JPH0267332A - Manufacture of laminate - Google Patents

Manufacture of laminate

Info

Publication number
JPH0267332A
JPH0267332A JP21723188A JP21723188A JPH0267332A JP H0267332 A JPH0267332 A JP H0267332A JP 21723188 A JP21723188 A JP 21723188A JP 21723188 A JP21723188 A JP 21723188A JP H0267332 A JPH0267332 A JP H0267332A
Authority
JP
Japan
Prior art keywords
epoxy resin
aramid fiber
laminate
dried
prepreg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21723188A
Other languages
Japanese (ja)
Inventor
Takeshi Hatano
剛 波多野
Kazunori Mitsuhashi
光橋 一紀
Masahiro Tanji
丹治 雅弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP21723188A priority Critical patent/JPH0267332A/en
Publication of JPH0267332A publication Critical patent/JPH0267332A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To improve the heat resistance and reliability of surface mounting of a chip member by laminating and molding a prepreg obtd. by impregnating a dried aramid fiber non-woven fabric base with an epoxy resin compounded with a specified curing agent, and drying it. CONSTITUTION:An epoxy resin varnish is obtd. by componding a bisphenol A type epoxy resin with a phenol-novolak or a cresol-novolak resin as a curing agent and a curing accelerator. Then, an aramid fiber non-woven fabric base dried in such a way that the water content is 1wt.% or less is impregnated with this varnish and is dried. The obtd. prepreg is laminated and molded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は抵抗IC等のチップ部品の面実装用プリント配
線板として適した積層板の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a laminate suitable as a printed wiring board for surface mounting of chip components such as resistor ICs.

従来の技術 近年、電子機器の小形軽量化、高密度化の点より、これ
に組込んで使用される電子部品はリード付部品からチッ
プ部品へ2.速に移行している。そして、その実装方式
もプリプレグ配線板への面実装が主流になりつつある。
2. Conventional Technology In recent years, due to the miniaturization, weight reduction, and higher density of electronic devices, the electronic components used in these devices have changed from leaded components to chip components. It is moving quickly. As for the mounting method, surface mounting on prepreg wiring boards is becoming mainstream.

この背景の中で、プリント配線板の材料である銅張積層
板上 に対して下記の如き厳しい特性が要求されてφだ。
Against this background, the following strict characteristics are required for copper-clad laminates, which are the material for printed wiring boards.

これを、−船釣なチップ部品搭載時の問題と共に第1図
の参考図をもって説明する。チップ部品1の熱膨張係数
とプリント配線板の基板4、例えばエポキシ樹脂−ガラ
ス不織布基材積層板の熱膨張係数とが大きく異なると、
チップ部品1と銅回路2を接続している半田接合部3に
冷熱サイクル等の負荷により亀裂を生じ、実用上使用出
来ない状態に至る。市販のICやトランジスタ等のチッ
プ部品の熱膨張係数は、2〜7×10−”/”Cであり
、一方、該チップの搭載される基板の線膨張係数は、従
来の銅張積層板、例えば前記のエポキシ樹脂−ガラス不
織布基材積層板の場合、17〜20X10−’/’Cと
大きく、半田接合部の信頼性を確保することは困難であ
る。ガラス不織布基材に代えて、アラミド繊維不織布基
材を用いた積層板が提案され、このものは、線膨張係数
が前記チップ部品の線膨張係数と近似している。
This will be explained with reference to FIG. 1 as well as problems when mounting chip components on a boat. If the coefficient of thermal expansion of the chip component 1 and the coefficient of thermal expansion of the substrate 4 of the printed wiring board, for example, an epoxy resin-glass nonwoven fabric base material laminate, are significantly different,
The solder joint 3 connecting the chip component 1 and the copper circuit 2 cracks due to loads such as cooling/heating cycles, resulting in a state where it cannot be used practically. The coefficient of thermal expansion of commercially available chip components such as ICs and transistors is 2 to 7 × 10-''/''C, while the coefficient of linear expansion of the substrate on which the chip is mounted is that of conventional copper-clad laminates, For example, in the case of the above-mentioned epoxy resin-glass nonwoven fabric base material laminate, it is as large as 17 to 20 x 10-'/'C, making it difficult to ensure the reliability of the solder joints. A laminate using an aramid fiber nonwoven fabric base material in place of the glass nonwoven fabric base material has been proposed, and the linear expansion coefficient of this laminate is close to that of the chip component.

発明が解決しようとする課題 しかし、300°Cでの半田耐熱性等、高温での耐熱性
能は、従来の銅張積層板と同レベルにあるものの、耐熱
性に対する要求が近年ますます厳しくなってきており、
高耐熱用途として考えた場合、十分満足出来るものでは
なかった。
Problems to be Solved by the Invention However, although the heat resistance performance at high temperatures, such as soldering heat resistance at 300°C, is on the same level as conventional copper-clad laminates, the requirements for heat resistance have become increasingly strict in recent years. and
When considered as a high heat resistant application, it was not fully satisfactory.

本発明は、前記の如き従来の欠点を改善し、チップ部品
の面実装信頼性に優れ、かつ耐熱性に優れた、チップ部
品実装用として適した積層板を提供することを目的とす
る。
SUMMARY OF THE INVENTION An object of the present invention is to improve the conventional drawbacks as described above, and to provide a laminate suitable for mounting chip components, which has excellent reliability in surface mounting of chip components, and excellent heat resistance.

課題を解決するための手段 上記目的を達成するために、本発明は、アラミド繊維不
繊布基材にエポキシ樹脂を含浸乾燥したプリプレグを積
層成形するに際して、次の(イ)、(+1)の点を特徴
とする。
Means for Solving the Problems In order to achieve the above objects, the present invention solves the following points (a) and (+1) when laminating and molding a prepreg obtained by impregnating and drying an epoxy resin on an aramid fiber nonwoven fabric base material. It is characterized by

(イ)エポキシ樹脂を含浸させるに際して、アラミド繊
維不織布基材の含有水分を1型理%以下にしておくこと
(a) When impregnating with the epoxy resin, the moisture content of the aramid fiber nonwoven fabric base material should be 1% or less.

((1)エポキシ樹脂の硬化剤として、フェノールノボ
ラックまたはタレゾールノボラック樹脂を配合すること
((1) Blending phenol novolac or talesol novolac resin as a curing agent for epoxy resin.

作用 アラミド繊維不織布を基材とした積層板の熱膨脹係数は
、前記チップ部品のそれと近似しているため、冷熱サイ
クルにおける半田接合部の信頼性を大きく向上させるこ
とができる。そして、エポキシ樹脂の硬化剤として、フ
ェノールノボラックまたはタレゾールノボラック樹脂を
使用する事により、エポキシ樹脂とアラミド繊維との親
和性あるいは結合性が高められ、熱時におけるエポキシ
樹脂の寸法変化およびエポキシ樹脂とアラミド繊維の剥
離が抑制され、ヒートショック時の積層板の破壊が起こ
りにくくなる。しかし、これは、予めアラミド繊維不織
布に乾燥処理を施して含有水分を少なくした状態でエポ
キシ樹脂の含浸をすることによって初めてエポキシ樹脂
とアラミド繊維の十分な親和性あるいは結合性が確保出
来、可能となるものである。
Function: Since the thermal expansion coefficient of the laminate based on the aramid fiber nonwoven fabric is similar to that of the chip component, the reliability of the solder joints during cooling and heating cycles can be greatly improved. By using phenol novolac or Talezol novolak resin as a curing agent for epoxy resin, the affinity or bonding between the epoxy resin and aramid fibers is increased, and the dimensional change of the epoxy resin when heated is reduced. Peeling of the aramid fibers is suppressed, making it difficult for the laminate to break during heat shock. However, this is only possible by drying the aramid fiber nonwoven fabric in advance to reduce the moisture content and then impregnating it with epoxy resin to ensure sufficient affinity or bonding between the epoxy resin and the aramid fibers. It is what it is.

実施例 本発明を実施するに当り、エポキシ樹脂は市販のビスフ
ェノール型エポキシ樹脂を使用できる。
EXAMPLE In carrying out the present invention, a commercially available bisphenol type epoxy resin can be used as the epoxy resin.

硬化剤としてのフェノールノボラック樹脂、クレゾール
ノボラック樹脂も市販のものが使用出来、その配合量は
ベースとなるエポキシ樹脂のエポキシ当量に対応する形
で用いる。アラミド繊維不織布は、メタ型アラミド繊維
、あるいはパラ型アラミド繊維をベースとする不織布で
あり、厚さと密度は樹脂の含浸性、塗工作業性により適
宜選択出来る。その乾燥処理方法は、真空乾燥あるいは
加熱乾燥等が適用出来る。乾燥処理をしたアラミド繊維
不織布基材の含有水分が1%を越えている場合は、アラ
ミド繊維とエポキシ樹脂との界面に存在する水分子によ
って、アラミド繊維とエポキシ樹脂の結合性が阻害され
、目的の効果が出ない。
Commercially available phenol novolac resins and cresol novolak resins can be used as curing agents, and the amount of the resin to be blended is determined in accordance with the epoxy equivalent of the base epoxy resin. The aramid fiber nonwoven fabric is a nonwoven fabric based on meta-aramid fibers or para-aramid fibers, and the thickness and density can be appropriately selected depending on resin impregnability and coating workability. As the drying method, vacuum drying, heat drying, etc. can be applied. If the moisture content of the dried aramid fiber nonwoven base material exceeds 1%, the water molecules present at the interface between the aramid fiber and epoxy resin will inhibit the bonding between the aramid fiber and the epoxy resin, and the desired purpose will not be achieved. There is no effect.

プリプレグの製造は、まずエポキシ樹脂にフェノールノ
ボラックもしくはクレゾールノボラック樹脂と硬化促進
剤を所定看配合したエポキシ樹脂ワニスを用意する。そ
して、予め乾燥処理を施したアラミド繊維不織布に前記
ワニス含浸し、乾燥することにより行なう。得られたプ
リプレグは、積層板の板厚に必要なプライ数を積層成形
する。
To manufacture a prepreg, first, an epoxy resin varnish is prepared by mixing an epoxy resin with a phenol novolac or cresol novolac resin and a curing accelerator in a predetermined manner. Then, an aramid fiber nonwoven fabric that has been previously dried is impregnated with the varnish and dried. The obtained prepreg is laminated and molded in the number of plies necessary for the thickness of the laminate.

実施例1 エポキシ樹脂ワニスを下記の配合比で調整した。Example 1 An epoxy resin varnish was prepared with the following blending ratio.

ビスフェノール型エポキシ樹脂(商品名ESA001、
住友化学!!!り100重量部フェノールノボラック樹
脂 (商品名バーカム、大日本インキ製)20重量部 ジシアンジアミド       1重量部ユ ベンジルジメチルアミン   0.4”llffi部メ
チルセロソルブ       40重置部上記エポキシ
樹脂ワニスを、加熱乾燥処理を施して含有水分を1重量
%としたパラ型アラミド繊維不織布(坪4it60 g
 / rrf )に含浸、乾燥して、樹脂量60重量%
のプリプレグを得た。
Bisphenol type epoxy resin (product name ESA001,
Sumitomo Chemical! ! ! 100 parts by weight of phenol novolak resin (trade name: Barkum, manufactured by Dainippon Ink) 20 parts by weight of dicyandiamide 1 part by weight Jubenzyldimethylamine 0.4"llffi part Methyl cellosolve 40 parts of epoxy resin was heated and dried. Para-type aramid fiber non-woven fabric with moisture content of 1% by weight (4 tsubo 60 g
/rrf) and dried to a resin content of 60% by weight.
prepreg was obtained.

上記のプリプレグを10プライ重ね、その両面に35μ
厚銅箔を載置して鏡面板で挟み、プレスにて湿度160
°C1圧力60kg10+1の条件で1時間加熱加圧し
て10胴厚の銅張積層板を製造した。
Layer 10 plies of the above prepreg, and 35 μm on both sides.
Place a thick copper foil, sandwich it between mirror plates, and press it to a humidity of 160.
A copper clad laminate having a body thickness of 10 mm was manufactured by heating and pressing at 10 °C, 60 kg of pressure, and 10+1 for 1 hour.

該銅張積層板の特性を第1表に示した。The properties of the copper-clad laminate are shown in Table 1.

実施例2 エポキシ樹脂フェスを下記の配合比で調整した。Example 2 An epoxy resin face was prepared with the following blending ratio.

ビスフェノール型エポキシ樹脂(商品名ESA001、
住人化学製)100重量部 クレゾールノボラック樹脂 (商品名プライオーフェン
、大日本インキ製)15重量部ジシアンジアミド   
    1重量部ヘンシルジメチルアミン   0.2
重量部節して含有水分を1重量%としたメタ型アラミド
繊維不織布(坪量70g/rrf)に含浸、乾燥して、
樹脂量60重量%のプリプレグを得た。
Bisphenol type epoxy resin (product name ESA001,
100 parts by weight of cresol novolac resin (trade name: Pryophen, manufactured by Dainippon Ink) 15 parts by weight of dicyandiamide
1 part by weight Hensyldimethylamine 0.2
Impregnated into a meta-aramid fiber nonwoven fabric (basis weight 70 g/rrf) with a water content of 1% by weight, dried,
A prepreg with a resin content of 60% by weight was obtained.

上記のプリプレグを5プライ重ね、その両面に35μ厚
銅箔を載置して鏡面板で挟み、実施例1と同様の成形条
件でプレスし、1.0叩厚の銅張積層板を製造した。
Five plies of the above prepreg were stacked, 35 μ thick copper foil was placed on both sides, sandwiched between mirror plates, and pressed under the same molding conditions as in Example 1 to produce a copper clad laminate with a thickness of 1.0. .

該銅張積層板の特性を第1表に示した。The properties of the copper-clad laminate are shown in Table 1.

実施例3 実施例1においてパラ型アラミド繊維不繊布をさらに加
熱乾燥処理して、含有水分を0.7重層板を製造した。
Example 3 The para-aramid fiber nonwoven fabric in Example 1 was further heat-dried to produce a multilayer board with a water content of 0.7.

該銅張積層板の特性を第1表に示した。The properties of the copper-clad laminate are shown in Table 1.

比較例1 実施例1において、パラ型アラミド繊維不織布の加熱乾
燥処理を行なわず、そのままエポキシ樹脂フェスを含浸
、乾燥して調製したプリプレグを用いて1.0mm厚の
銅張積層板を製造した。
Comparative Example 1 A 1.0 mm thick copper clad laminate was manufactured using prepreg prepared in Example 1 by directly impregnating an epoxy resin face and drying the para-aramid fiber nonwoven fabric without performing the heat drying process.

加熱乾燥処理を行わない場合のパラ型アミド繊維不織布
の含有水分は1.7重量%であった。
The moisture content of the para-type amide fiber nonwoven fabric without heat drying treatment was 1.7% by weight.

該銅張積層板の特性を第1表に示した。The properties of the copper-clad laminate are shown in Table 1.

比較例2 実施例1において、パラ型アラミド繊維不織布に加熱乾
燥処理を施すに際して、実施例1よりも処理時間を短く
して含有水分を1.2重量%に調整した以外は実施例1
と同じにして1.0mm厚の銅張積層板を製造した。
Comparative Example 2 Example 1 except that when heat drying the para-aramid fiber nonwoven fabric in Example 1, the treatment time was shorter than in Example 1 and the water content was adjusted to 1.2% by weight.
A 1.0 mm thick copper clad laminate was manufactured in the same manner as above.

該銅張積層板の特性を第1表に示した。The properties of the copper-clad laminate are shown in Table 1.

比較例3 実施例2において、エポキシ樹脂フェスにタレゾールノ
ボラック樹脂を配合せずに、ジシアンジアミド硬化剤を
4重量部配合したものを用いてプリプレグを調製し、1
.Onn厚の銅張積層板を製造した。
Comparative Example 3 In Example 2, a prepreg was prepared using an epoxy resin face in which 4 parts by weight of dicyandiamide curing agent was blended without blending Talesol novolac resin, and 1
.. A copper-clad laminate of Onn thickness was manufactured.

該銅張積層板の特性を第1表に示した。The properties of the copper-clad laminate are shown in Table 1.

比較例4 予め加熱乾燥処理を施して含有水分を1重量%にしたガ
ラス不織布(坪量135g/m)に実施例1で用いたエ
ポキシ樹脂フェスを含浸、乾燥し、樹脂量60重量%の
プリプレグを調製した。
Comparative Example 4 The epoxy resin face used in Example 1 was impregnated into a glass nonwoven fabric (basis weight 135 g/m) that had been heat-dried in advance to have a moisture content of 1% by weight, and then dried to produce a prepreg with a resin content of 60% by weight. was prepared.

該プリプレグを5ブライ重ね、実施例1と同様の成形条
件でプレスし、1 、0 mm厚の銅張積層板を製造し
た。
Five sheets of the prepreg were stacked and pressed under the same molding conditions as in Example 1 to produce a copper-clad laminate having a thickness of 1.0 mm.

該銅張積層板の特性を第1表に示した。The properties of the copper-clad laminate are shown in Table 1.

双糧狛 表面の粗さが小さく、高密度実装回路用出しても適用外
大である。
The roughness of the surface of the soybean paste is so small that it is not applicable even if it is used in high-density packaging circuits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はプリント配線板にチップ部品を実装した状態を
示す説明図である。 lはチップ部品、2は銅回路、3は半田接合部、4は基
FIG. 1 is an explanatory diagram showing a state in which chip components are mounted on a printed wiring board. l is a chip component, 2 is a copper circuit, 3 is a solder joint, 4 is a board

Claims (1)

【特許請求の範囲】 アラミド繊維不織布基材にエポキシ樹脂を含浸乾燥して
得たプリプレグを積層成形する積層板の製造において、
次の(イ)、(ロ)の点と特徴とする積層板の製造法。 (イ)エポキシ樹脂を含浸させるに際して、アラミド繊
維不織布基材の含有水分を1重量%以下にしておくこと
。 (ロ)エポキシ樹脂の硬化剤として、フェノールノボラ
ックまたはクレゾールノボラック樹脂を配合すること。
[Claims] In the production of a laminate in which a prepreg obtained by impregnating and drying an aramid fiber nonwoven fabric base material with an epoxy resin is laminated and molded,
A method for manufacturing a laminate having the following points and features (a) and (b). (a) When impregnating with epoxy resin, the moisture content of the aramid fiber nonwoven fabric base material should be 1% by weight or less. (b) Phenol novolak or cresol novolac resin is blended as a curing agent for epoxy resin.
JP21723188A 1988-08-31 1988-08-31 Manufacture of laminate Pending JPH0267332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21723188A JPH0267332A (en) 1988-08-31 1988-08-31 Manufacture of laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21723188A JPH0267332A (en) 1988-08-31 1988-08-31 Manufacture of laminate

Publications (1)

Publication Number Publication Date
JPH0267332A true JPH0267332A (en) 1990-03-07

Family

ID=16700903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21723188A Pending JPH0267332A (en) 1988-08-31 1988-08-31 Manufacture of laminate

Country Status (1)

Country Link
JP (1) JPH0267332A (en)

Similar Documents

Publication Publication Date Title
US4407883A (en) Laminates for printed circuit boards
JPS607796A (en) Copper-lined laminated board for printed circuit and method of producing same
JP3125582B2 (en) Manufacturing method of metal foil-clad laminate
JP2503601B2 (en) Laminate
JPH0267332A (en) Manufacture of laminate
JPS63264342A (en) Copper plated laminate and its manufacture
JPH01118539A (en) Preparation of copper-clad laminate
JPH01115627A (en) Copper plated laminated sheet
JP3227874B2 (en) Manufacturing method of laminated board
JP3211608B2 (en) Manufacturing method of copper-clad laminate
JP2501031B2 (en) Metal foil laminated board
JPH03149891A (en) Circuit board
JP2001152108A (en) Insulating adhesive film multi-layer printed-wiring board using the same and its manufacturing method
JP3823649B2 (en) Prepreg, laminated board and printed wiring board using amide group-containing organic fiber substrate
JPS639193A (en) Manufacture of metal foil cladded laminated board with metalcore
JP3013500B2 (en) Metal foil clad laminate
JPH05129779A (en) Metal-clad laminate for multilayer printed wiring board
JPH0720626B2 (en) Manufacturing method of copper clad laminate
JPS63265628A (en) Sheet obtained by plating copper on metallic base and its manufacture
JPS6140094A (en) Method of producing multilayer circuit board
JPH03149890A (en) Ceramic circuit board
JPH05291712A (en) Board for printed-circuit use
JPH0748460A (en) Laminated sheet
JPH06278222A (en) Production of copper clad laminated sheet
JP2001199009A (en) Copper clad laminated sheet