JPH0265181A - Infrared detector - Google Patents

Infrared detector

Info

Publication number
JPH0265181A
JPH0265181A JP63218109A JP21810988A JPH0265181A JP H0265181 A JPH0265181 A JP H0265181A JP 63218109 A JP63218109 A JP 63218109A JP 21810988 A JP21810988 A JP 21810988A JP H0265181 A JPH0265181 A JP H0265181A
Authority
JP
Japan
Prior art keywords
infrared
wavelength band
infrared rays
lens
crystal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63218109A
Other languages
Japanese (ja)
Inventor
Nobuyuki Kajiwara
梶原 信之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63218109A priority Critical patent/JPH0265181A/en
Publication of JPH0265181A publication Critical patent/JPH0265181A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To simplify a structure by simultaneously forming short and long wavelength side infrared detectors on one board. CONSTITUTION:An infrared ray is incident from the rear face side of a CdTe board 11 through a lens. The position of a focal point determined by chromatic aberration due to variation in the refractive index value of the lens when a short wavelength band infrared ray is incident is brought into coincidence with a boundary 20 between the board 11 and a crystalline layer 12. Thus, after the short wavelength light passes the board 11, it is introduced to the boundary 20 to become carrier in the layer 12, which is photoelectrically converted by a photodiode array PD 18, thereby detecting the infrared ray image. The long wavelength band infrared ray is transmitted through the board 11 and the layer 12 to be introduced from the boundary 14 between the crystalline layers 12 and 13 into the layer 13 to be detected by a PD 19. The detection signals of the PDs 18, 19 are introduced to a charge coupled device 22 by an indium metal bump 21.

Description

【発明の詳細な説明】 〔手肌  要〕 赤外線検知装置に関し、 短波長域と長波長域の赤外線を検知できる検知素子が一
枯して一枚の基板上に形成され、構造が簡単な赤外線検
知装置を目的とし、 赤外線透過基板の裏面側に設置されたレンズと、前記赤
外線透過基板上に形成され、赤外線の短波長帯に感度を
有し、前記短波長帯の赤外線の波長と長波長帯の赤外線
の波長とで決定される色収差の値に略等しい厚さを有す
る第1の結晶層に形成された第1のホトダイオードアレ
イと、前記検知すべき赤外線の長波長帯に感度を有する
第2の結晶層に形成された第2のホトダイオードアレイ
とよりなり、前記レンズを介して基板の裏面側より短波
長帯と長波長帯の赤外線を入射し、前記短波長帯の赤外
線による色収差で決定される前記レンズの第1の焦点を
前記基板と第1の結晶層の境界面に合致させるとともに
、前記赤外線の長波長帯の色収差によって決定されるレ
ンズの第2の焦点を、前記第1および第2の結晶層の境
界面にそれぞれ合致させ、前記短波長帯の赤外線を前記
第1のホトダイオードアレイで、前記長波長帯の赤外線
を第2のホトダイオードアレイで検知することで構成す
る。
[Detailed Description of the Invention] [Hand Skin Required] Regarding an infrared detection device, a detection element capable of detecting infrared rays in a short wavelength range and a long wavelength range is formed on a single substrate, and the infrared ray detection device has a simple structure. Intended as a detection device, a lens installed on the back side of an infrared transmitting substrate and a lens formed on the infrared transmitting substrate, having sensitivity to a short wavelength band of infrared rays, and having sensitivity to the short wavelength band of infrared rays and long wavelengths. a first photodiode array formed in a first crystal layer having a thickness approximately equal to the value of chromatic aberration determined by the wavelength of the infrared light in the band; and a first photodiode array sensitive to the long wavelength band of the infrared light to be detected. A second photodiode array is formed on the second crystal layer, and infrared rays in the short wavelength band and long wavelength band are incident from the back side of the substrate through the lens, and the chromatic aberration is determined by the infrared rays in the short wavelength band. The first focal point of the lens is made to coincide with the interface between the substrate and the first crystal layer, and the second focal point of the lens is determined by the chromatic aberration in the long wavelength band of the infrared rays. The infrared rays in the short wavelength band are detected by the first photodiode array, and the infrared rays in the long wavelength band are detected by the second photodiode array, respectively, so as to match the boundary surfaces of the second crystal layer.

〔産業上の利用分野〕[Industrial application field]

本発明は赤外線検知装置に係り、特に短波長の赤外線と
長波長の赤外線が検知できる赤外線検知装置に関する。
The present invention relates to an infrared detection device, and more particularly to an infrared detection device capable of detecting short wavelength infrared rays and long wavelength infrared rays.

赤外線には主として3〜5μmの短波長の赤外線と、1
0μmの長波長の赤外線の二種類の赤外線がある。
Infrared rays mainly include infrared rays with short wavelengths of 3 to 5 μm and 1
There are two types of infrared rays: one with a long wavelength of 0 μm.

〔従来の技術〕[Conventional technology]

従来、このような二種類の赤外線を検知する赤外線検知
装置としては、前記短波長側に感度を有する化合物半導
体結晶と、長波長側に感度を有する化合物半導体結晶と
を別個に用意し、この別個に用意した結晶にホトダイオ
ード等の赤外線検知装置をそれぞれ別個に形成している
Conventionally, infrared detection devices that detect these two types of infrared rays have separately prepared a compound semiconductor crystal that is sensitive to the short wavelength side and a compound semiconductor crystal that is sensitive to the long wavelength side. Infrared detection devices such as photodiodes are formed separately on each crystal prepared in the next step.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

そのため、この検知装置に接続される信号処理装置を別
個に設ける等、これら検知装置および信号処理装置を組
み合わせた検査システムが必要となり、赤外線検知シス
テムが複雑化、かつ大型化する問題がある。
Therefore, an inspection system that combines these detection devices and signal processing devices, such as separately providing a signal processing device connected to this detection device, is required, which poses a problem of complicating and increasing the size of the infrared detection system.

本発明は一ヒ記した問題点を解決し、−枚の基板J−に
短波長側の赤外線を検知する素子と、長波長側の赤外線
を検知する素子とを一括して形成した構造の節単な赤外
線検知装置の提供を目的とする。
The present invention solves the problems mentioned above, and has a structure in which an element for detecting infrared rays on the short wavelength side and an element for detecting infrared rays on the long wavelength side are collectively formed on one substrate J. The purpose is simply to provide an infrared detection device.

〔課題を解決するための手段〕[Means to solve the problem]

第1図は本発明の赤外線検知装置の原理図で、図示する
ように、赤外線透過基板1の裏面側に設置されたレンズ
2と、前記赤外線透過基板上に形成され、赤外線の短波
長帯に感度を有し、前記短波長帯の赤外線の波長と長波
長帯の赤外線の波長とで決定される色収差の値に略等し
い厚さを有する第1の結晶層3に形成された第1の赤外
線検知素子4と、前記検知すべき赤外線の長波長帯に感
度を有する第2の結晶N5に形成された第2の赤外線検
知素子6とよりなり、前記レンズ2を介して基板1の裏
面側より短波長帯と長波長帯の赤外線を入射し、前記短
波長帯の赤外線による色収差で決定される前記レンズの
第1の焦点7を前記基板と第1の結晶層の境界面に合致
させるとともに、前記赤外線の長波長帯の色収差によっ
て決定されるレンズの第2の焦点8を、前記第1および
第2の結晶層の境界面にそれぞれ合致させ、前記短波長
帯の赤外線を前記第1の赤外線検知素子4で、前記長波
長帯の赤外線を第2の赤外線検知素子6で検知すること
で構成する。
FIG. 1 is a principle diagram of the infrared detecting device of the present invention. As shown in the figure, a lens 2 installed on the back side of an infrared transmitting substrate 1, and a lens 2 formed on the infrared transmitting substrate detecting the short wavelength band of infrared rays. A first infrared ray formed in the first crystal layer 3 that has sensitivity and has a thickness approximately equal to the value of chromatic aberration determined by the wavelength of the infrared ray in the short wavelength band and the wavelength of the infrared ray in the long wavelength band. It consists of a detection element 4 and a second infrared detection element 6 formed on a second crystal N5 sensitive to the long wavelength band of the infrared rays to be detected. Infrared rays in a short wavelength band and a long wavelength band are incident, and the first focal point 7 of the lens, which is determined by the chromatic aberration due to the infrared rays in the short wavelength band, is made to match the interface between the substrate and the first crystal layer, A second focal point 8 of the lens determined by the chromatic aberration in the long wavelength band of the infrared rays is made to coincide with the interface between the first and second crystal layers, respectively, so that the infrared rays in the short wavelength band are focused on the first infrared ray. The detection element 4 detects infrared rays in the long wavelength band using the second infrared detection element 6.

〔作 用〕[For production]

第1図に示すようにレンズの色収差は、該レンズに入射
する赤外線の波長がλ1.λ2のように異なると、像の
生じる位置、即ち焦点(F)や像の大きさが異なる現象
で、これはレンズを構成している材料の屈折率が光の波
長によって異なるために生じる。
As shown in FIG. 1, the chromatic aberration of a lens is caused by the wavelength of infrared rays incident on the lens being λ1. When λ2 is different, the position where the image is generated, that is, the focal point (F), and the size of the image are different. This phenomenon occurs because the refractive index of the material forming the lens differs depending on the wavelength of the light.

レンズ2の色収差Δfは、レンズの平均屈折率nに対す
る焦点距離をfとすると、第(1)式で示される。
The chromatic aberration Δf of the lens 2 is expressed by equation (1), where f is the focal length with respect to the average refractive index n of the lens.

Δr−rΔn / n −1・・・・・・・・・(1)
更にレンズに入射する光線の波長をλ0.λ2とすると
、」1記Δnは第(2)式で表される。
Δr−rΔn/n−1・・・・・・・・・(1)
Furthermore, the wavelength of the light beam incident on the lens is set to λ0. When λ2 is assumed, Δn in 1 is expressed by equation (2).

Δn=n (λ、)−n(λ2)・・・・・・・・・(
2)従って、レンズに異なった二種類の波長の赤外線、
即ち波長λ、が3〜5μmの短波長帯の赤外線と、波長
ス2が10μmの長波長帯の赤外線を入射させた場合、
レンズの色収差によって異なった2箇所に焦点r+(λ
+)、rz (λ2)が形成され、この異なった2箇所
の焦点の位置に、−枚の基板上に形成され、上記二種類
の波長の各々に感度を有する結晶層で形成された二種類
のホトダイオードを配設することで、−個の赤外線セン
サで二種類の波長の赤外線を検知できる。
Δn=n (λ,)−n(λ2)・・・・・・・・・(
2) Therefore, the lens receives two different wavelengths of infrared rays,
That is, when infrared rays in a short wavelength band with a wavelength λ of 3 to 5 μm and infrared rays in a long wavelength band with a wavelength λ of 10 μm are incident,
The focal point r+(λ
+), rz (λ2) are formed, and at these two different focal positions, two types of crystal layers are formed on the - substrate and are sensitive to each of the above two types of wavelengths. By arranging these photodiodes, - infrared sensors can detect infrared rays of two different wavelengths.

〔実施例〕〔Example〕

以下、図面を用いて本発明の一実施例につき詳細に説明
する。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

第2図に本発明の赤外線検知装置の一実施例を示す。図
示するように赤外線を透過するCdTe基板11ヒに第
1層のP型のHg+−x Cdx Te (x =0.
3)の結晶層12と第2層のP型のI(gl−、CdX
Te (x =0.2)の結晶層13ががそれぞれ気相
エピタキシャル成長法により形成されている。
FIG. 2 shows an embodiment of the infrared detection device of the present invention. As shown in the figure, a first layer of P-type Hg+-x Cdx Te (x = 0.
3) of the crystal layer 12 and the second layer of P-type I (gl-, CdX
Crystal layers 13 of Te (x = 0.2) are each formed by vapor phase epitaxial growth.

上記第1層の結晶層12は赤外線の短波長帯(λ。The first crystal layer 12 is in the infrared short wavelength band (λ).

=3〜5μm)に高感度を有し、第2層の結晶層13は
赤外線の長波長(λ2−10μII+)に高感度を有し
、上記第1層の結晶層12の厚さdは、前記第(1)弐
で示された色収差の値のΔrと同一の厚さとなるように
する。
= 3 to 5 μm), the second crystal layer 13 has high sensitivity to long wavelengths of infrared rays (λ2-10 μII+), and the thickness d of the first crystal layer 12 is: The thickness is made to be the same as the chromatic aberration value Δr shown in (1) 2 above.

この結晶層3のエネルギーバンドギャップEgは!1を
ブランクの定数(6,626X10−”Js)とし、C
を光速(2,9979X 108m/5ec) とする
と、Eg、=hc/λ、 −1,24/ λ、となり、
また結晶層5のエネルギーバンドギャップEg2 =h
c/ λ2=]、、24/ λ2となる。
What is the energy band gap Eg of this crystal layer 3? 1 is a blank constant (6,626X10-”Js), and C
If is the speed of light (2,9979X 108m/5ec), then Eg, = hc/λ, -1,24/λ,
Also, the energy band gap Eg2 of the crystal layer 5 = h
c/λ2=], 24/λ2.

このように第1の結晶層3の厚さdを色収差の値Δfと
同一の厚さとすることで、基板11の裏面より入射され
た長波長帯の光(10μm)は、第1の結晶層3と第2
の結晶層5の境界面に焦点(f2)が合致するようにな
り、長波長帯の光が効率良く検知できる。
By making the thickness d of the first crystal layer 3 the same as the chromatic aberration value Δf in this way, the long wavelength band light (10 μm) incident from the back surface of the substrate 11 is transmitted through the first crystal layer 3. 3rd and 2nd
The focal point (f2) coincides with the boundary surface of the crystal layer 5, and light in a long wavelength band can be detected efficiently.

例えば焦点距離fが30mmのSiのレンズを用いると
、赤外線の短波長(5μm)に於けるレンズの屈折率は
3.4221で、赤外線の長波長(10μm)に於ける
レンズの屈折率は3.4177より第(1)式により、
色収差Δf =54.6μmとなるのでdの厚さは54
.611mの厚さにする。
For example, when using a Si lens with a focal length f of 30 mm, the refractive index of the lens at the short wavelength of infrared rays (5 μm) is 3.4221, and the refractive index of the lens at the long wavelength of infrared rays (10 μm) is 3. From .4177, according to equation (1),
Since the chromatic aberration Δf = 54.6 μm, the thickness of d is 54
.. The thickness will be 611m.

更にH記第2層の結晶層13の表面より第1層の結晶層
12の境界面14に到達するまでメサ状にエツチングさ
れ、そのメサエッチングされた箇所には、絶縁膜15で
被覆され、該メサの頂部16とメサの底部17は絶縁膜
15が窓開きされてN型の不純物であるボロン(B)原
子がイオン注入されてN型層が形成され、赤外線の短波
長側に感度を有する第1のホトダイオードアレイ18と
、赤外線の長波長側に感度を有する第2のホトダイオー
ドアレイ19がそれぞれ形成される。
Furthermore, a mesa-like etching is performed from the surface of the second crystal layer 13 in the section H until reaching the boundary surface 14 of the first crystal layer 12, and the mesa-etched area is covered with an insulating film 15. The insulating film 15 is opened at the top 16 and bottom 17 of the mesa, and boron (B) atoms, which are N-type impurities, are ion-implanted to form an N-type layer, which increases sensitivity to the short wavelength side of infrared rays. A first photodiode array 18 having a photodiode array 18 and a second photodiode array 19 having a sensitivity on the long wavelength side of infrared rays are formed, respectively.

そして各々のホトダイオードアレイ18と、ホトダイオ
ードアレイ19にIn金属バンプ21が接続され、この
金属バンプ21がSi基板に形成されている電荷結合装
置22の入力ダイオードに接続されている。
An In metal bump 21 is connected to each photodiode array 18 and photodiode array 19, and this metal bump 21 is connected to an input diode of a charge coupled device 22 formed on a Si substrate.

このような赤外線検知装置のCdTe基板11の裏面側
より前記したレンズ2を介して赤外線を入射させる。そ
して5μmの短波長帯の赤外線を入射させた時のレンズ
の屈折率値の変動による色収差で決まる第1の焦点7の
位置を基板と第1の結晶層の境界面20に合致させる。
Infrared rays are incident on the back side of the CdTe substrate 11 of such an infrared detection device through the lens 2 described above. Then, the position of the first focal point 7 determined by the chromatic aberration caused by the variation in the refractive index value of the lens when infrared rays in the short wavelength band of 5 μm are incident is made to coincide with the boundary surface 20 between the substrate and the first crystal layer.

すると5μmの波長の光はCdTe基板11を透過した
後、前記境界面20に導入されて第1の結晶層12内で
キャリアと成って第1のホトダイオードアレイ18でそ
のキャリアが光電変換されてその赤外線像が検知される
Then, after the light with a wavelength of 5 μm passes through the CdTe substrate 11, it is introduced into the boundary surface 20 and becomes carriers in the first crystal layer 12, and the carriers are photoelectrically converted in the first photodiode array 18. An infrared image is detected.

また赤外線の内、長波長帯の赤外線は基板11と第1層
の結晶層12を透過して第1層の結晶層12と第2層の
結晶層13の境界面14より第2層の結晶層13内に入
り、この結晶層13内で光電変換された後、第2のホト
ダイオードアレイ19で検知される。このようにしてホ
トダイオードアレイで検知された信号をインジウム金属
バンプ21を用いて電荷結合装置22の入力ダイオード
に導入し、長波長帯の信号および短波長帯側の信号を転
送電極で時系列的に転送して信号処理する。
Furthermore, among the infrared rays, infrared rays in the long wavelength band pass through the substrate 11 and the first crystal layer 12 and pass through the interface 14 between the first crystal layer 12 and the second crystal layer 13 to the second crystal layer. After entering the layer 13 and being photoelectrically converted within the crystal layer 13, it is detected by the second photodiode array 19. The signals detected by the photodiode array in this way are introduced into the input diode of the charge-coupled device 22 using the indium metal bump 21, and the signals in the long wavelength band and the signals in the short wavelength band are transferred in time series by the transfer electrode. Transfer and process signals.

このようにすれば、短波長帯の赤外線と長波長帯の赤外
線が一枚の基板上に形成された一個の赤外線検知装置に
よって検知され、従来のように2個の赤外線検知装置を
必要としなくなり赤外線検知システムが簡単な装置構成
となる。
In this way, infrared rays in the short wavelength band and infrared rays in the long wavelength band are detected by one infrared detection device formed on a single substrate, eliminating the need for two infrared detection devices as in the past. The infrared detection system has a simple device configuration.

また上記信号処理装置で処理された信号をAD変換回路
でAD変換し、CRTに赤外線画像を形成するようにし
ても良い。
Further, the signal processed by the signal processing device may be subjected to AD conversion by an AD conversion circuit, and an infrared image may be formed on a CRT.

〔発明の効果] 以−ヒの説明から明らかなように本発明によれば、短波
長帯と長波長帯との二液長帯の赤外線を検知する検査シ
ステムが、赤外線を集光するレンズと、赤外線検知セン
サと該検知センサで得られた信号を処理する信号処理装
置がそれぞれ1個で構成されるため複雑な光学系を必要
とせず、簡単な赤外線検知システムで二液長帯の赤外線
が検知できる効果がある。
[Effects of the Invention] As is clear from the explanations given below, according to the present invention, an inspection system that detects infrared rays in a two-liquid long band of a short wavelength band and a long wavelength band uses a lens that condenses the infrared rays. Since it consists of one infrared detection sensor and one signal processing device that processes the signal obtained by the detection sensor, a simple infrared detection system does not require a complex optical system and can detect two-liquid long band infrared rays. It has a detectable effect.

第1図は本発明の赤外線検知装置の原理図、第2図は本
発明の赤外線検知装置の一実施例を示す断面図である。
FIG. 1 is a principle diagram of an infrared detection device of the present invention, and FIG. 2 is a sectional view showing an embodiment of the infrared detection device of the present invention.

図に於いて、 1は赤外線透過基板、2はレンズ、3は第1の結晶層、
4は第1の赤外線検知素子、5は第2の結晶層、6は第
2の赤外線検知素子、7は第1の焦点、8は第2の焦点
、11はCdTe基板、12は第1屑P型11g+−+
t CdX Te結晶(x=0.3)、13は第2屠P
型11g+−x CdXTe結晶(x=0.2)、14
.20は境界面、15は絶縁膜、16はメサ頂部、17
はメサ底部、18は第1のホトダイオードアレイ、19
は第2のホトダイオードアレイ、21はIn金属ハンプ
、22は電荷結合装置を示す。
In the figure, 1 is an infrared transmitting substrate, 2 is a lens, 3 is a first crystal layer,
4 is a first infrared sensing element, 5 is a second crystal layer, 6 is a second infrared sensing element, 7 is a first focal point, 8 is a second focal point, 11 is a CdTe substrate, 12 is a first scrap P type 11g+-+
t CdX Te crystal (x = 0.3), 13 is the second slaughter P
Type 11g+-x CdXTe crystal (x=0.2), 14
.. 20 is a boundary surface, 15 is an insulating film, 16 is a mesa top, 17
is the bottom of the mesa, 18 is the first photodiode array, 19
21 is a second photodiode array, 21 is an In metal hump, and 22 is a charge-coupled device.

【図面の簡単な説明】[Brief explanation of the drawing]

$4”)1 /l f’ 、7#?’A 孜夫vhil
 /l/l KGり第1図 ント)fl11?月褐ガフLr字不虻欠ロ茗!tの一究
メ台づンゴのI牟面図第2図
$4”) 1 /l f', 7#?'A Keio vhil
/l/l KGri 1st) fl11? Tsuki-brown gaff Lr-shaped fujitsu ro-mei! Fig.2

Claims (2)

【特許請求の範囲】[Claims] (1)赤外線透過基板(1)の裏面側に設置されたレン
ズ(2)と、前記赤外線透過基板上に形成され、赤外線
の短波長帯に感度を有し、前記短波長帯の赤外線の波長
と検知すべき長波長帯の赤外線の波長とで決定される前
記レンズの色収差の値に略等しい厚さを有する第1の結
晶層(3)に形成された第1の赤外線検知素子(4)と
、前記検知すべき赤外線の長波長帯に感度を有する第2
の結晶層(5)に形成された第2の赤外線検知素子(6
)とよりなり、前記レンズ(2)を介して基板(1)の
裏面側より短波長帯と長波長帯の赤外線を入射し、前記
短波長帯の赤外線による色収差で決定される前記レンズ
の第1の焦点(7)を前記基板と第1の結晶層の境界面
に合致させるとともに、前記赤外線の長波長帯の色収差
によって決定されるレンズの第2の焦点(8)を、前記
第1および第2の結晶層の境界面にそれぞれ合致させ、
前記短波長帯の赤外線を前記第1の赤外線検知素子(4
)で、前記長波長帯の赤外線を第2の赤外線検知素子(
6)で検知することを特徴とする赤外線検知装置。
(1) A lens (2) installed on the back side of the infrared transmitting substrate (1) and a lens (2) formed on the infrared transmitting substrate, having sensitivity to a short wavelength band of infrared rays, and having a wavelength of infrared rays in the short wavelength band. a first infrared sensing element (4) formed in a first crystal layer (3) having a thickness approximately equal to the value of chromatic aberration of the lens determined by and a second one having sensitivity to the long wavelength band of the infrared rays to be detected.
A second infrared sensing element (6) formed in the crystal layer (5) of
), the infrared rays in the short wavelength band and the long wavelength band are incident from the back side of the substrate (1) through the lens (2), and the infrared rays in the short wavelength band are determined by the chromatic aberration due to the infrared rays in the short wavelength band. The first focal point (7) of the lens is aligned with the interface between the substrate and the first crystal layer, and the second focal point (8) of the lens is determined by the chromatic aberration in the long wavelength band of the infrared rays. match the boundary surfaces of the second crystal layer, respectively,
The short wavelength band infrared rays are detected by the first infrared detection element (4
), the infrared rays in the long wavelength band are detected by a second infrared detection element (
6) An infrared detection device characterized by detecting.
(2)前記基板(1)上に形成された第2の結晶層(5
)より第1の結晶層(3)に至って所定のパターンにメ
サエッチし、該メサの頂部の第2の結晶層(5)の表面
と、前記メサの底部の第1の結晶層(3)の底部に不純
物原子を導入してP−N接合を形成したことを特徴とす
る請求項1記載の赤外線検知装置。
(2) a second crystal layer (5) formed on the substrate (1);
) to reach the first crystal layer (3) and mesa-etch into a predetermined pattern, and the surface of the second crystal layer (5) at the top of the mesa and the first crystal layer (3) at the bottom of the mesa are etched. 2. The infrared detection device according to claim 1, wherein impurity atoms are introduced into the bottom portion to form a PN junction.
JP63218109A 1988-08-30 1988-08-30 Infrared detector Pending JPH0265181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63218109A JPH0265181A (en) 1988-08-30 1988-08-30 Infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63218109A JPH0265181A (en) 1988-08-30 1988-08-30 Infrared detector

Publications (1)

Publication Number Publication Date
JPH0265181A true JPH0265181A (en) 1990-03-05

Family

ID=16714770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63218109A Pending JPH0265181A (en) 1988-08-30 1988-08-30 Infrared detector

Country Status (1)

Country Link
JP (1) JPH0265181A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04260368A (en) * 1990-10-17 1992-09-16 Philips Gloeilampenfab:Nv Infrared detection apparatus of a plurality of wavelengths
JPH07159717A (en) * 1993-12-06 1995-06-23 Toshiba Tesco Kk Optical system uniaxial receiving system
JP2004095669A (en) * 2002-08-29 2004-03-25 Toyota Motor Corp Photoelectric conversion element
JP2004103649A (en) * 2002-09-05 2004-04-02 Toyota Motor Corp Photoelectric conversion element for thermooptical power generation
WO2004047178A1 (en) * 2002-11-18 2004-06-03 Hamamatsu Photonics K.K. Backside-illuminated photodiode array, method for manufacturing same, and semiconductor device
KR100437150B1 (en) * 2001-12-12 2004-06-25 주식회사 케이이씨 method for fabricating bumps in infrared detector and bump structure
JP2007184603A (en) * 2005-12-29 2007-07-19 Magnachip Semiconductor Ltd Cmos image sensor with backside illumination structure
US7810740B2 (en) 2002-11-18 2010-10-12 Hamamatsu Photonics K.K. Back illuminated photodiode array, manufacturing method and semiconductor device thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04260368A (en) * 1990-10-17 1992-09-16 Philips Gloeilampenfab:Nv Infrared detection apparatus of a plurality of wavelengths
JPH07159717A (en) * 1993-12-06 1995-06-23 Toshiba Tesco Kk Optical system uniaxial receiving system
KR100437150B1 (en) * 2001-12-12 2004-06-25 주식회사 케이이씨 method for fabricating bumps in infrared detector and bump structure
JP2004095669A (en) * 2002-08-29 2004-03-25 Toyota Motor Corp Photoelectric conversion element
JP2004103649A (en) * 2002-09-05 2004-04-02 Toyota Motor Corp Photoelectric conversion element for thermooptical power generation
WO2004047178A1 (en) * 2002-11-18 2004-06-03 Hamamatsu Photonics K.K. Backside-illuminated photodiode array, method for manufacturing same, and semiconductor device
JPWO2004047178A1 (en) * 2002-11-18 2006-03-23 浜松ホトニクス株式会社 Back-illuminated photodiode array, manufacturing method thereof, and semiconductor device
CN100446261C (en) * 2002-11-18 2008-12-24 浜松光子学株式会社 Back illuminated photodiode array, manufacturing method and semiconductor device thereof
JP4482455B2 (en) * 2002-11-18 2010-06-16 浜松ホトニクス株式会社 Back-illuminated photodiode array, manufacturing method thereof, and semiconductor device
US7810740B2 (en) 2002-11-18 2010-10-12 Hamamatsu Photonics K.K. Back illuminated photodiode array, manufacturing method and semiconductor device thereof
JP2007184603A (en) * 2005-12-29 2007-07-19 Magnachip Semiconductor Ltd Cmos image sensor with backside illumination structure

Similar Documents

Publication Publication Date Title
US5373182A (en) Integrated IR and visible detector
US6379979B1 (en) Method of making infrared and visible light detector
JPH04260368A (en) Infrared detection apparatus of a plurality of wavelengths
US5721429A (en) Self-focusing detector pixel structure having improved sensitivity
JPH04234170A (en) Infrared detection device responsive to plurality of wavelengths
KR20040060509A (en) Cmos image sensor
JPH0265181A (en) Infrared detector
JPH01207640A (en) Semiconductor photodetecting device and ultraviolet detecting method, and semiconductor photodetecting element and its manufacture
WO2005122261A1 (en) Two colour photon detector
US5391875A (en) Infrared sensor package
US5059786A (en) Multi-color coincident infrared detector
JPH04218964A (en) Semiconductor device and fabrication thereof
US20220344529A1 (en) Short-wave infra-red radiation detection device
US5115295A (en) Photodetector device
US5438200A (en) Composite photodetector substrate and method of forming the same
JPS62104163A (en) Photoelectric converter
JPH065832A (en) Apparatus and method for position detection
JPH03202732A (en) Color sensor
EP4170733A1 (en) Photodiode and electronic device including the same
JP2676814B2 (en) Multi-type light receiving element
JPH0969617A (en) Detection of crosstalk, light receiving element and wafer
JPH0128893B2 (en)
JPH033269A (en) Ccd image pickup element
JPH01287972A (en) Infrared ray detector
JPH03284883A (en) Photodetector