JPH0465395A - Superconducting fibrous crystal and its production - Google Patents

Superconducting fibrous crystal and its production

Info

Publication number
JPH0465395A
JPH0465395A JP2177123A JP17712390A JPH0465395A JP H0465395 A JPH0465395 A JP H0465395A JP 2177123 A JP2177123 A JP 2177123A JP 17712390 A JP17712390 A JP 17712390A JP H0465395 A JPH0465395 A JP H0465395A
Authority
JP
Japan
Prior art keywords
phase
fibrous
fibrous crystal
crystal
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2177123A
Other languages
Japanese (ja)
Other versions
JPH0745357B2 (en
Inventor
Ichiro Matsubara
一郎 松原
Hideo Tanigawa
谷川 秀夫
Hiroshi Yamashita
博志 山下
Toru Ogura
透 小倉
Minoru Kinoshita
木下 実
Tomoji Kawai
知二 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP2177123A priority Critical patent/JPH0745357B2/en
Priority to US07/777,055 priority patent/US5242896A/en
Publication of JPH0465395A publication Critical patent/JPH0465395A/en
Publication of JPH0745357B2 publication Critical patent/JPH0745357B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To raise the critical temp. above the temp. of liq. oxygen by embedding a fibrous crystal having a Bi2Sr2Cu1O6 structure (2201 phase) in a specified oxide powder and heat-treating the powder. CONSTITUTION:The raw materials are mixed so that Bi=1.00, Sr=0.5-1.5, Ca=1.0-3.0, Cu=1.0-5.0 and Pb=0.2-1.0 in the atomic compositional ratio. The mixture is sintered at 800-860 deg.C for 5-100 hr in an oxygen atmosphere and then pulverized to obtain an oxide powder. A fibrous crystal consisting of Bi, Sr, Ca, Cu and O and having a Bi2Sr2Ca1Cu2O8 structure (2212 phase) or a fibrous crystal consisting of Bi, Sr, Cu and O and having a Bi2Sr2Cu1O6 structure (2201 phase) is then embedded in the oxide powder, and the powder is heat- treated at 830-860 deg.C for 50-200 hr to obtain the superconducting fibrous crystal with the atomic compositional ratio expressed by the formula (0<x<0.4 and 10.0<y<11.0) and having a Bi2Sr2Ca2Cu3O10 structure (2223 phase).

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、超電導繊維状結晶およびその製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a superconducting fibrous crystal and a method for producing the same.

従来技術とその問題点 近年酸化物高温超電導体が発見されて以来、種々の応用
分野において、その実用化への開発研究が盛んに行なわ
れている。
Prior Art and its Problems Since the discovery of oxide high temperature superconductors in recent years, research and development efforts have been actively conducted to put them into practical use in various application fields.

より具体的には、例えば、S Q U I D (Su
per−conducting Quantum In
terference Device)或いはジョセフ
ソン素子を使用するコンピューターなどのデイバイス、
素子類においては、酸化物超電導材料の薄膜化技術が必
要である。この薄膜化に関しては、スパッタリング法、
蒸着法、CVD法などにより、臨界電流密度が106A
/cJを超える程度の十分実用化に供し得る特性を備え
た粒界の存在しない単結晶薄膜が製造可能であると報告
されている。
More specifically, for example, S Q U I D (Su
per-conducting Quantum In
terference Device) or a device such as a computer that uses a Josephson element,
For devices, thin film technology for oxide superconducting materials is required. Regarding thinning, sputtering method,
Critical current density is 106A by vapor deposition method, CVD method, etc.
It has been reported that it is possible to produce a grain boundary-free single crystal thin film with characteristics that are sufficiently suitable for practical use, exceeding /cJ.

一方、酸化物超電導体の特性を利用する電力貯蔵、電力
輸送、強力な磁場発生などへの応用のためには、その線
材化を行なう必要があり、酸化物超電導体の仮焼粉末を
銀シースに詰めて再熱処理を行なう方法、ゾルゲル法、
酸化物超電導体の粉末を高分子溶液に懸濁させて線引き
する方法、酸化物超電導体の融液から線引きする方法な
どが試みられている。しかしながら、これらの方法によ
り得られた線材は、いずれも多結晶体であって、低密度
で且つ粒界を有しているため、実用化レベルの特性を有
するものは得られていない。また、この様な線材は、多
結晶体としての特性でもある脆さ、加工性の悪さ、曲げ
強度の低さなどの欠点を有している。
On the other hand, in order to apply the properties of oxide superconductors to power storage, power transport, generation of strong magnetic fields, etc., it is necessary to make them into wires. sol-gel method,
Attempts have been made to draw wire by suspending oxide superconductor powder in a polymer solution, and to draw wire from a melt of oxide superconductor. However, the wire rods obtained by these methods are all polycrystalline, have low density, and have grain boundaries, and therefore have not been able to obtain wire rods with characteristics at a practical level. Further, such wire rods have drawbacks such as brittleness, poor workability, and low bending strength, which are characteristics of polycrystalline materials.

また、酸化物超電導体のある種のものの臨界温度が液体
窒素温度を越えることが報告されているが、このことは
、冷却コストと関連して大きな意義を有している。この
様な臨界温度か液体窒素温度よりも高い酸化物超電導体
としては、Bi系、Y系、Tl系などが挙げられる。
It has also been reported that the critical temperature of certain oxide superconductors exceeds the liquid nitrogen temperature, which has great significance in relation to cooling costs. Examples of such oxide superconductors having a critical temperature higher than the liquid nitrogen temperature include Bi-based, Y-based, Tl-based, and the like.

Bi系としては、Bi2Sr2Cut 06相(220
1相) 、Bi2Sr2CaCu20s相(2212相
)およびBi2Sr2Ca2CLI301o相(222
3相)の3種の相が存在しており、それぞれの臨界温度
から、20に相、80に相および110に相とも呼ばれ
ている。特に、臨界温度の最も高い2223相は、液体
窒素温度との間で大きな温度マージンがとれることなど
の点で、実用化に最も適した材料と考えられているが、
現実には、その単相化が困難であり、2212相または
2201相との混合相になりやすいという問題点がある
。固体反応法によれば、厳密な組成制御および焼成雰囲
気制御下に2223相の単相化が一応達成されるものの
、得られるのは、粉末或いは多結晶性の焼結体であり、
低密度で、多くの結晶粒界を有している。従って、すで
に大型の単結晶、単結晶性の繊維状結晶などが得られて
いる2201相および2212相の場合と同様に、22
23相の大型の単結晶、単結晶性の繊維状結晶などが得
られれば、極めて有用である。
Bi-based Bi2Sr2Cut 06 phase (220
1 phase), Bi2Sr2CaCu20s phase (2212 phase) and Bi2Sr2Ca2CLI301o phase (222
There are three types of phases (3 phases), which are also called 20 phase, 80 phase, and 110 phase based on their respective critical temperatures. In particular, the 2223 phase, which has the highest critical temperature, is considered the most suitable material for practical use because it has a large temperature margin with the liquid nitrogen temperature.
In reality, it is difficult to convert it into a single phase, and there is a problem that it tends to become a mixed phase with the 2212 phase or the 2201 phase. According to the solid-state reaction method, although the 2223 phase can be made into a single phase under strict composition control and firing atmosphere control, what is obtained is a powder or polycrystalline sintered body,
It has low density and many grain boundaries. Therefore, as in the case of the 2201 phase and 2212 phase, for which large single crystals, single crystalline fibrous crystals, etc. have already been obtained, the 22
It would be extremely useful if large 23-phase single crystals, single crystalline fibrous crystals, etc. could be obtained.

問題点を解決するための手段 本発明者は、この様な技術の現状に鑑みて種々研究を重
ねた結果、Bi2Sr2Cut o6構造またはBi2
 Sr2 Ca、 Cu20B構造を有する繊維状結晶
を、B15Sr、Ca、Cuおよびpbを含む特定組成
の酸化物粉末中で特定の条件下に熱処理する場合には、
当初のm錐状結晶形態を保持した状態で、その結晶構造
がBL+ Sr2 Ca2CLI30 ro構造に変化
し、臨界温度が液体酸素温度以上に上昇することを見出
した。
Means for Solving the Problems The present inventor has conducted various studies in view of the current state of the technology, and as a result, has developed a Bi2Sr2Cut o6 structure or a Bi2Sr2Cut o6 structure.
When fibrous crystals having a Sr2Ca, Cu20B structure are heat-treated under specific conditions in an oxide powder with a specific composition containing B15Sr, Ca, Cu and pb,
It was found that the crystal structure changes to a BL+ Sr2 Ca2CLI30 ro structure while retaining the original m-pyramidal crystal morphology, and the critical temperature rises above the liquid oxygen temperature.

即ち、本発明は、下記の超電導繊維状結晶およびその製
造方法を提供するものである:■Bi、Sr、Ca、C
u、Pbおよび0がらなり、その原子の組成比が B12−x Pbx srl、 9−2. l ca、
、 9−2.1 CLI30y(0<x<0゜4.10
.0<y<11.0)であり、Bi2Sr2Ca2Cu
:10 to構造(2223相)を有する超電導繊維状
結晶。
That is, the present invention provides the following superconducting fibrous crystals and a method for producing the same: ■Bi, Sr, Ca, C
It consists of u, Pb and 0, and the atomic composition ratio is B12-x Pbx srl, 9-2. l ca,
, 9-2.1 CLI30y (0<x<0゜4.10
.. 0<y<11.0), and Bi2Sr2Ca2Cu
:10 Superconducting fibrous crystal with to structure (2223 phase).

■Bi、Sr、Ca、Cuおよび0がらなり、Bi2S
r、、 Cat CLI20g構造(2212相)を有
する繊維状結晶、または、 B15Sr、Cuおよび0がらなり、 Bb 5r2Cu06構造(2201相)を有する繊維
状結晶を、原子の組成比が B1−1.0 Sr=0. 5〜1. 5 Ca=1. 0〜3. 0 Cu=1. 0〜5. 0 Pb=0.2〜1.0 である酸化物粉末中に埋め込み、830〜860°Cで
熱処理することを特徴とする、原子の組成比が B12−x Pbx Sr1.9〜2. l Ca]9
−2. ] Cu30 y(Q<x<0.4.10.0
<y<11.0)であり、Bi2Sr2Ca2Cu30
 +o構造(2223半目)を有する超電導繊維状結晶
の製造方法。
■Bi, Sr, Ca, Cu and 0, Bi2S
r,, A fibrous crystal having a Cat CLI20g structure (2212 phase), or a fibrous crystal consisting of B15Sr, Cu and 0 and having a Bb5r2Cu06 structure (2201 phase) with an atomic composition ratio of B1-1.0 Sr=0. 5-1. 5 Ca=1. 0-3. 0 Cu=1. 0-5. 0 Pb=0.2-1.0, and heat-treated at 830-860°C, with an atomic composition ratio of B12-x Pbx Sr1.9-2. lCa]9
-2. ] Cu30y(Q<x<0.4.10.0
<y<11.0), and Bi2Sr2Ca2Cu30
A method for producing a superconducting fibrous crystal having a +o structure (2223rd half).

本発明で熱処理の対象となる材料は、(イ)Bi、Sr
、Ca、CuおよびO力1らなり、Bi2Sr2Cax
 Cu2O3構造(2212キ目)を有する繊維状結晶
、および(ロ)Bi、Sr、CuおよびOからなり、B
i2Sr2 Cub6構造(2201相)を有する繊維
状結晶を含む材料である。これら(イ)および(ロ)の
繊維状結晶にお0ては、2212相および2201相の
Biサイトがpbにより一部置換されていても良い。こ
れら(イ)および(ロ)の繊維状結晶は、いずれも公知
のもノテあり、(イ)のBiz 5r2Ca1Cu20
B構造(2212相)を有する繊維状結晶は、本発明者
により、Japanese journal of A
pplied PhysicsVol 、2g(198
9)L1121に開示されている。また、(ロ)のBi
2Sr2Cu106構造(2201相)を有する繊維状
結晶は、本発明者により、日本セラミックス協会199
0年会講演予稿集443頁に開示されている。
The materials to be heat treated in the present invention are (a) Bi, Sr
, Ca, Cu and O force 1, Bi2Sr2Cax
Fibrous crystals having a Cu2O3 structure (2212th hole), and (b) consisting of Bi, Sr, Cu and O, B
It is a material containing fibrous crystals having an i2Sr2 Cub6 structure (2201 phase). In these fibrous crystals (a) and (b), the Bi sites of the 2212 phase and 2201 phase may be partially substituted with pb. These (a) and (b) fibrous crystals are all known, and (a) Biz 5r2Ca1Cu20
The fibrous crystal having the B structure (2212 phase) was published by the present inventor in the Japanese journal of A
pplied Physics Vol, 2g (198
9) Disclosed in L1121. Also, Bi of (b)
A fibrous crystal having a 2Sr2Cu106 structure (2201 phase) was developed by the present inventor in the Japanese Ceramic Society 199
It is disclosed on page 443 of the 0th year meeting lecture proceedings.

本発明の超電導繊維状結晶の製造に際しては、まず、原
子組成比で、Bi=1.00として、5r=0.5〜1
.5、Ca=1. 0〜3. 01Cu=1.0〜5.
0. Pb=O,,2〜1.0となる様に原料物質を混
合した後、焼成する。原料物質は、焼成により酸化物を
形成し得るものであれば、特に限定されず、金属単体、
酸化物、各種の化合物(炭酸塩など)が使用できる。原
料物質とし2ては、上記の原子を2種以上含む化合物を
使用しても良い。溶融を大気中などの酸素雰囲気下で行
なう場合および原料物質自体が十分量の酸素を含んでい
る場合には、酸素源となる原料物質を使用する必要はな
い。焼成温度および時間は、使用する原料物質の種類、
組成比などにより異なるが、通常800〜860℃程度
で、5〜100時間程度の範囲内にあり、−例として、
840℃程度で20時間程度である。焼成手段も特に限
定されず、電気加熱炉、ガス加熱炉など任意の手段を採
用し得る。次いで、形成された焼成物を十分に粉砕し、
粉末化する。
When producing the superconducting fibrous crystal of the present invention, first, the atomic composition ratio is Bi=1.00, 5r=0.5 to 1
.. 5, Ca=1. 0-3. 01Cu=1.0-5.
0. After mixing the raw materials so that Pb=O, 2 to 1.0, it is fired. The raw material is not particularly limited as long as it can form an oxide upon firing, and may include an elemental metal,
Oxides and various compounds (carbonates, etc.) can be used. As the raw material 2, a compound containing two or more of the above atoms may be used. When melting is carried out in an oxygen atmosphere such as in the air, and when the raw material itself contains a sufficient amount of oxygen, there is no need to use a raw material as an oxygen source. The firing temperature and time depend on the type of raw material used,
Although it varies depending on the composition ratio, etc., it is usually within the range of about 800 to 860 ° C. for about 5 to 100 hours.
It takes about 20 hours at about 840°C. The firing means is not particularly limited either, and any means such as an electric heating furnace or a gas heating furnace may be employed. Next, the formed fired product is thoroughly crushed,
Powder.

次いで、前記(イ)または(ロ)の繊維状結晶を上記で
得られた酸化物粉末(以下埋込み粉末ということがある
)中に埋め込み、熱処理する。熱処理温度および時間は
、使用する埋込み粉末の組成比、熱処理される繊維状結
晶の大きさなどにより異なるが、通常830〜860℃
程度で50〜200時間程度の範囲内にあり、−例とし
て、840℃程度で120時間程度である。熱処理手段
も特に限定されず、電気加熱炉、ガス加熱炉、光加熱炉
などの任意のものを採用し得る。
Next, the fibrous crystals of (a) or (b) are embedded in the oxide powder obtained above (hereinafter sometimes referred to as embedding powder) and heat treated. The heat treatment temperature and time vary depending on the composition ratio of the embedding powder used, the size of the fibrous crystals to be heat treated, etc., but are usually 830 to 860 °C.
The heating time is within the range of about 50 to 200 hours, for example, about 120 hours at about 840°C. The heat treatment means is not particularly limited either, and any means such as an electric heating furnace, a gas heating furnace, a light heating furnace, etc. can be employed.

熱処理終了後、埋込み粉末から被加熱物を取り出すこと
により、 Bi;+−3Pbx Sr3.9−2. l Cat、
 9−2. t Cu30 y(Q<x<0.4.10
.0<y<11.0)なる組成比を有し、Bi2Sr2
Ca2 Cu30 】o構造(2223相)を有する超
電導繊維状結晶を得る。
After the heat treatment is completed, the object to be heated is taken out from the embedded powder to obtain Bi;+-3Pbx Sr3.9-2. lCat,
9-2. tCu30y(Q<x<0.4.10
.. 0<y<11.0), and Bi2Sr2
A superconducting fibrous crystal having a Ca2Cu30]o structure (2223 phase) is obtained.

この繊維状結晶の長さ、形状などは、熱処理前のそれら
と変わりない。
The length, shape, etc. of these fibrous crystals are the same as those before heat treatment.

本発明方法においては、下記の(a)乃至(b)の条件
を充足することを必須とする。
In the method of the present invention, it is essential to satisfy the following conditions (a) and (b).

(a)特定組成範囲の成分比を有する埋込み粉末を使用
すること;埋込みに使用する酸化物粉末の組成が、仮に
一種でも規定範囲外となった場合には、繊維状単結晶の
2223相化は、困難乃至不可能となる。
(a) Use a embedding powder with a component ratio within a specific composition range; if the composition of the oxide powder used for embedding is outside the specified range, the 2223-phase fibrous single crystal would be difficult to impossible.

(b)特定の温度範囲で熱処理すること;繊維状結晶お
よび埋込み粉末の全ての組成が、規定範囲内であっても
、熱処理温度が規定範囲外となる場合には、繊維状結晶
の2223相化は、やはり困難乃至不可能となる。
(b) Heat treatment in a specific temperature range; Even if all the compositions of the fibrous crystal and embedded powder are within the specified range, if the heat treatment temperature is outside the specified range, the 2223 phase of the fibrous crystal It will still be difficult or impossible to convert.

本発明方法において、2201相繊維状結晶或いは22
12相繊維状結晶が2223相化する機構は、未だ十分
に解明されていないが、以下のようなものであろうと推
考される。2201相繊維状結晶或いは2212相繊維
状結晶の2223相化には、CaおよびCu(これらの
繊維状結晶がpbを含まない場合には、さらにpb)の
供給が必要である。本発明方法において、埋込みに使用
する酸化物粉末中での繊維状結晶の熱処理温度(830
〜860℃)は、粉末の部分溶融温度に対応している。
In the method of the present invention, 2201 phase fibrous crystals or 22
Although the mechanism by which a 12-phase fibrous crystal becomes 2223-phase has not yet been fully elucidated, it is presumed to be as follows. To convert a 2201-phase fibrous crystal or a 2212-phase fibrous crystal into a 2223-phase, it is necessary to supply Ca and Cu (if these fibrous crystals do not contain PB, further PB). In the method of the present invention, the temperature for heat treatment of the fibrous crystals in the oxide powder used for embedding (830
~860°C) corresponds to the partial melting temperature of the powder.

熱処理温度が高すぎる場合には、酸化物粉末の液相部分
が多くなり、繊維状結晶と酸化物粉末とが融着するので
、繊維状結晶を酸化物粉末から分離して、取り出すこと
が困難となる。
If the heat treatment temperature is too high, the liquid phase portion of the oxide powder will increase and the fibrous crystals and oxide powder will fuse together, making it difficult to separate the fibrous crystals from the oxide powder and take them out. becomes.

一方、熱処理温度が酸化物粉末の部分溶融温度よりも低
い場合には、繊維状結晶と酸化物粉末との間で相互作用
が生じないので、2223相化は達成されない。しかる
に、上記の温度範囲で熱処理を行なう場合には、繊維状
結晶の近辺に適度な液相か存在し、この液相を介して埋
込み用の酸化物粉末から繊維状結晶にCaおよびCuが
供給され、2223相化が達成されるものと考えられる
On the other hand, when the heat treatment temperature is lower than the partial melting temperature of the oxide powder, no interaction occurs between the fibrous crystals and the oxide powder, so that 2223 phase formation is not achieved. However, when heat treatment is performed in the above temperature range, a suitable liquid phase exists near the fibrous crystal, and Ca and Cu are supplied from the embedding oxide powder to the fibrous crystal through this liquid phase. It is thought that 2223 phases can be achieved.

発明の効果 本発明によれば、 B12−x Pbx Sr+ 9−2. l Cat 
9−2. ) Cu130y(Q<x<Q、4.10.
Q<y<11.O)なる組成を有し、Biz 5r2C
a2CLI3010構造(2223相)を有する超電導
繊維状結晶が得られる。
Effects of the Invention According to the present invention, B12-x Pbx Sr+ 9-2. l Cat
9-2. ) Cu130y (Q<x<Q, 4.10.
Q<y<11. Biz 5r2C
A superconducting fibrous crystal having a2CLI3010 structure (2223 phase) is obtained.

本発明の超電導繊維状結晶は、100Kを超える臨界温
度を有するので、液体窒素中で使用可能である。また、
曲げることが可能であるという特性をも有している。従
って、レーザー光などを使用するスポット溶接で線材化
することにより、液体窒素中で使用できる高温超電導材
料として、磁場発生用マグネット材料、電力貯蔵用およ
び電力輸送用の線材製造材料への応用、さらには先端形
状を利用したポイントコンタクトのジョセフソン素子用
材料などの広範囲の分野での利用が期待される。
The superconducting fibrous crystals of the present invention have a critical temperature of over 100K, so they can be used in liquid nitrogen. Also,
It also has the property of being bendable. Therefore, by forming wires by spot welding using laser light, etc., it can be used as a high-temperature superconducting material that can be used in liquid nitrogen, and can be applied to magnet materials for magnetic field generation, wire manufacturing materials for power storage and power transport, and furthermore. The material is expected to be used in a wide range of fields, including materials for point-contact Josephson elements that utilize the tip shape.

実施例 以下に実施例を示し、本発明の特徴とするところをより
一層明確にする。
EXAMPLES Examples will be shown below to further clarify the features of the present invention.

実施例1 下記第1表に示す原子組成比となる様に出発原料を十分
に混合した後、その15gをアルミナルツボに入れ、電
気炉中で840°Cで20時間焼成し、得られた焼成物
を十分に粉砕して、埋込み用酸化物粉末を得た。
Example 1 After thoroughly mixing the starting materials so as to have the atomic composition ratio shown in Table 1 below, 15 g of the starting materials were placed in an alumina crucible and fired at 840°C for 20 hours in an electric furnace. The material was sufficiently ground to obtain an oxide powder for embedding.

次いで、第1図に模式的な断面図として示す様に、アル
ミナボート(3)上に置かれた上記埋込み用酸化物粉末
(2)中に予め調製しておいたBi2Sr2Cat C
u20g構造(2212相)を有する繊維状結晶(1)
50本を埋込み、電気炉中840℃で120時間熱処理
した。
Next, as shown in a schematic cross-sectional view in FIG.
Fibrous crystals with u20g structure (2212 phase) (1)
Fifty pieces were embedded and heat treated in an electric furnace at 840°C for 120 hours.

熱処理終了後、繊維状結晶と埋込み粉末とを分離した。After the heat treatment was completed, the fibrous crystals and the embedded powder were separated.

第2図に回収した繊維状結晶のX線回折パターンを示す
。このX線回折パターンから、熱処理後の繊維状結晶が
、Bi2Sr2Ca2Cu3o10構造(2223相)
を有していることが確認された。
FIG. 2 shows the X-ray diffraction pattern of the recovered fibrous crystals. From this X-ray diffraction pattern, the fibrous crystals after heat treatment have a Bi2Sr2Ca2Cu3o10 structure (2223 phase).
It was confirmed that it has.

また、直流四端子法で測定したこの繊維状結晶の電気抵
抗と絶対温度との関係は、第3図に示す通りであった。
Furthermore, the relationship between the electrical resistance and absolute temperature of this fibrous crystal measured by the DC four-terminal method was as shown in FIG.

また、電気抵抗がゼロとなる温度は、107にであった
Further, the temperature at which the electrical resistance became zero was 107.

なお、本実施例および以下の実施例において使用した埋
込み用酸化物粉末の製造原料は、下記のものであった。
The raw materials for producing the embedding oxide powder used in this example and the following examples were as follows.

*Bi源・・・酸化ビスマス(Bi203)*Sr源・
・・炭酸ストロンチウム(SrCO3)*Ca源・・・
炭酸カルシウム(Ca C03)*Cu源・・・酸化胴
(Cu O) *Pb源・・・酸化鉛(P b O) 実施例2〜6 実施例1の手法に準じて、第1表に示す2212相構造
または2201相構造の繊維状結晶を酸化物粉末に埋込
み、電気炉中所定の温度で120時間熱処理した。
*Bi source...Bismuth oxide (Bi203) *Sr source...
...Strontium carbonate (SrCO3) *Ca source...
Calcium carbonate (Ca C03) *Cu source...Oxide shell (CuO) *Pb source...Lead oxide (PbO) Examples 2 to 6 According to the method of Example 1, as shown in Table 1 Fibrous crystals having a 2212 phase structure or a 2201 phase structure were embedded in oxide powder and heat treated at a predetermined temperature in an electric furnace for 120 hours.

これらの熱処理後の繊維状結晶は、いずれも実施例1の
ものと同様の結晶構造および超電導性を有していること
が確認された。
It was confirmed that all of these heat-treated fibrous crystals had the same crystal structure and superconductivity as those of Example 1.

実施例1〜6に関して、第1表に熱処理前の繊維状結晶
の相構造および酸化物粉末の組成を示し、第2表に熱処
理温度、熱処理後の繊維状結晶の構造および臨界温度を
示す。
Regarding Examples 1 to 6, Table 1 shows the phase structure of the fibrous crystal and the composition of the oxide powder before heat treatment, and Table 2 shows the heat treatment temperature, the structure of the fibrous crystal after heat treatment, and the critical temperature.

第1表 0.25 0.5 0.2 0.25 第2表 実施例  熱処理温度 繊維状結晶構造 臨界温度(’
C)    熱処理後    (K)絶対温変と電気抵
抗との関係を示す図面である。
Table 1 0.25 0.5 0.2 0.25 Table 2 Examples Heat treatment temperature Fibrous crystal structure Critical temperature ('
C) After heat treatment (K) It is a drawing showing the relationship between absolute temperature change and electrical resistance.

(以 上)(that's all)

Claims (2)

【特許請求の範囲】[Claims] (1)Bi、Sr、Ca、Cu、PbおよびOからなり
、その原子の組成比が Bi_2_−_xPb_xSr_1_._9_〜_2_
._1Ca_1_._9_〜_2_._1Cu_3O_
y(0<x<0.4、10.0<y<11.0)であり
、Bi_2Sr_2Ca_2Cu_3O_1_0構造(
2223相)を有する超電導繊維状結晶。
(1) Consisting of Bi, Sr, Ca, Cu, Pb and O, the atomic composition ratio is Bi_2_-_xPb_xSr_1_. _9_〜_2_
.. _1Ca_1_. _9_~_2_. _1Cu_3O_
y (0<x<0.4, 10.0<y<11.0), and Bi_2Sr_2Ca_2Cu_3O_1_0 structure (
2223 phase) superconducting fibrous crystals.
(2)Bi、Sr、Ca、CuおよびOからなり、Bi
_2Sr_2Ca_1Cu_2O_8構造(2212相
)を有する繊維状結晶、または、 Bi、Sr、CuおよびOからなり、 Bi_2Sr_2Cu_1O_6構造(2201相)を
有する繊維状結晶を、原子の組成比が Bi=1.0 Sr=0.5〜1.5 Ca=1.0〜3.0 Cu=1.0〜5.0 Pb=0.2〜1.0 である酸化物粉末中に埋め込み、830〜860℃で熱
処理することを特徴とする、原子の組成比が Bi_2_−_xPb_xSr_1_._9_〜_2_
._1Ca_1_._9_〜_2_._1Cu_3O_
y(0<x<0.4、10.0<y<11.0)であり
、Bi_2Sr_2Ca_2Cu_3O_1_0構造(
2223相)を有する超電導繊維状結晶の製造方法。
(2) Consisting of Bi, Sr, Ca, Cu and O, Bi
A fibrous crystal having a _2Sr_2Ca_1Cu_2O_8 structure (2212 phase), or a fibrous crystal consisting of Bi, Sr, Cu, and O and having a Bi_2Sr_2Cu_1O_6 structure (2201 phase) with an atomic composition ratio of Bi=1.0 Sr=0 .5 to 1.5 Ca=1.0 to 3.0 Cu=1.0 to 5.0 Pb=0.2 to 1.0 Embedded in oxide powder and heat treated at 830 to 860°C. characterized by an atomic composition ratio of Bi_2_−_xPb_xSr_1_. _9_〜_2_
.. _1Ca_1_. _9_~_2_. _1Cu_3O_
y (0<x<0.4, 10.0<y<11.0), and Bi_2Sr_2Ca_2Cu_3O_1_0 structure (
2223 phase).
JP2177123A 1990-03-07 1990-07-03 Superconducting fibrous single crystal and method for producing the same Expired - Lifetime JPH0745357B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2177123A JPH0745357B2 (en) 1990-07-03 1990-07-03 Superconducting fibrous single crystal and method for producing the same
US07/777,055 US5242896A (en) 1990-03-07 1991-10-16 Superconductor crystal and process for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2177123A JPH0745357B2 (en) 1990-07-03 1990-07-03 Superconducting fibrous single crystal and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0465395A true JPH0465395A (en) 1992-03-02
JPH0745357B2 JPH0745357B2 (en) 1995-05-17

Family

ID=16025571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2177123A Expired - Lifetime JPH0745357B2 (en) 1990-03-07 1990-07-03 Superconducting fibrous single crystal and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0745357B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003010369A1 (en) * 2001-07-25 2003-02-06 Japan Science And Technology Agency Oxide high-critical temperature superconductor acicular crystal and its production method
US8293862B2 (en) 1999-08-24 2012-10-23 Toyo Boseki Kabushiki Kaisha Polyester polymerization catalyst, polyester produced by using the same, and a process for producing polyester
CN107615879A (en) * 2016-01-29 2018-01-19 株式会社美铃工业 Heater and the fixing device, image processing system and heater for possessing the heater

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63307115A (en) * 1987-06-08 1988-12-14 Agency Of Ind Science & Technol Production of oxide superconductor
JPH0312313A (en) * 1989-06-09 1991-01-21 Sumitomo Electric Ind Ltd Production of superconducting ceramic fiber
JPH03150208A (en) * 1989-11-02 1991-06-26 Chiyoudendou Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Preparation of oxide superconductive fiber
JPH0446050A (en) * 1990-01-25 1992-02-17 Osaka Prefecture Production of bismuth-containing superconducting ceramics

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63307115A (en) * 1987-06-08 1988-12-14 Agency Of Ind Science & Technol Production of oxide superconductor
JPH0312313A (en) * 1989-06-09 1991-01-21 Sumitomo Electric Ind Ltd Production of superconducting ceramic fiber
JPH03150208A (en) * 1989-11-02 1991-06-26 Chiyoudendou Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Preparation of oxide superconductive fiber
JPH0446050A (en) * 1990-01-25 1992-02-17 Osaka Prefecture Production of bismuth-containing superconducting ceramics

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8293862B2 (en) 1999-08-24 2012-10-23 Toyo Boseki Kabushiki Kaisha Polyester polymerization catalyst, polyester produced by using the same, and a process for producing polyester
WO2003010369A1 (en) * 2001-07-25 2003-02-06 Japan Science And Technology Agency Oxide high-critical temperature superconductor acicular crystal and its production method
US7008906B2 (en) 2001-07-25 2006-03-07 Japan Science And Technology Agency Oxide high-critical temperature superconductor acicular crystal and its production method
CN107615879A (en) * 2016-01-29 2018-01-19 株式会社美铃工业 Heater and the fixing device, image processing system and heater for possessing the heater

Also Published As

Publication number Publication date
JPH0745357B2 (en) 1995-05-17

Similar Documents

Publication Publication Date Title
US4921834A (en) Flux method of growing oxide superconductors
US4929594A (en) Superconducting composition Tl2 Ba2 CuO6+x and process for manufacture
US5242896A (en) Superconductor crystal and process for preparing the same
US5389603A (en) Oxide superconductors, and devices and systems comprising such a superconductor
US5017554A (en) Superconducting metal oxide Tl-Pb-Ca-Sr-Cu-O compositions and processes for manufacture and use
JPH0465395A (en) Superconducting fibrous crystal and its production
WO1990002098A1 (en) Superconducting metal oxide compositions
US5264414A (en) Superconducting metal oxide (Tl,Bi)1 Sr2 Ca2 Cu3 O.sub.y
US5354921A (en) Single crystalline fibrous superconductive composition and process for preparing the same
AU632076B2 (en) Superconducting metal oxide compositions and processes for manufacture and use
JPH0465396A (en) Superconducting single crystal and its production
JPH04214027A (en) Oxide superconductor and production thereof
WO1991001941A1 (en) Superconducting metal oxide compositions and processes for manufacture and use
JPH02252621A (en) Superconducting fibrous crystal and production thereof
JPH06107497A (en) Superconducting fibrous crystal, single crystal and production thereof
WO1989007086A1 (en) SUPERCONDUCTING Bi-Sr-Ca-Cu OXIDE COMPOSITIONS AND PROCESS FOR MANUFACTURE
JPH0238359A (en) Production of superconductor
EP0441903A4 (en) Superconducting metal oxide compositions and processes for manufacture and use
JPH04292420A (en) Superconducting compound and method for its preparation
JPH02243519A (en) Oxide superconductor and production thereof
JPH02229787A (en) Production of oxide superconductor
Bunda et al. Phases interaction and properties of [Bi/sub 2/Sr/sub 2/Cu/sub 1/O/sub 6/]/sub 1-z/-[BiOF]/sub z/system
JPH0230618A (en) Oxide high-temperature superconductor
JPH09502959A (en) Superconductor containing at least one of barium and strontium and thallium, copper, oxygen and fluorine
WO1991011391A1 (en) Superconducting metal oxyde compositions

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term