for measuring explosion position in space of proximity fuze
JP2969491B2 (en) Shooting evaluation device
RU2608349C1 (en) Method of determining projectiles trajectories and device for its implementation
JP2001159597A (en) Method and device for measuring bonding force
JPH025986A (en) Collision position detecting device
CA1147365A (en) Physical hit detection system in target apparatus
RU2285890C1 (en) Method for determination of co-ordinates of test object at the instant of its blasting
RU2231738C2 (en) Method for determination of exterior ballistic characteristics of flight of bullets and projectiles
JPH0271112A (en) Correction method in method for detecting passing position of flight body by sensing bar system