JPH026372A - Production of aluminum nitride sintered form - Google Patents

Production of aluminum nitride sintered form

Info

Publication number
JPH026372A
JPH026372A JP63154624A JP15462488A JPH026372A JP H026372 A JPH026372 A JP H026372A JP 63154624 A JP63154624 A JP 63154624A JP 15462488 A JP15462488 A JP 15462488A JP H026372 A JPH026372 A JP H026372A
Authority
JP
Japan
Prior art keywords
aluminum nitride
thermal decomposition
decomposition product
organic polymer
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63154624A
Other languages
Japanese (ja)
Inventor
Kazuyuki Hiruta
和幸 蛭田
Shigeo Hiyama
桧山 茂雄
Kazufumi Maeda
一史 前田
Yutaka Yokogawa
裕 横川
Akira Kobayashi
晃 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP63154624A priority Critical patent/JPH026372A/en
Publication of JPH026372A publication Critical patent/JPH026372A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain the title sintered form with high thermal conductivity by calcination, in a non-oxidative atmosphere under specified temperature conditions, of a form containing aluminum nitride powder, sintering aid and a thermal decomposition product of organic polymer. CONSTITUTION:The objective sintered form can be obtained by calcination, in a non-oxidative atmosphere, a form comprising aluminum nitride powder, sintering aid and a thermal decomposition product of organic polymer at temperatures >=1750 deg.C with the temperature raising rate <=20 deg.C/min within the range 1100-1700 deg.C. Said thermal decomposition product is a product formed by heating in an inert atmosphere granules or powder of an organic polymer such as vinyl chloride resin, polyvinyl alcohol or vinyl acetate resin, being a pitchy solid at normal temperature with the weight ratio C/H controlled pref. within 10-25, and can be produced by heat treatment normally at 200-500 deg.C in argon or nitrogen gas atmosphere irrespective of the kind of organic polymers.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、窒化アルミニウムを主成分とする高熱伝導
性窒化アルミニウム焼結体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a highly thermally conductive aluminum nitride sintered body containing aluminum nitride as a main component.

〔従来の技術〕[Conventional technology]

近年、電子部品の小型化・高集積化が著しく、それに伴
い、それらの単位面積あたりの発熱量は増加の一途をた
どっている。電子部品にとって、これらの熱電いかに逃
がすかがポイントであり、熱電導率の高い基板が望まれ
ている。この目的のため、従来使用されてきたアルミナ
基板にかわり窒化アルミニウム焼結体が注目されている
In recent years, electronic components have become significantly smaller and more highly integrated, and as a result, the amount of heat generated per unit area of these components continues to increase. For electronic components, the key is how to dissipate these thermoelectrics, and a substrate with high thermal conductivity is desired. For this purpose, aluminum nitride sintered bodies are attracting attention in place of the conventionally used alumina substrates.

窒化アルミニウムは難焼結性物質であるため、通常、常
圧焼結体を得るに際し、焼結助剤として希土類及び/又
はアルカリ土類元素を含む化合物全添加し焼成されてい
る。これらの焼結助剤は、窒化アルミニウムの緻密化を
促進させるばかりでなく、窒化アルミニウム衣面に多量
に存在する酸素と反応することにより、Aj+N粒子内
への酸素の同浴を減少させて、高い熱伝導性をもつ焼結
体をもたらす。
Since aluminum nitride is a substance that is difficult to sinter, normally, when obtaining an atmospheric pressure sintered body, a compound containing a rare earth and/or alkaline earth element is added as a sintering aid and then fired. These sintering aids not only promote the densification of aluminum nitride, but also reduce the amount of oxygen entering the Aj+N particles by reacting with the oxygen present in large amounts on the aluminum nitride coating surface. Produces a sintered body with high thermal conductivity.

近年のAJN粉の高純度化とくに低酸素化に伴ない、そ
れらの粉を用いた焼結体の熱伝導率は向上の一途をたど
っているが、窒化アルミニウムの理論熱伝導率(320
w/nn−k )に対し、半分程度の熱伝導率にとどま
っているのが現状であり、より高い熱伝導率をもつ窒化
アルミニウム焼結体の出現が待たれている。
The thermal conductivity of sintered bodies using these powders has been steadily improving as the purity of AJN powder has increased in recent years, especially with the reduction in oxygen content.
At present, the thermal conductivity is only about half that of the aluminum nitride sintered body with higher thermal conductivity.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、このような従来方法では達し得ない高い熱伝
導性を有する窒化アルミニウム焼結体の製造方法を提供
するものである。
The present invention provides a method for producing an aluminum nitride sintered body having high thermal conductivity that cannot be achieved by conventional methods.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、上記目的を達成するため鋭意検討を重ね
た結果、窒化アルミニウム粉、焼結助剤及び有機重合体
の熱分解生成物からなる成形体を焼成するに際し、その
昇温条件を敵しく制御することにより、従来より高い熱
伝導率を有する焼結体が得られることを見い出し本発明
に至った。
As a result of extensive studies to achieve the above object, the inventors of the present invention have determined that the heating conditions for firing a compact made of aluminum nitride powder, a sintering aid, and a thermal decomposition product of an organic polymer are It was discovered that a sintered body having a higher thermal conductivity than the conventional one can be obtained by properly controlling the temperature, leading to the present invention.

すなわち、本発明は、窒化アルミニウム粉、焼結助剤及
び有機1合体の熱分解生成物を含んでなる成形体を非酸
化性雰囲気下で焼成するに際し、1100〜1700℃
における昇温速度を20℃/分以下とし、1750℃以
上の温度で焼成することを特徴とする窒化アルミニウム
焼結体の製造方法である。
That is, in the present invention, when firing a molded body containing aluminum nitride powder, a sintering aid, and a thermal decomposition product of an organic monomer in a non-oxidizing atmosphere, the heating temperature is 1100 to 1700°C.
This is a method for producing an aluminum nitride sintered body, characterized in that the heating rate is 20° C./min or less and firing is performed at a temperature of 1750° C. or higher.

以下、本発明をさらに詳細に説明する。The present invention will be explained in more detail below.

この発明における有機重合体の熱分解生成物とは、例え
ば、塩化ビニル樹脂、ポリビニルアルコル、酢酸ビニル
樹脂等の有機重合体の粒状品又は粉末を不活性雰囲気中
にて加熱したものであり、常温においてはピッチ状を呈
する固体で、炭素原子と水素原子の1量比(C/H)を
10〜25に制御したものが好ましい。これは有機1合
体の種類を問わず、通常、温度200〜500℃,Ar
又はN2中にて熱処理して製造される。
The thermal decomposition product of an organic polymer in this invention is, for example, a granular product or powder of an organic polymer such as vinyl chloride resin, polyvinyl alcohol, vinyl acetate resin, etc., heated in an inert atmosphere. It is preferable to use a pitch-like solid in which the molar ratio of carbon atoms to hydrogen atoms (C/H) is controlled to 10 to 25. Regardless of the type of organic monomer, this is usually carried out at a temperature of 200 to 500°C and in an Ar
Alternatively, it is manufactured by heat treatment in N2.

これらの有機1合体の熱分解生成物は、焼成中に窒化ア
ルミニウム粒子六回に存在する酸素と反応することによ
り、窒化アルミニウム言有酸索量全低減させ、得られた
焼結体の熱伝導性を向上させるが、さらに、1100℃
〜1700℃における昇温速度を20℃/分以下好まし
くは2℃/分〜10℃/分にすることにより、その効果
は顕著となる。すなわち、本発明者らは、各温度におけ
る成形体中の酸素言有賞、炭素言有蛍金測定したところ
、有機1合体の熱分解生成物の還元作用が行われるのは
、1100℃〜1700℃であること、及びこれらの還
元作用が、この温度域に咥ける昇温速度を208C/分
以下とすることによシ大きくなること、そしてこれらの
条件下で焼成して得られた焼結体の酸素含有量は極めて
低減され熱伝導率が著しく高くなることを見い出したも
のである。
The thermal decomposition products of these organic monomers react with oxygen present in the aluminum nitride particles during sintering, thereby reducing the total amount of aluminum nitride oxygen and improving the thermal conductivity of the resulting sintered body. In addition, the temperature at 1100℃
The effect becomes remarkable by setting the temperature increase rate at ~1700°C to 20°C/min or less, preferably 2°C/min to 10°C/min. That is, the present inventors measured the oxygen content and carbon content of the molded product at various temperatures, and found that the reduction effect of the thermal decomposition product of the organic 1 combination takes place between 1100°C and 1700°C. ℃, and that these reduction effects are enhanced by setting the heating rate in this temperature range to 208 C/min or less, and that the sintered product obtained by firing under these conditions It was discovered that the oxygen content of the body is extremely reduced and the thermal conductivity is significantly increased.

本発明において、有機重合体の熱分解生成物は、窒化ア
ルミニウム含有酸素量に応じて適切量配合される。その
量としては、(熱分解生成物の量〕/(窒化アルミニウ
ム含有酸素量)の1量比(以下P2O比と記す)が0.
08〜2.5とくに0.9〜1.5とすることによりそ
の効果は著しく大きくなる。
In the present invention, the thermal decomposition product of the organic polymer is blended in an appropriate amount depending on the amount of oxygen contained in aluminum nitride. As for the amount, the ratio (hereinafter referred to as P2O ratio) of (amount of thermal decomposition products)/(amount of oxygen contained in aluminum nitride) is 0.
By setting the ratio to 0.08 to 2.5, particularly 0.9 to 1.5, the effect becomes significantly greater.

本発明において使用される窒化アルミニウム粉としては
、通常、金属アルミニウム直接窒化法及びアルミナ還元
窒化法等により製造されたものを使用するが、その製造
履歴等に問題ではなく、むしろ酸素含有量が6N量係以
下、とくに2重it%以下のものを使用することが好ま
しい。
The aluminum nitride powder used in the present invention is normally produced by a metal aluminum direct nitriding method, an alumina reduction nitriding method, etc., but there is no problem with its manufacturing history, and rather the oxygen content is 6N. It is preferable to use a material with a weight ratio of less than 2%, especially less than 2%.

本発明に用いられる焼結助剤は公知のものが使用できる
が、特に希土類元素及び/又はアルカリ土類金属元素を
含む化合物を使用することが、望ましい。ここで希土類
を含む化合物とは、Y、La。
Although any known sintering aid can be used in the present invention, it is particularly desirable to use a compound containing a rare earth element and/or an alkaline earth metal element. Here, the compounds containing rare earth elements include Y and La.

Ca 、 Gd 、 Dy等の元素を含む、酸化物、窒
化物、炭化物、ハロゲン化物、水素化物又は加熱によっ
てそれらになるものをさす。また、アルカリ土類金属を
含む化合物とは、Ca、 Sr、 Baを富む、酸化物
、窒化物、炭化物、ハロゲン化物、水素化物又は加熱に
よってそれらになるものをさす。
Refers to oxides, nitrides, carbides, halides, hydrides, or substances that become such when heated, including elements such as Ca, Gd, and Dy. Further, the compound containing an alkaline earth metal refers to an oxide, nitride, carbide, halide, hydride, or a compound that becomes such by heating, which is rich in Ca, Sr, or Ba.

焼結助剤量は、その種類により異なるが、通常、命化ア
ルミニウム100N量部に対し0.3〜8重量部とくに
0.5〜5][jt部が好ましい。8N量部を越えると
生成する第2相成分が多くなり0.3Niit部未満で
は緻密化が不足しいずれの場合も熱伝導性の著しい向上
を阻害してし筐う。
The amount of the sintering aid varies depending on its type, but is usually 0.3 to 8 parts by weight, preferably 0.5 to 5 parts by weight, per 100 N parts of aluminum. If the amount exceeds 8N parts, a large amount of second phase components will be produced, and if it is less than 0.3N parts, densification will be insufficient, and in either case, significant improvement in thermal conductivity will be inhibited.

以上のように1100℃〜1700℃における昇温速度
を208C/分以下に抑えて加熱された成形体は、最終
的に1750℃以上の温度で焼成される。1750℃に
満たない温度で焼成しても成形体は著しく緻密化しない
。好ましい焼成温度は1800℃〜1950℃である。
The molded body heated while suppressing the temperature increase rate at 1100°C to 1700°C to 208 C/min or less as described above is finally fired at a temperature of 1750°C or higher. Even if the molded body is fired at a temperature lower than 1750°C, the molded body will not be significantly densified. The preferred firing temperature is 1800°C to 1950°C.

〔実施例〕〔Example〕

以下、本発明を実施例をあげてさらに具体的に説明する
Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1 酸素含有量1.0重量%の窒化アルミニウム粉に炭素原
子と水素原子の1量比(C/H)が12である塩化ビニ
ル樹脂の熱分解生成物を、P/○比を0.9又は1.5
にして配合し、さらに各々にY2O3を2又は4に置部
添加して混合物を得た。この混合物をアルミナ製ポット
にトリクレンとともに入れ、ボールミルにより充分混合
したのち、乾燥後、これらの混合粉末を400々/6M
2の圧力で加圧成形し、さらに10 D Okg/(:
rIL2にてラバープレスしろ0φnrn X 5 v
の円板状成形体を得た。
Example 1 A thermal decomposition product of vinyl chloride resin with a carbon atom to hydrogen atom ratio (C/H) of 12 was added to aluminum nitride powder with an oxygen content of 1.0% by weight, and the P/○ ratio was 0. .9 or 1.5
Then, 2 or 4 portions of Y2O3 were added to each to obtain a mixture. This mixture was placed in an alumina pot along with trichlene, thoroughly mixed using a ball mill, and after drying, the mixed powder was mixed with 400/6M
Pressure molded at a pressure of 2, and further 10 D Okg/(:
Rubber press with rIL2 0φnrn X 5 v
A disc-shaped molded body was obtained.

これらの成形体’e)Jz、1気圧中で1100℃〜1
700℃における昇温速度を5℃/分、10℃/分、2
0℃/分、25℃/分及び40℃/分として昇温し、さ
らに1900℃まで昇温したのち3時間保持して、焼結
体を作製した。得られた焼結体eま、10φ醇x3z正
に研削加工し、密度測定後、レーサ゛−フラッシュ法に
て、熱伝導率t−測測定た。
These molded bodies'e) Jz, 1100°C to 1 at 1 atm.
The temperature increase rate at 700°C was 5°C/min, 10°C/min, 2
The temperature was raised at 0°C/min, 25°C/min, and 40°C/min, and the temperature was further raised to 1900°C and held for 3 hours to produce a sintered body. The obtained sintered body was ground to a diameter of 10 mm x 3 mm, and after measuring the density, the thermal conductivity was measured using the laser flash method.

その結果を表1に示す。The results are shown in Table 1.

実施例2 酸素含有量1.5:]UJi%の窒化アルミニウム粉に
炭素原子と水素原子のTL量比(C/H)が10である
塩化ビニル樹脂の熱分解生成物を、P2O比を0.6又
は1.2として配合し、さらに各々にYF3を1又は3
iJi部添加して混合物を得た。この混合物を実施例1
と同様な方法にて成形した。これらの成形体k N2,
1 気圧中で1000℃〜17o。
Example 2 A thermal decomposition product of vinyl chloride resin having a TL ratio of carbon atoms to hydrogen atoms (C/H) of 10 was added to aluminum nitride powder with an oxygen content of 1.5: ] UJi%, and a P2O ratio of 0. .6 or 1.2, and further contains 1 or 3 YF3, respectively.
iJi parts were added to obtain a mixture. This mixture was prepared in Example 1.
It was molded using the same method. These molded bodies k N2,
1000℃~17o at atmospheric pressure.

℃における昇温速度を5℃/分、1o℃/分、20℃/
分、25℃/分及び40’c/分として昇温し、さらに
1800℃まで昇温したのち6時間保持して、焼結棒金
作製した。得られた焼結体の密度と熱伝導率を測定した
The heating rate at ℃ is 5℃/min, 1o℃/min, 20℃/min.
The temperature was increased at 25° C./min and 40° C./min, and then the temperature was further increased to 1800° C. and held for 6 hours to produce a sintered metal bar. The density and thermal conductivity of the obtained sintered body were measured.

その結果を表2に示す。The results are shown in Table 2.

実施例3 酸素含有量が1.2重量%である窒化アルミニウム粉に
塩化ビニル樹脂の熱分解生成物でC/Hが25であるも
のをP10比1.5又は2.5として配合した。これに
、さらに酸化カルシウムを各々1又は2iJit部添加
し、それらの混合物を実施例1と同様な方法にて混合し
成形体を得た。得られた成形体はN2,1気圧中にて、
1950℃16時間焼成した。その際、1100℃〜1
700℃における昇温速度を、5℃/分、10℃/分、
25℃/分及び40℃/分とした。得られた焼結体の密
度及び熱伝導率の測定結果を衣6に示す。
Example 3 A thermal decomposition product of vinyl chloride resin having a C/H ratio of 25 was blended with aluminum nitride powder having an oxygen content of 1.2% by weight at a P10 ratio of 1.5 or 2.5. To this, 1 or 2 parts of calcium oxide was added, and the mixture was mixed in the same manner as in Example 1 to obtain a molded body. The obtained molded body was heated in N2, 1 atm.
It was baked at 1950°C for 16 hours. At that time, 1100℃~1
The temperature increase rate at 700°C was 5°C/min, 10°C/min,
The temperature was 25°C/min and 40°C/min. The measurement results of the density and thermal conductivity of the obtained sintered body are shown in Figure 6.

〔発明の効果〕〔Effect of the invention〕

本発明のように、有機重合体の熱分解生成物を會む成形
体を焼成するに際し、昇温速度を制御することにより、
高い熱伝導率を有する窒化アルミニウム焼結体を製造す
ることができる。
As in the present invention, by controlling the temperature increase rate when firing a molded body containing a thermal decomposition product of an organic polymer,
An aluminum nitride sintered body having high thermal conductivity can be produced.

Claims (1)

【特許請求の範囲】[Claims] (1)窒化アルミニウム粉、焼結助剤及び有機重合体の
熱分解生成物を含んでなる成形体を非酸化性雰囲気下で
焼成するに際し、1100℃〜1700℃における昇温
速度を20℃/分以下とし、1750℃以上の温度で焼
成することを特徴とする窒化アルミニウム焼結体の製造
方法。
(1) When firing a molded body containing aluminum nitride powder, a sintering aid, and a thermal decomposition product of an organic polymer in a non-oxidizing atmosphere, the temperature increase rate between 1100°C and 1700°C is set at 20°C/ 1. A method for producing an aluminum nitride sintered body, the method comprising firing at a temperature of 1750° C. or higher.
JP63154624A 1988-06-24 1988-06-24 Production of aluminum nitride sintered form Pending JPH026372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63154624A JPH026372A (en) 1988-06-24 1988-06-24 Production of aluminum nitride sintered form

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63154624A JPH026372A (en) 1988-06-24 1988-06-24 Production of aluminum nitride sintered form

Publications (1)

Publication Number Publication Date
JPH026372A true JPH026372A (en) 1990-01-10

Family

ID=15588253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63154624A Pending JPH026372A (en) 1988-06-24 1988-06-24 Production of aluminum nitride sintered form

Country Status (1)

Country Link
JP (1) JPH026372A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015020937A (en) * 2013-07-22 2015-02-02 住友電気工業株式会社 Aluminum nitride sintered body and method of producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015020937A (en) * 2013-07-22 2015-02-02 住友電気工業株式会社 Aluminum nitride sintered body and method of producing the same

Similar Documents

Publication Publication Date Title
US4698320A (en) Aluminum nitride sintered body
US7122490B2 (en) Aluminum nitride materials and members for use in the production of semiconductors
EP0300601A2 (en) Process for the production of sintered aluminium nitrides
US4539298A (en) Highly heat-conductive ceramic material
US4952535A (en) Aluminum nitride bodies and method
US4376652A (en) High density high strength Si3 N4 ceramics prepared by pressureless sintering of amorphous Si3 N4 powder and Ti
EP0301802B1 (en) Sic complex sintered bodies and production thereof
JPH026372A (en) Production of aluminum nitride sintered form
JP2649220B2 (en) Silicon nitride / silicon carbide composite powder, composite compact, method for producing them, and method for producing silicon nitride / silicon carbide composite sintered body
JP2654108B2 (en) Manufacturing method of aluminum nitride sintered body
JPS61143686A (en) Silicon carbide sintered body for heat-resistant jig having excellent dimensional accuracy
JP3157957B2 (en) High thermal conductive silicon carbide sintered body and method for producing the same
JPS5951515B2 (en) Manufacturing method of Sialon sintered body
JPH06220624A (en) Target for sputtering and its production
JPH01145380A (en) Production of silicon nitride sintered form
JPH02307871A (en) Production of ceramic sintered compact
JPH0559073B2 (en)
EP1452510B1 (en) Aluminium nitride materials and members for use in the production of semiconductors
JP3272791B2 (en) Manufacturing method of aluminum nitride sintered body
JP2910359B2 (en) Method for producing silicon nitride based sintered body
JPS63277572A (en) Production of sintered aluminum nitride
JPH0453829B2 (en)
JPS63277571A (en) Production of sintered aluminum nitride having high thermal conductivity
JPH05330917A (en) Production of highly heat conductive silicon carbide sintered compact
JPH07121829B2 (en) High thermal conductivity aluminum nitride sintered body