JPH026837A - Production of superfine powder and device therefor - Google Patents

Production of superfine powder and device therefor

Info

Publication number
JPH026837A
JPH026837A JP15494088A JP15494088A JPH026837A JP H026837 A JPH026837 A JP H026837A JP 15494088 A JP15494088 A JP 15494088A JP 15494088 A JP15494088 A JP 15494088A JP H026837 A JPH026837 A JP H026837A
Authority
JP
Japan
Prior art keywords
gas
reaction
phase
superfine powder
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15494088A
Other languages
Japanese (ja)
Other versions
JP2699304B2 (en
Inventor
Kenichi Otsuka
大塚 研一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP63154940A priority Critical patent/JP2699304B2/en
Publication of JPH026837A publication Critical patent/JPH026837A/en
Application granted granted Critical
Publication of JP2699304B2 publication Critical patent/JP2699304B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J12/00Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
    • B01J12/02Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor for obtaining at least one reaction product which, at normal temperature, is in the solid state

Abstract

PURPOSE:To easily produce the superfine powder of metal and ceramic which has been extremely difficult to produce by the conventional vapor-phase thermochemical reaction process by holding the inside of a reactor wherein a vapor-phase reaction proceeds at a reduced pressure. CONSTITUTION:The superfine powder of metal or ceramic is produced by the vapor-phase thermochemical reaction process between a volatile metallic compd. 17 (e.g., cuprous chloride) and a gas 1 (e.g., hydrogen) capable of reacting with the compd. In this case, the inside of the reactor 8 wherein the vapor-phase reaction process proceeds is held at 500-50 Torr. A multistage superfine powder recovery device 11 having a fine filter and a liq.-sealed vacuum pump 12 using a liq. inert to the gaseous reactant of the thermochemical reaction or absorbing the gaseous reactant are provided at the final stage. As a result, the superfine powder of metal and ceramic, which has been extremely difficult to produce by the conventional vapor-phase thermochemical reaction process, can be easily produced.

Description

【発明の詳細な説明】 〔産業上の利用分野j 本発明は気相熱化学反応を利用した金属やセラミックス
の超微粉の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing ultrafine metal or ceramic powder using a gas phase thermochemical reaction.

〔従来の技術1 従来の気相熱化学反応による超微粉の製造方法は第5図
(I(、1,amprey and R,L、 Rip
ley; J。
[Prior art 1 A conventional method for producing ultrafine powder by a gas phase thermochemical reaction is shown in Figure 5 (I(, 1, amprey and R, L, Rip
ley; J.

Electrochemical 5ociety、 
109.713 (’621や第4図(特公昭59−7
765)に示すように気化した金属化合物と反応気体(
通常は水素)とを常圧(大気圧)以上で反応させている
Electrochemical 5ociety,
109.713 ('621 and Fig. 4
765), the vaporized metal compound and the reaction gas (
(Usually hydrogen) is reacted at normal pressure (atmospheric pressure) or above.

これらの反応器内部においては、易気化性金属化合物の
蒸気およびこれと反応する気体とが混合された後、気相
(均一相)で反応して、金属やセラミックスの原子、分
子を生じ、それらが会合(凝集)することにより核が生
じて、さらに核同士の会合や核への析出反応により超微
粒子へと生長していくと考えられている。(吉沢、大塚
:粉体工学会誌、21.759 (’ 84))粒径の
制御は易気化性金属化合物の濃度(分圧)の調整によっ
て可能であり、小粒径を得るためには不活性ガスにより
希釈する必要がある。
Inside these reactors, the vapor of an easily vaporizable metal compound and the gas that reacts with it are mixed and then reacted in the gas phase (uniform phase) to produce atoms and molecules of metals and ceramics. It is thought that a nucleus is generated by the association (aggregation) of the particles, which then grow into ultrafine particles due to the association between the nuclei and the precipitation reaction on the nucleus. (Yoshizawa, Otsuka: Journal of the Powder Engineering Society, 21.759 ('84)) Particle size can be controlled by adjusting the concentration (partial pressure) of the easily vaporizable metal compound, and in order to obtain a small particle size, it is possible to control the particle size. It is necessary to dilute with active gas.

ところが、これらは全て常圧において行われているため
1反応器体の濃度が大きく、該生成、生長が急速に進行
し、反応に応じて決まるある大きさ以下の超微粒子を得
ることが極めて困難であった。
However, since all of these processes are carried out at normal pressure, the concentration in one reactor body is large, and the formation and growth proceed rapidly, making it extremely difficult to obtain ultrafine particles with a size smaller than a certain size determined by the reaction. Met.

例えば塩化第一銅の気相水素還元においては常圧の下で
は、希釈のために大量のアルゴンガスを用いても0.0
6μm程度が得られる最小平均粒径である。
For example, in gas-phase hydrogen reduction of cuprous chloride, under normal pressure, even if a large amount of argon gas is used for dilution, the
The minimum average particle size that can be obtained is about 6 μm.

塩化第一鉄の水素還元による鉄属微粉では0、02 a
 m、四塩化チタンの酸化による二酸化チタンでは0.
04μm程度である。大量の希釈ガスを用いることは経
済的には、ガスの価格がコストに加算されるのみならず
、その加熱と冷却とによりさらにコストアップとなる要
因を抱えていることになる。さらに小粒径を得るために
急冷することにより粒子の生長を抑制しようとする試み
もあるが、高温の反応域から急激に冷却することは技術
的に困難な点が多く (例えば冷却プレートを設けると
それに粉末が付着する)熱損失も太きし)6 [発明が解決しようとする課題] 核生成を比較的容易に行わせ、しかも核の生長を抑制し
、粒径の小さい超微粒子を得るためには、核同士の合体
する確率を小さくすることが必要である。そのためには
従来5反応系を不活性ガスで希釈していた。
0.02 a for iron fine powder produced by hydrogen reduction of ferrous chloride
m, 0.0 for titanium dioxide produced by oxidation of titanium tetrachloride.
It is about 0.04 μm. Economically, the use of a large amount of diluent gas not only adds to the cost of the gas, but also causes further cost increases due to its heating and cooling. There are also attempts to suppress particle growth by rapid cooling to obtain smaller particle sizes, but there are many technical difficulties in rapidly cooling the high temperature reaction zone (for example, by installing a cooling plate). 6 [Problem to be solved by the invention] To make nucleation relatively easy, suppress the growth of the nuclei, and obtain ultrafine particles with small particle size. In order to achieve this, it is necessary to reduce the probability that the nuclei will coalesce. For this purpose, conventionally, the five reaction systems were diluted with an inert gas.

これまで、プラズマやレーザを用いて反応を励起する場
合には、プラズマやレーザの制御のために、反応系を減
圧にすることが必然的に行われていた。
Until now, when a reaction is excited using plasma or laser, it has been necessary to reduce the pressure of the reaction system in order to control the plasma or laser.

しかしながら、熱励起による化学反応の場合には、減圧
CVDによるコーティングは実施されているが、粉末を
製造する際には減圧にすることは行われていなかった。
However, in the case of chemical reactions caused by thermal excitation, coating by low pressure CVD has been carried out, but reduced pressure has not been used when producing powder.

それは次の理由によるものである。This is due to the following reasons.

イ)減圧下で超微粉を回収することは容易ではない。b) It is not easy to collect ultrafine powder under reduced pressure.

口)真空ポンプのメンテナンスに問題があり実現の可能
性が困難である。すなわち、減圧状態においで、熱化学
反応により超微粉を生成させるためには、何らかの形式
のポンプが必要であるが、ポンプへの粉末混入による閉
塞や摩耗あるいは反応ガスによる腐食の問題などの技術
的問題がある。
Mouth) There are problems with vacuum pump maintenance, making it difficult to realize. In other words, in order to generate ultrafine powder through a thermochemical reaction under reduced pressure, some type of pump is required, but there are technical problems such as clogging and wear due to powder contamination in the pump, and corrosion problems due to reaction gas. There's a problem.

本発明はこのような問題を解決し、系を減圧とし、低圧
で反応を行わせることによって核の合体を少なくし粒生
長を抑えることに着目し、減圧条件や設備上の条件を決
定することにより開発されたものであり、超微粉の製造
方法およびその装置を提供することを目的とする。
The present invention solves these problems by reducing the pressure of the system and conducting the reaction at low pressure, thereby reducing the coalescence of nuclei and suppressing grain growth, and determining the reduced pressure conditions and equipment conditions. The purpose is to provide a method and apparatus for producing ultrafine powder.

[課題を解決するための手段1 本発明は、易気化性金属化合物および該易気化性金属化
合物と反応する気体との間の気相熱化学反応により金属
またはセラミックスの超微粉を製造する気相熱化学反応
法において、気相反応が進行する反応器内を500To
rr 〜50Torrの減圧状態に保つことを特徴とす
る。
[Means for Solving the Problems 1] The present invention provides a gas phase method for producing ultrafine metal or ceramic powder through a gas phase thermochemical reaction between an easily vaporizable metal compound and a gas that reacts with the easily vaporizable metal compound. In the thermochemical reaction method, the inside of the reactor where the gas phase reaction proceeds is heated to 500 To
It is characterized by maintaining a reduced pressure state of rr to 50 Torr.

また、上記方法を好適に実施することのできる本発明の
装置は、最終段に微細なフィルタを有する多段超微粉回
収装置と、気相熱化学反応の反応ガスに対して不活性か
または該反応ガスを吸収する液体を用いた液封真空ポン
プとを付設した気相熱化学反応用超微粉製造装置である
Further, the apparatus of the present invention capable of suitably carrying out the above method includes a multi-stage ultrafine powder recovery apparatus having a fine filter in the final stage, and a gas phase inert to the reaction gas of the gas phase thermochemical reaction or This is an ultrafine powder production device for gas-phase thermochemical reactions that is equipped with a liquid ring vacuum pump that uses a liquid that absorbs gas.

[作用1 超微粉の回収や閉塞等の問題に対しては、超微粉の回収
を完全にするように、多段の回収装置を用い、最終段に
おいて開き目の微細なフィルタを使用する。
[Effect 1] To solve problems such as recovery of ultrafine powder and clogging, use a multi-stage recovery device and use a filter with fine openings in the final stage to completely recover ultrafine powder.

ポンプの腐食に対しては、ポンプに反応ガスと相互作用
のない液体を用いるか、または反応ガスを吸収してしま
う液体を用る0例えば塩酸ガスを発生する反応の場合に
、水封ポンプを用いて塩酸ガスを吸収させ、吸収液を循
環しつつ、一部を取出し、新水を加えれば良い。
To prevent corrosion of the pump, use a liquid in the pump that does not interact with the reaction gas, or use a liquid that absorbs the reaction gas.For example, in the case of a reaction that generates hydrochloric acid gas, use a water ring pump. All you have to do is absorb hydrochloric acid gas, take out some of it, and add fresh water while circulating the absorption liquid.

易気化性金属化合物に塩化物を用いる場合には、水封式
ポンプが本発明を実現するために好適なものであり、粉
末の多少の混入があってもそれ程問題がない。
When a chloride is used as the easily vaporizable metal compound, a water ring pump is suitable for implementing the present invention, and there is no problem even if some powder is mixed in.

第1図に本発明方法を実施するための装置の構成を示し
た。気相化学反応を行う反応器8の下流に第1段集粉器
、第2段集扮器1反応生成物除去装置など数段のフィル
タ11を備え、真空ポンプ12をその下流に結合してい
る6反応器上流には反応ガスl、キャリアガス2を導入
する圧力調整弁を備える。第1図中に示した反応生成物
除去装置は必要のない場合もある。
FIG. 1 shows the configuration of an apparatus for carrying out the method of the present invention. Several stages of filters 11 including a first stage powder collector, a second stage collector 1 and a reaction product removal device are provided downstream of the reactor 8 for performing a gas phase chemical reaction, and a vacuum pump 12 is connected downstream thereof. A pressure regulating valve for introducing reaction gas 1 and carrier gas 2 is provided upstream of the 6 reactors. The reaction product removal device shown in FIG. 1 may not be necessary.

第2図は第1図をさらに具体化した例を示したものであ
る。易気化性金属化合物を搬送するためのキャリアガス
2と該易気化性金属化合物と気相において反応する反応
ガスIとをそれぞれ流量計3、圧力調整弁4を通して気
化部入口および反応管8へ導入する。反応管内には易気
化性金属化合物が容器5内に収納されている。電気炉6
.7は反応雰囲気を加熱する。反応により生成した超微
粉は水冷部9で冷却されフィルタ11で回収される。第
2図ではフィルタ11は1段のみを示しているが、通常
多段に構成される。フィルタJ1を通過した残りの反応
ガス、キャリアガス、未反応の易気化性金属化合物およ
び生成ガスは、第3図に示したような、本発明方法の実
施に最適な一例である真空ポンプ12を備えたアスピレ
ータI3によって吸引される。
FIG. 2 shows a more specific example of FIG. 1. A carrier gas 2 for transporting an easily vaporizable metal compound and a reaction gas I that reacts with the easily vaporizable metal compound in the gas phase are introduced into the vaporizing section inlet and the reaction tube 8 through a flow meter 3 and a pressure regulating valve 4, respectively. do. An easily vaporizable metal compound is housed in a container 5 in the reaction tube. electric furnace 6
.. 7 heats the reaction atmosphere. The ultrafine powder produced by the reaction is cooled in a water cooling section 9 and collected by a filter 11. Although only one stage of the filter 11 is shown in FIG. 2, it is usually configured in multiple stages. The remaining reaction gas, carrier gas, unreacted easily vaporizable metal compound, and produced gas that have passed through the filter J1 are pumped through a vacuum pump 12, which is an example of the most suitable example for carrying out the method of the present invention, as shown in FIG. It is sucked in by the equipped aspirator I3.

真空ポンプ12の作用により反応系は減圧となるが、ガ
スの一部はポンプ14によって循環される液体により液
中に吸収する場合もある。
The pressure of the reaction system is reduced by the action of the vacuum pump 12, but some of the gas may be absorbed into the liquid by the liquid circulated by the pump 14.

減圧の程度は圧力調整弁4の開度と反応器8などの大き
さ、真空ポンプ12の能力などにより決まる。凝縮性ガ
スを発生する反応の場合には、トラップを設け、凝縮性
ガスを除いてから真空ポンプで引くと良い。
The degree of pressure reduction is determined by the opening degree of the pressure regulating valve 4, the size of the reactor 8, etc., the capacity of the vacuum pump 12, etc. In the case of a reaction that generates condensable gas, it is preferable to provide a trap and remove the condensable gas before pulling the reaction with a vacuum pump.

さらに、粉末はそのまま真空ポンプに使用する液体中に
捕集してしまうのがよい。
Furthermore, it is preferable to collect the powder directly in the liquid used in the vacuum pump.

減圧の程度については、本発明による生成超微粉の粒径
の減少効果は500Torr以下において顕著となり、
50Torrを超えて低くなると粒径減少に効果はある
が、実質的に意味のある超微粉の生成速度とならない。
Regarding the degree of pressure reduction, the effect of reducing the particle size of the ultrafine powder produced by the present invention becomes noticeable at 500 Torr or less,
When the pressure is lower than 50 Torr, it is effective in reducing the particle size, but the production rate of ultrafine powder is not substantially significant.

従って5本発明の反応器内の減圧状態は500〜50T
orrと規定した。
Therefore, the reduced pressure state in the reactor of the present invention is 500 to 50T.
It was defined as orr.

また減圧状態では反応器内の流れが均一化するため、粒
子の形状・粒度分布も均一化し、さらに反応器内への付
着量が減少するメリットがある。
In addition, in a reduced pressure state, the flow inside the reactor becomes uniform, so the shape and particle size distribution of the particles become uniform, and there is also the advantage that the amount of particles adhering to the inside of the reactor is reduced.

〔実施例] 実施例−1 易気化性金属化合物として塩化第一銅を、反応性ガスと
して水素、キャリアガスとしてArを用い、第1図に示
した装置によって、銅属微粉を試作した6 アスピレータの循IMmには水を使用した。先ず系を減
圧とせずに、 気化部の温度二900℃ 反応部の温度:1000℃ アルゴンガス流量:4a/分 水素流量  =22/分 とし、系内をほぼ大気圧かまたはフィルタへの超微粉の
堆積による若干の加圧状態(0,01気圧程度)で得ら
れた銅属微粉の平均粒径は0.1 amであった。
[Example] Example 1 Using cuprous chloride as an easily vaporizable metal compound, hydrogen as a reactive gas, and Ar as a carrier gas, copper metal fine powder was prototyped using the apparatus shown in Fig. 1. 6 Aspirator Water was used for the circulation IMm. First, without reducing the pressure in the system, the temperature of the vaporization section was set to 2900℃, the temperature of the reaction section: 1000℃, the flow rate of argon gas: 4a/min, the flow rate of hydrogen = 22/min, and the pressure inside the system was set to approximately atmospheric pressure, or the ultrafine powder was transferred to the filter. The average particle size of the copper metal fine powder obtained under a slightly pressurized state (approximately 0.01 atm) due to the deposition of was 0.1 am.

次にアスピレータを接続し、水の循環量とバルブ4を調
節することにより、反応管内の圧力を500Torrと
して他は同条件として、銅属微粉を作成したところ平均
粒径は0.05μmとなった。また反応管内の圧力を6
00Torrとした時は平均粒径は0.09μmであっ
た。
Next, by connecting an aspirator and adjusting the water circulation amount and valve 4, the pressure inside the reaction tube was set to 500 Torr, and the other conditions were the same, and copper metal fine powder was created, and the average particle size was 0.05 μm. . Also, the pressure inside the reaction tube was increased to 6
When the pressure was 0.00 Torr, the average particle size was 0.09 μm.

実施例−2 気化部の温度=900℃ 反応部の温度:1000℃ アルゴンガス流量=2β/分(常圧) 水素ガス流層:lI2/分(常圧) とし、系内を50Torrとした時、塩化第一銅の水素
還元による銅属微粉の平均粒径は0,03μmとなった
。この時超微粉生成速度は0.1g/分であったが、圧
力をさらに30Torrとしたところ、生成速度は0.
06g/分に低下した。
Example-2 Temperature of vaporization section = 900°C Temperature of reaction section: 1000°C Argon gas flow rate = 2β/min (normal pressure) Hydrogen gas flow layer: 1I2/min (normal pressure) When the inside of the system was set to 50 Torr The average particle size of copper metal fine powder obtained by hydrogen reduction of cuprous chloride was 0.03 μm. At this time, the ultrafine powder production rate was 0.1 g/min, but when the pressure was further increased to 30 Torr, the production rate was 0.1 g/min.
It decreased to 0.6g/min.

実施例−3 第1図と同様の装置を用い、四塩化錫と水蒸気を反応さ
せて酸化錫の超微粒子を炸裂した。
Example 3 Using an apparatus similar to that shown in FIG. 1, tin tetrachloride and water vapor were reacted to explode ultrafine particles of tin oxide.

四塩化錫は室温で、4e/分のアルゴンガスで、水蒸気
は0.2f2/分発生させ1等1のアルゴンガスで搬送
し、800°Cの反応部に導いた。
Tin tetrachloride was generated at room temperature with 4 e/min of argon gas, and water vapor was generated at 0.2 f2/min and transported with 1 grade 1 argon gas and led to a reaction section at 800°C.

減圧装置を用いない場合は、0.07 tLmの平均粒
径の酸化錫超微粒子が得られたが、280Torrに減
圧することにより、平均粒径は0.02μmとなった。
When a pressure reduction device was not used, ultrafine tin oxide particles with an average particle size of 0.07 tLm were obtained, but by reducing the pressure to 280 Torr, the average particle size became 0.02 μm.

常圧の条件においてさらに小粒径を得るために、四塩化
錫のキャリアガスのArを1OI2/分とし、水蒸気の
キャリアArを0.8R/分に増加させたが、得られた
超微粉の平均粒径は0.04 umに止まった。
In order to obtain an even smaller particle size under normal pressure conditions, the Ar of the tin tetrachloride carrier gas was set to 1 OI2/min, and the carrier Ar of water vapor was increased to 0.8 R/min. The average particle size remained at 0.04 um.

実施例−4 第1図と同様の装置を用い、二酸化チタンを作製した。Example-4 Titanium dioxide was produced using an apparatus similar to that shown in FIG.

四塩化チタンは室温において212/分のアルゴンガス
により反応部へ搬送し、酸素は1a/分とした。
Titanium tetrachloride was transported to the reaction section at room temperature using argon gas at 212/min, and oxygen was supplied at 1 a/min.

反応温度1100℃において常圧においては平均0.1
5 g mであったが、300Torrに減圧すると0
.06μmと微細化した。
At a reaction temperature of 1100°C and normal pressure, the average value is 0.1
5 g m, but when the pressure was reduced to 300 Torr, it became 0.
.. The size was reduced to 0.6 μm.

実施例−5 Fe−Co系の磁性粉を製造するため、塩化第一鉄と塩
化コバルトをAr気流中で蒸発させ、(キャリアガス合
計42/分)、2I2/分の水素で還元した。常圧では
蒸発温度1000℃、反応温度1000℃で、得られた
粉末は0.08μmとなり、これらの粉末のHe(保磁
力)は540エールステツドに過ぎなかったが、420
Torrの減圧下では1粒径は0.04μmとなり、F
(cは1250エールステツドに上昇した。
Example 5 In order to produce Fe-Co magnetic powder, ferrous chloride and cobalt chloride were evaporated in an Ar stream (carrier gas total 42/min) and reduced with hydrogen at 2I2/min. At normal pressure, at an evaporation temperature of 1000°C and a reaction temperature of 1000°C, the obtained powders had a diameter of 0.08 μm, and the He (coercive force) of these powders was only 540 oersted, but 420 oersted.
Under reduced pressure of Torr, the diameter of one particle is 0.04 μm, and F
(c rose to 1250 Oersted.

これは磁気テープ用粉末として好適である。This is suitable as a powder for magnetic tape.

〔発明の効果] 本発明により従来の気相熱化学反応法によっては非常に
困難であった小粒径の金属およびセラミックス超微粉を
容易に得ることができる。
[Effects of the Invention] According to the present invention, it is possible to easily obtain ultrafine metal and ceramic powders with small particle diameters, which have been extremely difficult to obtain using conventional gas phase thermochemical reaction methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明の超微粉の製造装置の構成を示
すフローシート、第3図は液封ポンプの構造例を示す断
面図、第4図および第5図は従来の方法による超微粉の
製造方法を示すフローシートである。 ■・・−反応ガス 2・・・キャリアガス 3・・・流量計 4・・・圧力調整弁 5・・・易気化性金属化合物容器 6・・・気化部加熱用電気炉 7・・・反応部加熱用電気炉 8・・・反応管(反応器) 9・・・水冷部 10・・・ストップ弁 11・・・フィルタ 12・・・真空ポンプ 13・・・アスピレータ 14・・・液循環ポンプ 15・・・ガス処理後排気 16・・・圧力計
Figures 1 and 2 are flow sheets showing the configuration of the ultrafine powder manufacturing apparatus of the present invention, Figure 3 is a sectional view showing an example of the structure of a liquid ring pump, and Figures 4 and 5 are based on the conventional method. This is a flow sheet showing a method for producing ultrafine powder. -Reaction gas 2...Carrier gas 3...Flow meter 4...Pressure regulating valve 5...Easily vaporizable metal compound container 6...Electric furnace for heating the vaporizing section 7...Reaction Part heating electric furnace 8...Reaction tube (reactor) 9...Water cooling section 10...Stop valve 11...Filter 12...Vacuum pump 13...Aspirator 14...Liquid circulation pump 15... Exhaust after gas treatment 16... Pressure gauge

Claims (1)

【特許請求の範囲】 1 易気化性金属化合物および該易気化性金属化合物と
反応する気体との間の気相熱化学反応により金属または
セラミックスの超微粉を製造する気相熱化学反応法にお
いて、気相反応が進行する反応器内を500Torr〜
50Torrの減圧状態に保つことを特徴とする超微粉
の製造方法。 2 最終段に微細なフィルタを有する多段超微粉回収装
置と、気相熱化学反応の反応ガスに対して不活性かまた
は該反応ガスを吸収する液体を用いた液封真空ポンプと
を付設した気相熱化学反応用超微粉製造装置。
[Scope of Claims] 1. In a vapor phase thermochemical reaction method for producing ultrafine metal or ceramic powder by a vapor phase thermochemical reaction between an easily vaporizable metal compound and a gas that reacts with the easily vaporizable metal compound, The inside of the reactor where the gas phase reaction proceeds is set at 500 Torr or more.
A method for producing ultrafine powder characterized by maintaining a reduced pressure state of 50 Torr. 2. A gas pump equipped with a multistage ultrafine powder recovery device having a fine filter at the final stage and a liquid ring vacuum pump using a liquid that is inert to or absorbs the reaction gas of the gas phase thermochemical reaction. Ultrafine powder production equipment for phase thermal chemical reactions.
JP63154940A 1988-06-24 1988-06-24 Ultra fine powder production equipment Expired - Fee Related JP2699304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63154940A JP2699304B2 (en) 1988-06-24 1988-06-24 Ultra fine powder production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63154940A JP2699304B2 (en) 1988-06-24 1988-06-24 Ultra fine powder production equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP15117197A Division JP2902381B2 (en) 1997-06-09 1997-06-09 Ultra fine powder production method

Publications (2)

Publication Number Publication Date
JPH026837A true JPH026837A (en) 1990-01-11
JP2699304B2 JP2699304B2 (en) 1998-01-19

Family

ID=15595256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63154940A Expired - Fee Related JP2699304B2 (en) 1988-06-24 1988-06-24 Ultra fine powder production equipment

Country Status (1)

Country Link
JP (1) JP2699304B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5539225A (en) * 1978-09-11 1980-03-19 Natl Inst For Res In Inorg Mater Synthesizing apparatus for unoxidized powder
JPS60255611A (en) * 1984-05-14 1985-12-17 アライド・コーポレーシヨン Manufacture of light conduction of superfine powder made from metal silicide powder
JPS61242631A (en) * 1985-04-20 1986-10-28 Nippon Soken Inc Method and device for producing ultrafine particles of compound

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5539225A (en) * 1978-09-11 1980-03-19 Natl Inst For Res In Inorg Mater Synthesizing apparatus for unoxidized powder
JPS60255611A (en) * 1984-05-14 1985-12-17 アライド・コーポレーシヨン Manufacture of light conduction of superfine powder made from metal silicide powder
JPS61242631A (en) * 1985-04-20 1986-10-28 Nippon Soken Inc Method and device for producing ultrafine particles of compound

Also Published As

Publication number Publication date
JP2699304B2 (en) 1998-01-19

Similar Documents

Publication Publication Date Title
US8859931B2 (en) Plasma synthesis of nanopowders
Zheng et al. Plasma‐assisted approaches in inorganic nanostructure fabrication
RU2489232C1 (en) Method of producing metal nano-sized powders
EP0761349B1 (en) Method for making gold powders by aerosol decomposition
US9166170B1 (en) Apparatus for producing carbon-coated nanoparticles and carbon nanospheres
TW201343540A (en) Apparatus and method for manufacturing particles
JPS62102827A (en) Production of metallic or ceramic fine grain
US8864045B1 (en) Aerosol fabrication methods for monodisperse nanoparticles
US20100310784A1 (en) Process to make structured particles
JP4921806B2 (en) Tungsten ultrafine powder and method for producing the same
Haas et al. Synthesis of nanostructured powders in an aerosol flow condenser
JPS62105920A (en) Production of fine powder of high-purity magnesium oxide
JP2902381B2 (en) Ultra fine powder production method
Chao et al. Synthesis of a supported metal catalyst using nanometer-size clusters
JPH026837A (en) Production of superfine powder and device therefor
WO2021100320A1 (en) Microparticles
JP2002220601A (en) Production method for low oxygen spherical metal powder using dc thermal plasma processing
JPS60224706A (en) Production of ultrafine metallic particles
JP3008433B2 (en) Ultrafine particle manufacturing method
US8282906B2 (en) Remote plasma synthesis of metal oxide nanoparticles
JP2004224674A (en) Group 13 nitride semiconductor nanoparticle
JPH0458404B2 (en)
JPH01115810A (en) Production of ultrafine powder of high-purity tungsten carbide of cubic system
JPH03267301A (en) Manufacture of surface coated super fine particles
AU2021226734B2 (en) Iron removal from carbon nanotubes and metal catalyst recycle

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees