JPH0271112A - Correction method in method for detecting passing position of flight body by sensing bar system - Google Patents

Correction method in method for detecting passing position of flight body by sensing bar system

Info

Publication number
JPH0271112A
JPH0271112A JP22375388A JP22375388A JPH0271112A JP H0271112 A JPH0271112 A JP H0271112A JP 22375388 A JP22375388 A JP 22375388A JP 22375388 A JP22375388 A JP 22375388A JP H0271112 A JPH0271112 A JP H0271112A
Authority
JP
Japan
Prior art keywords
sensing bar
sensing
shock wave
passing position
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22375388A
Other languages
Japanese (ja)
Inventor
Wasaburo Ichinose
一ノ瀬 和三郎
Shunzo Yoshida
吉田 俊三
Makoto Mizoe
溝江 真
Akihiro Komori
小森 昭浩
Shunichiro Takahashi
高橋 俊一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Priority to JP22375388A priority Critical patent/JPH0271112A/en
Publication of JPH0271112A publication Critical patent/JPH0271112A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Navigation (AREA)

Abstract

PURPOSE:To correct the detection result calculated by a sensing bar by obtaining the incident angle and flying speed of a flight body with respect to a coordinates surface by calculation and actual measurement. CONSTITUTION:In the case of incidence at an angle phi only in a vertical direction, the value 1/2 the vertical angle of the cone of a shock wave 4 is set to gamma. The propagation shape of the shock wave 4 at this time becomes an oval wherein the straight line b1b2 connecting the intersecting points a1, a2 of bus bars i, i' with a coordinates surface is a long axis and the straight line a1a2 connecting the intersecting points a1, a2 of a circle (j) containing a point O' of b1, b2/2 is a short axis. When a sensing bar 5 is present at a distance (a) from the point of the center O', the bar 5 senses a flight body at the position of the point a1. Since the actual passing position of a projectile is O, an error of OO'=E is generated. Further, when Ob1=rho1 and Ob2=rho2 are set and the distance from the apex to O is set to rho and the radius of a circle containing O is set to R, an error becomes E=(rho2-rho1)/2. By this method, when the shape of an oval can be specified, an error to be corrected can be calculated from the center position of the oval.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、射撃場で使用する銃等で発射された弾丸等の
超音速飛行体の通過位置を感知バーにより検出する飛行
体の通過位置検知方法に於ける補正方法に関するもので
ある。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a system for detecting the passing position of a supersonic flying object, such as a bullet fired by a gun used at a shooting range, using a sensing bar. The present invention relates to a correction method in a detection method.

[従来の技術] 従来の弾丸等の飛行体の検知方法としては、弾丸等が超
音速で飛行した際に発生する衝撃波を利用する感知バー
方法がある。
[Prior Art] As a conventional method for detecting a flying object such as a bullet, there is a sensing bar method that utilizes shock waves generated when a bullet or the like flies at supersonic speed.

先ず第5図、第6図に於いて感知バーを用い衝撃波を感
知することによって飛行体の通過位置を検出する原理を
説明する。
First, referring to FIGS. 5 and 6, the principle of detecting the passing position of an aircraft by sensing shock waves using a sensing bar will be explained.

1は飛行体Pの進行方向と直角な方向に配置した金属製
の感知バーで、該感知バー1の両端に振動検知器2.3
を取付は感知バーユニットを構成する。
1 is a metal sensing bar arranged in a direction perpendicular to the traveling direction of the flying object P, and vibration detectors 2.3 are installed at both ends of the sensing bar 1.
The mounting comprises the sensing bar unit.

飛行体Pの発生する衝撃波4が、感知バー1に到達する
とその到達点に振動を与える。この振動は感知バー1を
伝わって両端に設けられた振動検知器2.3に到達し感
知される。
When the shock wave 4 generated by the flying object P reaches the sensing bar 1, it imparts vibration to the reaching point. This vibration is transmitted through the sensing bar 1, reaches vibration detectors 2.3 provided at both ends, and is sensed.

今、衝撃波4の到達点Px、感知バー1の中心0から到
達点P、迄の距離をXとすると、到達点Pxから振動検
知器2迄の距離と到達点Pxから振動検知器3迄の距離
との差は2xあり、両検知器2,3へはΔt=2x/V
。(V、。
Now, if the distance from the arrival point Px of the shock wave 4 and the center 0 of the sensing bar 1 to the arrival point P is X, then the distance from the arrival point Px to the vibration detector 2 and from the arrival point Px to the vibration detector 3 are There is a difference of 2x from the distance, and Δt = 2x/V to both detectors 2 and 3.
. (V.

は金属ロッド中の音速)の時間差をもって振動か到達す
る。この時間差Δtは振動検知器2,3か振動を感知し
たときの時間すれを検出することによりもとめられ、結
局中心からの距、Jtxは下記の式で求められる。
The vibrations arrive with a time difference of (the speed of sound in the metal rod). This time difference Δt is determined by detecting the time lapse when the vibration detectors 2 and 3 sense vibrations, and the distance from the center, Jtx, is determined by the following equation.

X−V m ・Δt/2  ・・・(1)而して、感知
バー1.5を第7図に示す如くL字状に直交させて同一
面内に配置すれば、飛行体Pの通過点は感知バー1及び
5の中心を通り直交するX軸、Y軸の直交座標で特定で
きる。
X-V m ・Δt/2 ... (1) Therefore, if the sensing bars 1.5 are arranged orthogonally in an L-shape and in the same plane as shown in FIG. The point can be specified by orthogonal coordinates of the X and Y axes that pass through the centers of the sensing bars 1 and 5 and are perpendicular to each other.

即ち、飛行体Pの通過位置のX座標pX、y座標PY、
感知バー1での振動を感知する時間差をΔtx、感知バ
ー5での時間差をΔt7とすると、Pえ、PYは以下の
如く求められる。
That is, the X coordinate pX, the y coordinate PY of the passing position of the aircraft P,
Assuming that the time difference in sensing the vibration at the sensing bar 1 is Δtx, and the time difference at the sensing bar 5 is Δt7, P and PY are obtained as follows.

px−=v、  ・Δし、/2 P y =V 、・ΔtY/2 [発明が解決しようとする課題] 然し、上記した従来の感知バー方式では以下に述べる問
題がある。
px-=v, ·ΔtY/2 P y =V, ·ΔtY/2 [Problems to be Solved by the Invention] However, the conventional sensing bar method described above has the following problems.

弾丸等初速が与えられて飛行するものは、重力の作用を
受けて落下してゆくので目標点を通過する際には水平に
対する角度落角φ(第8図参照)を有する。
An object such as a bullet that flies with a given initial velocity falls under the action of gravity, so when it passes the target point it has an angle of fall φ (see Fig. 8) with respect to the horizontal.

この落角φは下記運動方程式より導かれる弾道方程式よ
り求められる。
This fall angle φ is obtained from the trajectory equation derived from the equation of motion below.

m:飛行体の質量 に:空気の粘性抵抗係数 t:時間 ■=飛行体の速度 式(2)より V=Vo e −”  ・・・(3) 又、飛行距離をD、飛行高さをH1打出角をθ。m: mass of the flying object :Viscous drag coefficient of air t: time ■=Speed of the aircraft From formula (2) V=Vo e-”...(3) Also, the flight distance is D, the flight height is H1, and the launch angle is θ.

初速vo、重力の加速度をgとすると、弾道方程式は下
記の通りとなる。
If the initial velocity is vo and the acceleration of gravity is g, then the trajectory equation is as follows.

従って、飛距離りでの落角φはdH/dDでとなる。又
、その時の飛行体の速度は、V=Vocosθ、 −K
D       −(7)ところが、弾丸等により発生
する衝撃波は弾丸を頂点とする円錐形状をしていること
から、2本の直交する感知バーが形成する座標面に対し
て飛行体が前記した落角φをもって入射すると以下に述
べる様に誤差を生じてしまう。
Therefore, the fall angle φ at flight distance is dH/dD. Also, the speed of the flying object at that time is V=Vocosθ, −K
D-(7) However, since the shock wave generated by a bullet etc. has a conical shape with the bullet as the apex, the falling angle of the flying object with respect to the coordinate plane formed by the two orthogonal sensing bars is If the beam is incident with φ, an error will occur as described below.

周知の如く円錐をその中心線に対し傾斜した面で切断し
た切断面の外形線は楕円である。従って、2本の感知バ
ーに対して衝撃波は第9図のようにあたかも楕円状に伝
播し衝突する。ところが、衝撃波が楕円状に衝突するが
ゆえ、その衝突点は飛行体Pの通過位置の座標を示さな
い、即ち、飛行体が座標面に対して斜めに通過した場合
、第9図で示した様にEの検知誤差を生じてしまう。
As is well known, the outline of a cut surface obtained by cutting a cone with a plane inclined with respect to its center line is an ellipse. Therefore, the shock wave propagates in an elliptical shape and collides with the two sensing bars as shown in FIG. However, because the shock waves collide in an elliptical shape, the point of impact does not indicate the coordinates of the passing position of the flying object P. In other words, if the flying object passes obliquely to the coordinate plane, This results in a detection error of E.

本発明は、上記実状に鑑み飛行体通過姿勢により検知精
度が影響受けることなく、飛行通過位置の検知を可能と
するものである。
In view of the above-mentioned circumstances, the present invention makes it possible to detect a flight passing position without the detection accuracy being affected by the flying object's passing attitude.

[課題を解決するための手段] 本発明は、超音速飛行体から発生する衝撃波が到達した
時に振動を伝達する感知バーとその両端に設けた振動検
知器により、衝撃波の感知バーでの到達位置を検知する
様にした感知バーユニットを同一平面内に2組配設し、
両感知バーにより座標面を形成し、該座標面内を通過し
た飛行体の衝撃波を2組の感知バーユニットで検知して
通過位置を特定する様に感知バー方式による飛行体の通
過位置検知方法に於いて、飛打体の座標面入射時の入射
角、飛行速度を実験等所要の手段で求め、該入射角、飛
行速度と両感知バーユニットの検知結果を基に衝撃波か
座標面で形成する2の楕円の形状を求め、各楕円形状に
基づき求められる真の飛行体通過位置によって前記検知
結果を補正することを特徴とするものである。
[Means for Solving the Problems] The present invention uses a sensing bar that transmits vibrations when a shock wave generated from a supersonic flying vehicle arrives, and vibration detectors provided at both ends of the sensing bar, to determine the position at which the shock wave reaches the sensing bar. Two sets of sensing bar units are arranged in the same plane to detect
A method for detecting the passing position of an aircraft using a sensing bar method, in which a coordinate plane is formed by both sensing bars, and the shock wave of the aircraft passing within the coordinate plane is detected by two sets of sensing bar units to identify the passing position. In this case, the incident angle and flight speed of the projectile when it enters the coordinate plane are determined by experiments or other necessary means, and based on the incident angle, flight speed, and the detection results of both sensing bar units, a shock wave or a coordinate plane is formed. The present invention is characterized in that the shape of the second ellipse is determined, and the detection result is corrected based on the true flying object passing position determined based on each ellipse shape.

[作  用コ 超音速の飛行体が座標面に対して傾斜して入射すると2
つの感知バーに対して衝撃波は楕円形状で伝播して衝突
する。従って、感知バーで感知する衝撃波の到達位置は
誤差を含んだものとなる。ところか、この楕円の形状は
衝撃波が円錐形状であって、而もこの円錐の頂角はマツ
ハ数できまることから、予め或いは何らかの手段で入射
角を求めておけば、感知バーユニットの感知結果より楕
円形状を特定できる。楕円形状が特定できれば楕円の中
心の位置等より補正すべき誤差を求めることができる。
[Action] When a supersonic flying object enters the coordinate plane at an angle, 2
The shock wave propagates in an elliptical shape and collides with the two sensing bars. Therefore, the arrival position of the shock wave sensed by the sensing bar includes an error. However, the shape of this ellipse means that the shock wave is conical, and the apex angle of this cone is determined by Matsuha's number, so if the angle of incidence is determined in advance or by some means, the sensing result of the sensing bar unit can be It is possible to identify more elliptical shapes. If the ellipse shape can be specified, the error to be corrected can be found from the position of the center of the ellipse.

[実 施 例] 以下図面を参照しつつ本発明の一実施例を説明する。[Example] An embodiment of the present invention will be described below with reference to the drawings.

先ず、前記した誤差Eについて第1図に於いて詳述する
First, the error E mentioned above will be explained in detail with reference to FIG.

第1図は垂直方向にのみ角度φをもって入射した場合を
示し、図中衝撃波4の円錐の頂角の1/2をγとしであ
る。
FIG. 1 shows the case where the shock wave is incident only in the vertical direction at an angle φ, and in the figure, γ is 1/2 of the apex angle of the cone of the shock wave 4.

この時の衝撃波の伝播形状は、辻線iとi′と座標面と
の交点b1とb2を結ぶ直線b+ b2を長軸とし、b
、b2/2の点O′を含む円jの座標面との交点a1と
a2を結ぶ直線EL、a2を短軸とする楕円となる。而
して、感知バー5が中心O′の点よりaの距離のところ
にあったとすると感知バー5は81点の位置で感知する
。ところか、弾丸Pの実際の通過位置はOであるので0
0’ =Eの誤差か生じてしまう。
The propagation shape of the shock wave at this time has a straight line b + b2 connecting the intersections b1 and b2 of the intersection lines i and i' with the coordinate plane as the long axis, and b
, b2/2 with the coordinate plane of the circle j including the point O', the straight line EL connecting the intersection points a1 and a2 forms an ellipse with a2 as the minor axis. Thus, if the sensing bar 5 is located at a distance a from the center point O', the sensing bar 5 senses at a position of 81 points. However, the actual passing position of bullet P is O, so it is 0.
An error of 0' = E will occur.

第1図に於いて0b1=ρ、 、ob2=ρ2、頂点か
ら0迄の距離ρ、0を含む円の半径をRとし、図形より
Eを求めると下記の如くになる。
In FIG. 1, 0b1=ρ, ob2=ρ2, the distance from the vertex to 0 is ρ, and the radius of the circle including 0 is R, and E is determined from the figure as follows.

E=(ρ2−ρ1)/2  ・・・(8)ここで、 更にRは式(12)でy=Eの時のX座標で従って、 ここでaついては感知バー1によって求められ、結局式
(9)と式(13)により誤差Eは、又、γはマツハ角
と呼ばれマツハ数をMとすると、の関係がある。
E=(ρ2-ρ1)/2...(8) Here, furthermore, R is the X coordinate when y=E in equation (12). Here, a is determined by the sensing bar 1, and finally, the equation According to (9) and equation (13), the error E has the following relationship, where γ is called the Matsuh angle and M is the Matsuh number.

更に衝撃波4が座標面で作る楕円の方程式は・・(14
) で求められる。
Furthermore, the equation of the ellipse created by shock wave 4 on the coordinate plane is...(14
).

而して、入射角φは前記式(6)で求められ、γは前記
式(10)で求められることから誤差Eが求められ、感
知バー5で感知した結果を補正することができる。
Since the incident angle φ is obtained from the above equation (6) and γ is obtained from the above equation (10), the error E can be obtained and the result sensed by the sensing bar 5 can be corrected.

次に、第2図に示す如く、座標面に対しφ、即ち水平方
向にφX、垂直方向にφY、傾斜して入射したとした場
合についての補正について説明する。
Next, as shown in FIG. 2, correction will be described in the case where the light is incident at an angle of φ with respect to the coordinate plane, that is, φX in the horizontal direction and φY in the vertical direction.

この時、衝撃波が座標面で作る楕円は、水平方向にφだ
け傾斜して入射した場合に作られる楕円を第3図に示す
様に、 β(−tan”φY/φx2φX2+φ 2)たけ回転
させたものである。
At this time, the ellipse created by the shock wave on the coordinate plane is the ellipse created when the shock wave is incident at an angle of φ in the horizontal direction, as shown in Figure 3, which is rotated by β(-tan"φY/φx2φX2+φ2). It is something.

従って、楕円の方程式は、 と前記式(12)より、 式(16)と水平接線との接点を求めるとここでeは離
心率で、 又、式(16)と垂直線との接点を求めると、式(17
)に於けるXlは感知バー1の検知結果で、ylは感知
バー1の設置位置よりわかり、又式(18)に於けるx
2は感知バー5の設置位置から、y2は感知バー5の感
知結果でわかるところから、a、e(即ちb)を求める
ことかでき、座標面での2つの楕円形状、楕円の中心を
決定することかできる。
Therefore, the equation of the ellipse is: From the above equation (12), find the point of contact between equation (16) and the horizontal tangent line, where e is the eccentricity, and find the point of contact between equation (16) and the vertical line. and formula (17
), Xl is the detection result of sensing bar 1, yl can be found from the installation position of sensing bar 1, and x in equation (18)
2 is from the installation position of the sensing bar 5, and y2 is from the sensing result of the sensing bar 5. From this, a and e (i.e. b) can be found, and the two elliptical shapes and the center of the ellipse on the coordinate plane are determined. I can do something.

更に、楕円の中心と円錐の中心との[?[は式(12)
で求めた誤差に外ならず、βだけ回転する前の楕円より
2つの楕円のEI、E2をそれぞれ求めることかでき、
従ってX方向についてはE、CO5β、X方向について
は E2sinβの補正量が求められ、又感知バー1か感知
した位置とX方向の楕円中心迄の距離ΔX、感知バー5
か感知した位置とX方向の楕円中心迄の距離Δyについ
てはそれぞれ楕円の中心が求められることから直ちに求
め得ることか出来る。
Furthermore, [?] between the center of the ellipse and the center of the cone. [is formula (12)
It is possible to find the EI and E2 of the two ellipses from the ellipse before rotating by β without exceeding the error found in
Therefore, the correction amount of E, CO5β in the X direction and E2sin β in the
The distance Δy between the sensed position and the center of the ellipse in the X direction can be immediately determined since the center of each ellipse is determined.

而して、感知バー1については(Δχ十Etcosβ)
が補正すべき量Exとなり、感知バー5については(Δ
3’十E2 S i nβ)が補正すべき量Evとなる
(第4図参照)。
Therefore, for sensing bar 1, (Δχ + Etcos β)
is the amount Ex to be corrected, and for the sensing bar 5, (Δ
3'+E2 S i nβ) is the amount Ev to be corrected (see FIG. 4).

尚、補正すべき誤差Ex 、Evは入射角を1方向にの
み傾斜したφ8及びφYとした楕円についてそれぞれ式
(14)で求めたと同様な手法で求めることもできる。
It should be noted that the errors Ex and Ev to be corrected can also be determined using the same method as that for the ellipses with angles of incidence φ8 and φY tilted in only one direction, respectively, using equation (14).

又、2本の感知バーで構成されるもう1つの座標面を所
定の距離離して設ければ、2つの座標面の検知結果より
飛行体の速度、座標面への入射角を求めることができる
In addition, if another coordinate plane consisting of two sensing bars is installed a predetermined distance apart, the speed of the aircraft and the angle of incidence on the coordinate plane can be determined from the detection results of the two coordinate planes. .

更に、2本の感知バーは必ずしも直交する必要はなく、
2本の感知バーを所定の角度で配置した場合でも2本の
感知バーを接線とし、該接線と衝撃波の楕円との接点を
求め楕円の形状を決定すれば、上記したと同様な手法で
補正すべき誤差は求められる。
Furthermore, the two sensing bars do not necessarily have to be orthogonal;
Even if the two sensing bars are arranged at a predetermined angle, if the two sensing bars are set as tangents and the contact point between the tangent and the shock wave ellipse is determined to determine the shape of the ellipse, correction can be made using the same method as described above. The error should be determined.

[発明の効果] 以上述べた如く本発明によれば、座標面に対する飛行体
の入射角と、飛行速度を計算、実測等所要の手段で求め
るようにすれば、感知バー方式により求められた検知結
果を補正することかでき、飛行体の通過位置検知精度を
大幅に向上させることができる。
[Effects of the Invention] As described above, according to the present invention, if the angle of incidence of the aircraft with respect to the coordinate plane and the flight speed are determined by necessary means such as calculation or actual measurement, the detection determined by the sensing bar method can be achieved. The results can be corrected, and the accuracy of detecting the passing position of an aircraft can be greatly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は座標面に対して角度をもって入射した場合に生
じる誤差の説明図、第2図は座標面に対する入射角の説
明図、第3図は楕円をX軸に関してβだけ回転させた場
合の説明図、第4図は楕円形状に対する誤差の関係を示
す説明図、第5図、第6図感知パ一方式による通過位置
検知の原理を示す説明図、第7図は2本の直交した感知
バーで音源の位置を特定し得ることを示す説明図、第8
図は弾道の軌跡を示す図、第9図は感知バー方式で生じ
る誤差についての説明図である。 1.5は感知バー、2.3.6.7は振動検知器、4は
衝撃波を示す。
Figure 1 is an illustration of the error that occurs when the incidence is at an angle to the coordinate plane, Figure 2 is an illustration of the angle of incidence to the coordinate plane, and Figure 3 is an illustration of the error that occurs when the ellipse is rotated by β about the X axis. Explanatory drawings, Fig. 4 is an explanatory drawing showing the relationship of error to the elliptical shape, Figs. 5 and 6 are explanatory drawings showing the principle of passing position detection by one type of sensor, and Fig. 7 is an explanatory drawing showing the principle of passing position detection using two orthogonal sensing lines. Explanatory diagram showing that the position of the sound source can be identified with the bar, No. 8
The figure shows the locus of the trajectory, and FIG. 9 is an explanatory diagram of errors caused by the sensing bar method. 1.5 is a sensing bar, 2.3.6.7 is a vibration detector, and 4 is a shock wave.

Claims (1)

【特許請求の範囲】[Claims] 1)超音速飛行体から発生する衝撃波が到達した時に振
動を伝達する感知バーとその両端に設けた振動検知器に
より、衝撃波の感知バーでの到達位置を検知する様にし
た感知バーユニットを同一平面内に2組配設し、両感知
バーにより座標面を形成し、該座標面内を通過した飛行
体の衝撃波を2組の感知バーユニットで検知して通過位
置を特定する様に感知バー方式による飛行体の通過位置
検知方法に於いて、飛行体の座標面入射時の入射角、飛
行速度を実測等所要の手段で求め、該入射角、飛行速度
と両感知バーユニットの検知結果を基に衝撃波が座標面
で形成する2の楕円の形状を求め、各楕円形状に基づき
求められる真の飛行体通過位置によつて前記検知結果を
補正することを特徴とする感知バー方式による飛行体の
通過位置検知方法に於ける補正方法。
1) The same sensing bar unit uses a sensing bar that transmits vibrations when a shock wave generated from a supersonic aircraft arrives, and vibration detectors installed at both ends to detect the position where the shock wave reaches the sensing bar. Two sets of sensing bars are arranged in a plane, and both sensing bars form a coordinate plane, and the two sets of sensing bar units detect the shock waves of an aircraft passing within the coordinate plane to identify the passing position. In the method of detecting the passing position of a flying object using this method, the angle of incidence and flight speed of the flying object when it enters the coordinate plane are determined by actual measurement or other necessary means, and the angle of incidence, flight speed, and the detection results of both sensing bar units are calculated. A flying object based on a sensing bar method, characterized in that the shape of the second ellipse formed by the shock wave on the coordinate plane is determined based on the shape of the second ellipse, and the detection result is corrected by the true passing position of the flying object determined based on each elliptical shape. A correction method in the passing position detection method.
JP22375388A 1988-09-07 1988-09-07 Correction method in method for detecting passing position of flight body by sensing bar system Pending JPH0271112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22375388A JPH0271112A (en) 1988-09-07 1988-09-07 Correction method in method for detecting passing position of flight body by sensing bar system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22375388A JPH0271112A (en) 1988-09-07 1988-09-07 Correction method in method for detecting passing position of flight body by sensing bar system

Publications (1)

Publication Number Publication Date
JPH0271112A true JPH0271112A (en) 1990-03-09

Family

ID=16803168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22375388A Pending JPH0271112A (en) 1988-09-07 1988-09-07 Correction method in method for detecting passing position of flight body by sensing bar system

Country Status (1)

Country Link
JP (1) JPH0271112A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11525453B2 (en) 2017-03-08 2022-12-13 Robert Bosch Gmbh Bearing arrangement for a drive shaft of a turbo-machine, and a turbo-machine including such a bearing arrangement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11525453B2 (en) 2017-03-08 2022-12-13 Robert Bosch Gmbh Bearing arrangement for a drive shaft of a turbo-machine, and a turbo-machine including such a bearing arrangement

Similar Documents

Publication Publication Date Title
KR100252523B1 (en) Emergency root decision method and device of projector
US6356229B1 (en) Method for processing radar signals
US7796470B1 (en) Acoustic detection of weapons near transportation centers
US5724125A (en) Determination of wind velocity using a non-vertical LIDAR scan
US4885725A (en) Position measuring apparatus and method
US20030008265A1 (en) Time-difference process and apparatus for scoring supersonic aerial projectiles
JP2005502053A5 (en)
JPH0262023B2 (en)
RU2416103C2 (en) Method of determining trajectory and speed of object
EP3599478B1 (en) Wake and shockwave gunshot detection
SE506657C2 (en) Method and apparatus for projectile measurement
US4625647A (en) Weapon system and missile for the structural destruction of an aerial target by means of a focussed charge
JPH0271112A (en) Correction method in method for detecting passing position of flight body by sensing bar system
EP0313246A2 (en) Article orientation
JP4738282B2 (en) Flying object guidance device
US5944317A (en) Shock wave scoring apparatus employing dual concentric curved rod sensors
CN112229280B (en) Method for determining multi-branch fuse detection area
RU2608349C1 (en) Method of determining projectiles trajectories and device for its implementation
JPH0271114A (en) Method for detecting passing position of supersonic flight body
KR101914266B1 (en) Apparatus for measuring explosion position in space of proximity fuze
RU2170907C1 (en) Method for aiming in attack of high-speed targets by fighter in flat trajectory and device for its realization
JP2969491B2 (en) Shooting evaluation device
JPH0271113A (en) Sensing bar arranging method in method for detecting passing position of supersonic flight body using sensing bar
RU2231738C2 (en) Method for determination of exterior ballistic characteristics of flight of bullets and projectiles
US3545268A (en) Ground track alignment sensing system