JPH0264020A - Bi-sr-ca-cu-o-based superconducting oxide - Google Patents

Bi-sr-ca-cu-o-based superconducting oxide

Info

Publication number
JPH0264020A
JPH0264020A JP63213537A JP21353788A JPH0264020A JP H0264020 A JPH0264020 A JP H0264020A JP 63213537 A JP63213537 A JP 63213537A JP 21353788 A JP21353788 A JP 21353788A JP H0264020 A JPH0264020 A JP H0264020A
Authority
JP
Japan
Prior art keywords
superconducting oxide
oxide
superconducting
phase
based superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63213537A
Other languages
Japanese (ja)
Other versions
JPH075312B2 (en
Inventor
Masahiro Yoshimura
昌弘 吉村
Zenbee Nakagawa
中川 善兵衛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP63213537A priority Critical patent/JPH075312B2/en
Publication of JPH0264020A publication Critical patent/JPH0264020A/en
Publication of JPH075312B2 publication Critical patent/JPH075312B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain the title superconducting oxide film of higher critical temperature formed on a substrate by replacing Cd for part of the Ca of a Bi-Sr-Ca-Cu- O-based superconducting oxide. CONSTITUTION:1-9atom% of Cd (based on the metallic atom) is added to a Bi-Sr-Ca-Cu-O-based superconducting oxide; or Ca is replaced by Cd for part of the Ca in a superconducting oxide having a composition Bi2Sr2Ca2Cu3OY; thus obtaining the objective superconducting oxide of a composition Bi2Sr2 Ca2-xCdxCu3OY (x is 0.1-0.8).

Description

【発明の詳細な説明】 [産業上の利用分野] この発明はアモルファス状のB 1−Sr−(:a−C
u−0系酸化物から製造した高Tc(電気抵抗が0にな
る絶対温度、以下Tc)の厚膜超電導酸化物に関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to amorphous B 1-Sr-(:a-C
The present invention relates to a high Tc (absolute temperature at which electrical resistance becomes 0, hereinafter referred to as Tc) thick film superconducting oxide manufactured from u-0 type oxide.

なお、厚膜とはl Oum以上の厚みを持った薄膜であ
る。
Note that a thick film is a thin film having a thickness of 1 Oum or more.

[従来の技術] BednorzおよびMullerによりLa−Ba−
Cu−0系の高温超電導酸化物が報告(Phys、 8
64(1986)189)されてから、Tcが約90に
のY−Ba−(:u−0系の超電導酸化物の報告(Ph
ys、、Rew、 Lett、 58(+987)90
8)かなされるにおよんで高温超電導酸化物の開発競争
が熾烈をきわめている。
[Prior Art] La-Ba- by Bednorz and Muller
A Cu-0-based high-temperature superconducting oxide has been reported (Phys, 8
64 (1986) 189), a report (Ph
ys,, Rew, Lett, 58(+987)90
8) The competition to develop high-temperature superconducting oxides is intensifying.

さらにまた、最近になってBi−Sr−Ca−Cu−0
系のTc約105にを有する新高温超電導酸化物が報告
(J。
Furthermore, recently Bi-Sr-Ca-Cu-0
A new high-temperature superconducting oxide with a Tc of about 105 has been reported (J.

Appl、 l’hys、 27(1988)L209
)された。しかしながら、このB 1−Sr−[:a−
Cu−0系超電導酸化物にはTcが105にの酸化物と
75にの酸化物の2つの相を持っており、この高Tc相
をいかに多く晶出させるかがこのB 1−Sr−(:a
−Cu−0系の超電導酸化物の課題である。この課題を
解決するために高野等はBi−Sr−Ca−(:u−0
系超電導酸化物のBiの1部をpbに置換することによ
り高Tc相の比率が急激に増加することを報告(Jpn
、 J、 Appl、 Phys、 27(1988)
L1041) した。
Appl, l'hys, 27 (1988) L209
) was done. However, this B 1-Sr-[:a-
The Cu-0 superconducting oxide has two phases, an oxide with a Tc of 105 and an oxide with a Tc of 75, and how to crystallize as much of this high Tc phase as possible depends on the B 1-Sr-( :a
This is a problem with -Cu-0-based superconducting oxides. To solve this problem, Takano et al.
It has been reported that the proportion of high Tc phase increases rapidly by replacing a part of Bi in superconducting oxides with PB (Jpn
, J. Appl, Phys, 27 (1988)
L1041) I did.

一方、上記超電導酸化物は焼結工程で作るバルク材や基
板上に薄膜を形成する方法が盛んに研究されている。バ
ルク材はこの超電導材が酸化物であるため加工性が悪く
所望の形状としにくいこと、気孔を多く含むなどの理由
のためJc(臨界電流密度、以下Jc)が低いという問
題点があり、また薄膜についてはTcがバルク材に比較
して低下するという問題があった。これらの観点からT
cを低下させずに実際に流せる電流値の大きい厚膜を基
板上に形成した製品を開発することが望まれていた。
On the other hand, methods for forming thin films on bulk materials and substrates made using the superconducting oxides through a sintering process are being actively studied. Bulk materials have the problem of low Jc (critical current density, hereinafter referred to as Jc) due to the fact that this superconducting material is an oxide and has poor workability and is difficult to form into the desired shape, and contains many pores. As for thin films, there is a problem that Tc is lower than that of bulk materials. From these points of view, T
It has been desired to develop a product in which a thick film with a large current value that can actually be passed without reducing c is formed on a substrate.

薄膜と厚膜とでは用途が異なり、薄膜では、NIS、5
15などのジョセフソン接合を利用した超電導素子が中
心になるのに対し厚膜ではマクロな例えばプリント基板
のような回路あるいはテープなどの用途が考えられる。
Thin films and thick films have different uses, and for thin films, NIS, 5
While superconducting devices using Josephson junctions such as No. 15 are the main focus, thick films can be used for macroscopic circuits such as printed circuit boards or tapes.

また、Di−Sr−Ca−Cu−0系の超電導酸化物は
急冷によりアモルファス(非晶質、以下アモルファス)
化する性質があり、小松等により急冷厚膜を作る方法(
Jpn、 J、 Appl、 Phys、 27(19
88)L533)が報告されている。しかしなからこの
方法は基板上に形成するものでないため、このままでは
実用化は困難であるなどの問題点があった。
In addition, the Di-Sr-Ca-Cu-0 system superconducting oxide becomes amorphous (non-crystalline, hereinafter referred to as amorphous) by rapid cooling.
Komatsu et al.'s method for making quenched thick films (
Jpn, J, Appl, Phys, 27(19
88) L533) has been reported. However, since this method does not involve forming on a substrate, there are problems in that it is difficult to put it into practical use as it is.

[発明が解決しようとする課題] 本発明は基板上に厚膜を形成するに際し、Tcの低下の
少ない超電導酸化物を提供することを目的とする。
[Problems to be Solved by the Invention] An object of the present invention is to provide a superconducting oxide that exhibits less decrease in Tc when forming a thick film on a substrate.

[課題を解決するための手段] 本発明は91−Sr−Ca−Cu−0系超電導酸化物に
おいて、金属原子に対し1〜9原子亀のCdを添加する
ことを特徴とする。またBi2Sr2(:B2Cu30
.の組成をもった超電導酸化物において、CaをCdで
置換しBi2Sr2Ca2−xcdXCu30y (た
だし、x=  0.1〜0.8)とすることを特徴とす
る。
[Means for Solving the Problems] The present invention is characterized in that 1 to 9 atoms of Cd are added to the metal atoms in a 91-Sr-Ca-Cu-0 based superconducting oxide. Also, Bi2Sr2(:B2Cu30
.. In the superconducting oxide having the composition, Ca is replaced with Cd to give Bi2Sr2Ca2-xcdXCu30y (where x=0.1 to 0.8).

[作用] 以下、本発明について詳細に説明する。Bi−Sr−C
a−Cu−0系超電導酸化物は高Tc相としてBi2S
r2Ca2Cu30.相が、Tcの低い相としてBi2
Sr2CaCu20゜相、またはB 14sr3ca3
cu40y相があるといわれている。このようにBi−
Sr−Ca−Cu−0系超電導酸化物には高Te相、低
Tc相が共存しているため原料の配合を高Tc相のB 
12Sr2(:B2Cu30.にあわせて焼成しても、
電気抵抗が低下し始めるT、 (on 5et)が変動
し、電気抵抗が0となるTc(end)も105により
さらに低温側に移行するとともに、Tc(on 5et
)からT。
[Function] Hereinafter, the present invention will be explained in detail. Bi-Sr-C
The a-Cu-0 superconducting oxide has Bi2S as a high Tc phase.
r2Ca2Cu30. The phase is Bi2 as a phase with low Tc.
Sr2CaCu20° phase, or B14sr3ca3
It is said that there is a cu40y phase. In this way Bi-
Since high Te phase and low Tc phase coexist in Sr-Ca-Cu-0-based superconducting oxide, the raw material composition was changed to B of high Tc phase.
Even if fired according to 12Sr2(:B2Cu30.),
T, (on 5et), where the electrical resistance begins to decrease, changes, and Tc (end), where the electrical resistance becomes 0, shifts further to the lower temperature side due to 105, and Tc (on 5et) changes.
) to T.

(end)までの温度範囲が広がる傾向がある。先に記
載したように、このような問題点を解決するために[]
iの1部をpbに置換した焼結体でTc(on 5et
)125に、 Tc(end) 107にの値のものが
得られている。
There is a tendency for the temperature range up to (end) to widen. As mentioned earlier, in order to solve these problems []
Tc (on 5et
) 125 and Tc(end) 107 are obtained.

しかしながら、上記組成を有する超電導酸化物をアモル
ファス化した厚膜をMgO単結晶基板上で熱処理すると
第1図の(b)曲線のようにTcが低下し上記のような
高Tcは得られないことが判明した。
However, when a thick film made of an amorphous superconducting oxide having the above composition is heat-treated on an MgO single crystal substrate, the Tc decreases as shown in curve (b) in Figure 1, and the high Tc described above cannot be obtained. There was found.

発明者等はこのような知見に基づき種々の合金系につい
て検討した結果、B 1−Sr−Ca−Gu−0系超電
導酸化物のCaの1部をCdに置換すればTcの高い超
電導酸化物厚膜を基板上に作ることが可能であることを
見出した。すなわち、B 1−Sr−Ca−Cu−0系
超電導酸化物に金属原子に対し1〜9原子亀のGdを添
加すればよい。Cdの添加率が9原子亀を超えると超電
導相が得られず絶縁相となり、1原子亀未満では低TC
相が増加して基板上のBi−Sr−にa−Cu−0系超
電導酸化物の厚膜Tcか低下する。最も望ましい範囲は
Bi2Sr2Ca2−1lCdxCu30.fにおいて
x=0.1〜0.8とする組成か安定的に高いToを有
する厚膜となる。この結果の1例を第1図の(a)およ
び第2図に示す。
Based on this knowledge, the inventors studied various alloy systems and found that if a part of Ca in the B1-Sr-Ca-Gu-0 system superconducting oxide is replaced with Cd, a superconducting oxide with high Tc can be obtained. We have found that it is possible to create thick films on substrates. That is, Gd may be added to the B1-Sr-Ca-Cu-0 based superconducting oxide in an amount of 1 to 9 atoms per metal atom. When the Cd addition rate exceeds 9 atoms, a superconducting phase cannot be obtained and an insulating phase occurs, and when it is less than 1 atom, a low TC occurs.
As the phase increases, the thickness of the thick film Tc of the a-Cu-0 based superconducting oxide on the Bi-Sr- substrate decreases. The most desirable range is Bi2Sr2Ca2-11CdxCu30. A composition in which x=0.1 to 0.8 at f results in a thick film having a stably high To. An example of this result is shown in FIG. 1(a) and FIG. 2.

[実tJへ例] Bi2O,、CaC0,、、Cub、 SrCO,、、
pboおよびCdOをBi(、,7Pbo3SrCaC
u、80Y、  Bi2Sr2C:B2−、CdXCu
30Y。
[Example to real tJ] Bi2O,, CaC0,, Cub, SrCO,,,
pbo and CdO as Bi(,,7Pbo3SrCaC
u, 80Y, Bi2Sr2C:B2-, CdXCu
30Y.

x=0.0.2.0.4.0.8.1.0.1.4.2
.0となるように配合し、メノウ乳鉢でメタノールとと
もに4時間混合し、空気中800℃で12時間仮焼した
。これを粉砕し、CIPにより直径2.5mm径、長さ
+5011Imの棒状に成形した。この棒の先端をキセ
ノンランプを用いたアークイメージ炉で溶解し、双ロー
ラ−(2000rpm)超急冷して、厚さ約20μmの
薄片試料を得た。この試料をMgO単結晶の(100)
 ”A開面上に乗せて800℃〜890℃で熱処理を行
ない厚膜を形成した。その結果の1例を第1図にしめし
た。この図からも明らかにように、Bto、 7PEl
o3SrCa(:u+、 any系(第1図(b))で
はTcが低いのに対し、Bi2Sr2Ca2−、CdX
Cu30y系(第1図(a))ではTc(on 5et
)100に以上、x=0.2でTc(end) 84に
、X=0.4で87にのものかえられた。Teが高く良
好な超電導性を示すXの範囲は0.1〜0.8で、Kが
1.0を超えると絶縁相となった。
x=0.0.2.0.4.0.8.1.0.1.4.2
.. 0, mixed with methanol in an agate mortar for 4 hours, and calcined in air at 800°C for 12 hours. This was crushed and molded into a rod shape with a diameter of 2.5 mm and a length of +5011 Im by CIP. The tip of this rod was melted in an arc image furnace using a xenon lamp and ultra-quenched using twin rollers (2000 rpm) to obtain a thin sample with a thickness of about 20 μm. This sample is a MgO single crystal (100)
A thick film was formed by heat treatment at 800°C to 890°C on the open surface of A.An example of the result is shown in Figure 1.As is clear from this figure, Bto, 7PEl
o3SrCa(:u+, any system (Fig. 1(b)) has a low Tc, whereas Bi2Sr2Ca2-, CdX
In the Cu30y system (Fig. 1 (a)), Tc (on 5et
) 100 or more, Tc(end) was changed to 84 at x=0.2, and 87 at X=0.4. The range of X that exhibits high Te and good superconductivity is 0.1 to 0.8, and when K exceeds 1.0, it becomes an insulating phase.

[発明の効果] Bi−Sr−Ca−11:u−0系超電導酸化物のCa
の1部をCdで置換することにより、基板上に形成した
厚膜のTcをTc(on 5et)で100に、Tc(
end) 87にのものを得ることが可能となり、大電
流を流せる超電導体素子の開発の可能性が得られた。
[Effect of the invention] Bi-Sr-Ca-11: Ca of u-0 based superconducting oxide
By replacing a part of with Cd, the Tc of the thick film formed on the substrate becomes 100 with Tc(on 5et) and Tc(on 5et) with Cd.
end) It became possible to obtain 87 items, and the possibility of developing superconductor elements capable of passing large currents was obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係わるBi2Sr2(:a、−、(:
d、cu30.。 系超電導酸化物においてx=0.2の場合と比較材の電
気抵抗の変化を示した図、第2図はx = 0.4のと
きの電気抵抗の変化を示す図である。
FIG. 1 shows Bi2Sr2(:a, -, (:
d, cu30. . A diagram showing the change in electrical resistance of the superconducting oxide based on x=0.2 and a comparative material, and FIG. 2 is a diagram showing the change in electrical resistance when x=0.4.

Claims (1)

【特許請求の範囲】 1、Bi−Sr−Ca−Cu−O系超電導酸化物におい
て、金属原子に対し1〜9原子%のCdを添加すること
を特徴とするBi−Sr−Ca−Cu−O系超電導酸化
物。 2、Bi−Sr−Ca−Cu−O系超電導酸化物におい
て、Bi_2Sr_2Ca_2_−_xCd_xCu_
3O_y(ただし、x=0.1〜0.8)とすることを
特徴とするBi−Sr−Ca−Cu−O系超電導酸化物
[Claims] 1. Bi-Sr-Ca-Cu-O based superconducting oxide, characterized in that 1 to 9 atomic % of Cd is added to the metal atoms. O-based superconducting oxide. 2. In Bi-Sr-Ca-Cu-O superconducting oxide, Bi_2Sr_2Ca_2_-_xCd_xCu_
A Bi-Sr-Ca-Cu-O based superconducting oxide characterized by 3O_y (where x=0.1 to 0.8).
JP63213537A 1988-08-30 1988-08-30 Bi-Sr-Ca-Cu-O-based superconducting oxide Expired - Lifetime JPH075312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63213537A JPH075312B2 (en) 1988-08-30 1988-08-30 Bi-Sr-Ca-Cu-O-based superconducting oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63213537A JPH075312B2 (en) 1988-08-30 1988-08-30 Bi-Sr-Ca-Cu-O-based superconducting oxide

Publications (2)

Publication Number Publication Date
JPH0264020A true JPH0264020A (en) 1990-03-05
JPH075312B2 JPH075312B2 (en) 1995-01-25

Family

ID=16640832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63213537A Expired - Lifetime JPH075312B2 (en) 1988-08-30 1988-08-30 Bi-Sr-Ca-Cu-O-based superconducting oxide

Country Status (1)

Country Link
JP (1) JPH075312B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04198026A (en) * 1990-11-29 1992-07-17 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Bi-sr-ca-cu-o superconductor material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04198026A (en) * 1990-11-29 1992-07-17 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Bi-sr-ca-cu-o superconductor material

Also Published As

Publication number Publication date
JPH075312B2 (en) 1995-01-25

Similar Documents

Publication Publication Date Title
Rice et al. Preparation of superconducting thin films of calcium strontium bismuth copper oxides by coevaporation
JPH029719A (en) Superconductive material
JPS63230565A (en) Superconductive substance
JPH04214064A (en) Method for production of oriented polycrystalline superconducting ceramic oxide
JPH0264020A (en) Bi-sr-ca-cu-o-based superconducting oxide
JPH0286014A (en) Composite oxide superconducting thin film and film forming method
US5242896A (en) Superconductor crystal and process for preparing the same
JPH0218974A (en) Supeconducting device and its manufacture
US5126321A (en) Preparation of Bi-Sr-Ca-Cu-O superconductors from oxide-glass precursors
JPH01167221A (en) Production of superconducting thin film
Yan et al. Preparation of TlCaBaCuO high‐T c superconducting thin films on LaAlO3 substrates
JPH04275470A (en) Product composed of superconductor/insulator structure and manufacture of said product
JPH0264019A (en) Production of bi-sr-ca-cu-o-based superconducting oxide thick film
JPH0465395A (en) Superconducting fibrous crystal and its production
JPH01100021A (en) Superconducting thin film
JPH0714818B2 (en) Superconducting fibrous crystal and method for producing the same
JPH04292420A (en) Superconducting compound and method for its preparation
JP2567416B2 (en) Preparation method of superconducting thin film
JPH03112810A (en) Production of oxide superconducting film
JPH0829938B2 (en) Composite oxide superconducting thin film and method for producing the same
JPH01203219A (en) Production of thin filmlike oxide superconductor
JPH01227480A (en) Manufacture of superconducting thin-film
JPH01264911A (en) Formation of thin composite oxide superconducting film
JPH0222126A (en) Production of superconductor
JPH0255228A (en) Production of superconducting thin film