JPS63277572A - Production of sintered aluminum nitride - Google Patents

Production of sintered aluminum nitride

Info

Publication number
JPS63277572A
JPS63277572A JP62110809A JP11080987A JPS63277572A JP S63277572 A JPS63277572 A JP S63277572A JP 62110809 A JP62110809 A JP 62110809A JP 11080987 A JP11080987 A JP 11080987A JP S63277572 A JPS63277572 A JP S63277572A
Authority
JP
Japan
Prior art keywords
aluminum nitride
sintered body
weight
container
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62110809A
Other languages
Japanese (ja)
Inventor
Yoshiko Sato
佳子 佐藤
Fumio Ueno
文雄 上野
Mitsuo Kasori
加曽利 光男
Akihiro Horiguchi
堀口 昭宏
Akihiko Tsuge
柘植 章彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62110809A priority Critical patent/JPS63277572A/en
Publication of JPS63277572A publication Critical patent/JPS63277572A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a sintered AlN article having high density and strength, by calcining a specific molded article in a non-oxidizing atmosphere in a vessel generating an (Al-O) gas atmosphere. CONSTITUTION:A molded article is produced by mixing AlN powder having an impurity oxygen content of <=5wt.% and an average particle diameter of 0.05-10mum with 0.01-15wt.% (in terms of element) of a compound of group IIa element (e.g. Ca or Sr), group IIIa element (e.g. Y, La) and/or rare earth element, granulating and grading the mixture and molding the obtained composition. The molded article is heated in a non-oxidizing atmosphere to remove the binder, put into a vessel made of Al2O3, sintered Al2O3 or powdery Al2O3 and capable of generating (Al-O) gas atmosphere in calcination and calcined at 1,550-2,050 deg.C for >=30min to obtain sintered AlN article having a relative density of >=85% and a bending strength of >=20kg/cm<2>.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、窒化アルミニウム焼結体の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a method for producing an aluminum nitride sintered body.

(従来の技術) 窒化アルミニウム(AiN)は高温まで強度低下が少な
く、化学的耐性にも優れているため、耐熱材料として用
いられる一方、その高温伝導性、高電気絶縁性を利用し
て半導体装置の放熱板材料、回路基板用絶縁体材料とし
ても有望視されている。
(Prior art) Aluminum nitride (AiN) has little strength loss even at high temperatures and has excellent chemical resistance, so it is used as a heat-resistant material. It is also seen as a promising material for heat sinks and insulators for circuit boards.

こうした窒化アルミニウムは常圧下では融点を持たず、
 zsoo℃以上の高温で分解するため、薄膜などの用
途を除いては焼結体として用いられる。
Such aluminum nitride does not have a melting point under normal pressure,
Since it decomposes at high temperatures above zsoo°C, it is used as a sintered body except for applications such as thin films.

かかる窒化アルミニウム焼結体は通常、窒化アルミニウ
ム粉末を成形、焼結して得られる。
Such an aluminum nitride sintered body is usually obtained by molding and sintering aluminum nitride powder.

しかしながら1粒径0.5−以上のAiN粉末を単独で
用いた場合は焼結性が良好でないために、ホットプレス
法による以外には無添加では緻密な焼結体を得ることは
困難である。
However, when AiN powder with a grain size of 0.5- or more is used alone, the sinterability is not good, so it is difficult to obtain a dense sintered body without additives other than by hot pressing. .

このようなことから、常圧で焼結する場合には。For this reason, when sintering at normal pressure.

通常、焼結体の高密度化を目的として、焼結助剤として
希土類酸化物、アルカリ土類金属酸化物等を添加し、カ
ーボン容器またはBNを塗布したカーボン容器または7
4N粉末のつめ物中で焼結することが一般に行なわれて
いる。高熱伝導率化のためには、原料粉の酸素量が少な
いことが必要とされる。しかしながら粒径の粗い粉は、
粉砕すると酸素量が増加するため、粉砕することなしに
、そのまま焼成すると、上記容器中では緻密化しない。
Usually, for the purpose of increasing the density of the sintered body, rare earth oxides, alkaline earth metal oxides, etc. are added as sintering aids, and carbon containers or BN-coated carbon containers or 7
Sintering in a 4N powder filler is commonly practiced. In order to achieve high thermal conductivity, it is necessary that the amount of oxygen in the raw material powder is small. However, coarse-grained powder
Since pulverization increases the amount of oxygen, if the material is fired as is without pulverization, it will not become densified in the container.

酸素量が少なく1粒径の粗い原料粉を用いても緻密化す
る焼成条件が必要である。また、希土類酸化物を添加し
、カーボン容器中で焼成した焼結体は、表面にAffi
Nでない化合物が生成する。また、アルカリ土類金属酸
化物を添加し、カーボン容器中で焼成した焼結体は、変
形するなど焼き上がりの状態が良好ではない。
Firing conditions are required that provide densification even when using coarse raw material powder with a small amount of oxygen and a single grain size. In addition, the sintered body added rare earth oxide and fired in a carbon container has Affi on the surface.
A compound that is not N is produced. Moreover, the sintered body added with an alkaline earth metal oxide and fired in a carbon container is not in a good condition after being fired, such as deformation.

(発明が解決しようとする問題点) ている。しかしながら、カーボン容器またはBNを塗布
したカーボン容器またはAQN粉末のつめ物中による焼
成では、Hl、密化しにくいため、高強度も得られない
(Problem that the invention seeks to solve) However, when firing in a carbon container, a carbon container coated with BN, or a filling of AQN powder, high strength cannot be obtained because Hl is difficult to densify.

本発明は、以上の点を考慮してなされたもので。The present invention has been made in consideration of the above points.

緻密で焼き上がり状態の良好な窒化アルミニウム焼結体
を提供することを目的とする。
The purpose of the present invention is to provide an aluminum nitride sintered body that is dense and has a good baked condition.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段及び作用)本発明者等は
上記目的を達成すべく窒化アルミニウム粉末に添加する
焼結助剤や焼結条件と、得られた焼結体の密度及び抗折
強度との関係について実験・検討を進めた結果、以下に
示す新規事項を発見し1本発明を完成するに至った。
(Means and effects for solving the problem) In order to achieve the above object, the present inventors have investigated the sintering aid added to the aluminum nitride powder, the sintering conditions, and the density and bending resistance of the obtained sintered body. As a result of conducting experiments and studies regarding the relationship with strength, we discovered the following new matter and completed the present invention.

すなわち、焼結助剤としてイツトリウム化合物をAff
iN粉末に添加し、(1−0)ガス雰囲気をつくり出す
容器中で焼成したところ、焼き上がり状態の良好な高密
度で、高強度を有する窒化アルミニウム焼結体が得られ
るという事実をみいだした。
That is, using yttrium compound as a sintering aid
We have discovered that when added to iN powder and fired in a container that creates a (1-0) gas atmosphere, a sintered aluminum nitride body with good firing quality, high density, and high strength can be obtained. .

この効果は他のIIa族化合物(Sr、 Y)、IIa
IIa族化合物a 、Ba 、Sr等)および希土類元
素(La、Ce、Dy、Co等)でも同様に認められた
This effect is similar to other group IIa compounds (Sr, Y), IIa
The same phenomenon was observed in Group IIa compounds (a, Ba, Sr, etc.) and rare earth elements (La, Ce, Dy, Co, etc.).

この事実に基づいて高密度化を達成する最適条件を種々
検討した結果が本発明であり。
The present invention is the result of various studies on optimal conditions for achieving high density based on this fact.

a)不純物酸素量が5重量%以下であり、平均粒径が0
.05〜io、である窒化アルミニウム粉末と。
a) The amount of impurity oxygen is 5% by weight or less, and the average particle size is 0.
.. 05~io, and aluminum nitride powder.

Ca、 SrなどのIIa族、Y、LaなどのIIa族
及び希土類元素の重量換算で0.01〜15重量%の、
 IIaIIa族化合物I[[a族化合物および/又は
希土類元素化合物とを混合したのち成形した成形体をb
)  AII!、0.製容器中もしくは、Al2O3焼
結体、1.03粉末で焼成中に(A+1!−0)ガス雰
囲気をつくり出し C)非酸化性ガス雰囲気、1550〜2050℃で焼成
することを特徴とした窒化アルミニウム焼結体の製造方
法である。
0.01 to 15% by weight of group IIa elements such as Ca and Sr, group IIa elements such as Y and La, and rare earth elements;
IIa Group IIa compound I
) AII! ,0. An aluminum nitride characterized by creating a (A+1!-0) gas atmosphere in a container or during firing with an Al2O3 sintered body or 1.03 powder, and C) firing at a temperature of 1550 to 2050°C in a non-oxidizing gas atmosphere. This is a method for manufacturing a sintered body.

この様な方法で得られた窒化アルミニウム焼結体は、表
面状態は粗でなく、変形することもなく。
The aluminum nitride sintered body obtained by this method does not have a rough surface and does not deform.

相対密度85%以上、抗折強度20kgcsg−”以上
を有する。
It has a relative density of 85% or more and a bending strength of 20 kgcsg-'' or more.

本発明の製造方法は、窒化アルミニウム原料粉末の純度
および平均粒径、焼結助剤、焼結容器、焼成時間および
焼成雰囲気を骨子とするものである。
The main points of the production method of the present invention are the purity and average particle size of the aluminum nitride raw material powder, sintering aid, sintering container, firing time, and firing atmosphere.

主成分である窒化アルミニウム原料粉末としては、焼結
性を考慮して酸素を5重量%以下1.平均粒径が0.0
5〜10−のものを使用する。
In consideration of sinterability, the aluminum nitride raw material powder, which is the main component, contains 5% by weight or less of oxygen. Average particle size is 0.0
Use one with a weight of 5 to 10.

添加物としてはCa、SFなどのIIa族化合物、Y、
LaなどのIIa族化合物および希土類元素化合物(特
にイツトリウム化合物が好ましい)を用いる。
Additives include Ca, IIa group compounds such as SF, Y,
Group IIa compounds such as La and rare earth element compounds (yttrium compounds are particularly preferred) are used.

前述の化合物としては、酸化物、窒化物、フッ化物、酸
フッ化物、酸窒化物、もしくは焼成によりこれらの化合
物となる物質が最適である。焼成によって例えば酸化物
となる物質とし・では、これら元素の炭酸塩、硝酸塩、
シュウ酸塩、水酸化物などをあげることができる。
The above-mentioned compounds are optimally oxides, nitrides, fluorides, oxyfluorides, oxynitrides, or substances that become these compounds upon firing. For example, substances that become oxides when fired are carbonates, nitrates,
Examples include oxalates and hydroxides.

希土類元素化合物等の添加は、希土類元素等の元素の重
量換算で0.01〜15重量%の範囲で添加する。
The rare earth element compound and the like are added in an amount of 0.01 to 15% by weight in terms of the weight of the element such as the rare earth element.

燐酸容器に関しては、焼成中に(i−0)ガス雰囲気を
つくり出す容器を用いる。この様な焼成容器としては、
容器全体がAらOlの物、容器全体がAQ、O□製で試
料を設置する箇所にAgN板、BN板、W板等を敷いた
もの等を用いることができる。
Regarding the phosphoric acid container, a container that creates an (i-0) gas atmosphere during firing is used. As such a firing container,
It is possible to use a container in which the entire container is made of A or Ol, or a container in which the entire container is made of AQ or O□ and where the sample is placed is lined with an AgN plate, BN plate, W plate, etc.

焼結時間については、前述の如くの(1−0)ガス雰囲
気が得られない焼成容器を用いた場合は。
Regarding the sintering time, if a sintering container in which the (1-0) gas atmosphere as described above cannot be obtained is used.

30分〜2時間の短時間の焼成によっても、表面状態が
粗である。また変形する等の窒化アルミニウム焼結体が
得られるが、前述の如くの(Al−0)ガス雰囲気が得
られる焼成容器中で焼成した場合は。
Even after firing for a short time of 30 minutes to 2 hours, the surface condition remains rough. Furthermore, an aluminum nitride sintered body that is deformable can be obtained when fired in a firing vessel that provides an (Al-0) gas atmosphere as described above.

焼結温度にもよるが、目的温度まで上げすぐに冷却した
としても、窒化アルミニウム焼結体の緻密化は可能であ
る。より好ましくは、30分以上である。
Although it depends on the sintering temperature, it is possible to densify the aluminum nitride sintered body even if the temperature is raised to the target temperature and immediately cooled. More preferably, it is 30 minutes or more.

焼成温度については、 1550〜2050℃が好まし
い。
Regarding the firing temperature, 1550 to 2050°C is preferable.

1550℃より低温で焼成すると、原料粉末の粒径。When fired at a temperature lower than 1550°C, the particle size of the raw material powder.

酸素量にもよるが緻密な焼結体が得られない、また20
50℃より高温で焼成すると、AXN自体の蒸気圧が高
くなり、緻密化が困難になる。焼成温度はより好ましく
は1600〜1950℃である。
Depending on the amount of oxygen, a dense sintered body cannot be obtained;
When fired at a temperature higher than 50° C., the vapor pressure of AXN itself increases, making densification difficult. The firing temperature is more preferably 1600 to 1950°C.

焼成雰囲気は、窒素ガス、水素ガス、−酸化炭素、アル
ゴン等の群から選ばれる1種または2種以上の非酸化性
雰囲気が好ましい、なお焼結は。
The sintering atmosphere is preferably one or more non-oxidizing atmospheres selected from the group of nitrogen gas, hydrogen gas, -carbon oxide, argon and the like.

減圧、加圧及び常圧を含む雰囲気圧下で行なう。It is carried out under atmospheric pressure including reduced pressure, increased pressure and normal pressure.

次いで本発明の窒化アルミニウム焼結体の製造方法の一
例を以下に述べる。
Next, an example of the method for manufacturing the aluminum nitride sintered body of the present invention will be described below.

まず、A、IN粉末に焼結添加物として希土類元素化合
物を所定量添加したのちボールミル等を用いて混合する
。焼結には常圧焼結法を使用する。
First, a predetermined amount of a rare earth element compound as a sintering additive is added to the A and IN powders, and then mixed using a ball mill or the like. The pressureless sintering method is used for sintering.

この場合、混合粉末にバインダーを加え、混練、造粒、
整粒を行なったのち成形する。成形法としては、金型プ
レス、静水圧プレス或いはシート成形などが適用できる
。続いて、成形体を非酸化性雰囲気中1例えば窒素ガス
気流中で加熱してバインダーを除去したのち常圧焼結す
る。焼結温度は1550〜2050℃に設定する。
In this case, a binder is added to the mixed powder, kneaded, granulated,
After grading, it is molded. As a molding method, a mold press, isostatic press, sheet molding, etc. can be applied. Subsequently, the molded body is heated in a non-oxidizing atmosphere, for example, in a nitrogen gas stream to remove the binder, and then sintered under normal pressure. The sintering temperature is set at 1550-2050°C.

(実施例) 失立涯よ 不純物としての酸素を1.3重量%含有し、平均粒径が
2.1−のA旦N粉末に、添加物として平均粒径0.9
4のY2O,をイツトリウム元素の重量換算72.5重
量%添加し、ボールミルを用いて混合を行ない原料を調
整した。ついで、この原料に有機系バインダーを4重量
%添加して造粒したのち500kg/d (7)圧力で
プレス成形しテ44 X 34 X 5.2閣の圧粉体
とした。この圧粉体を窒素ガス′#囲気中で700℃ま
で加熱してバインダーを除去した。
(Example) An additive containing 1.3% by weight of oxygen as an impurity and having an average particle size of 2.1% was added as an additive.
4 was added in an amount of 72.5% by weight in terms of the weight of yttrium element, and mixed using a ball mill to prepare a raw material. Next, 4% by weight of an organic binder was added to this raw material and granulated, followed by press molding at a pressure of 500 kg/d (7) to obtain a green compact with a size of 44 x 34 x 5.2 mm. The compact was heated to 700° C. in a nitrogen gas atmosphere to remove the binder.

更に、BN粉末を塗布したA、IN板を底抜としてひい
たアルミナ製容器(焼成用容器A)に脱脂体を収容した
Further, the degreased body was housed in an alumina container (firing container A) made of an A and IN plate coated with BN powder and made with a hollow bottom.

この容器を用い窒素ガス雰囲気中(1気圧)1850℃
、2時間の条件で常圧焼結した。得られたAユN焼結体
の密度を測定した。焼結体から、全長36閤以上1幅4
.0±0.1閣、厚さ3.0±0.1閣の角柱を研削し
、上下面の粗さをJIS B 0601に規定する0、
8S以下とし、これを試験片として、JIS R−16
01に規定する。3点曲げ強さを測定した。
Using this container in a nitrogen gas atmosphere (1 atm) at 1850℃
It was sintered under atmospheric pressure for 2 hours. The density of the obtained AYN sintered body was measured. From a sintered body, the total length is 36 or more, 1 width is 4
.. A square pillar with a thickness of 3.0 ± 0.1 mm and a thickness of 3.0 ± 0.1 mm is ground, and the roughness of the upper and lower surfaces is 0, as specified in JIS B 0601.
8S or less, and use this as a test piece, JIS R-16
01. Three-point bending strength was measured.

さらに、この焼結体の不純物酸素の分析を速中性子放射
化分析により行なった(東芝@NAT−ZOO−IC使
用)、上記焼結条件および得られた焼結体の特性を第1
表に示した。
Furthermore, impurity oxygen in this sintered body was analyzed by fast neutron activation analysis (using Toshiba @NAT-ZOO-IC).The above sintering conditions and the characteristics of the obtained sintered body were
Shown in the table.

失適五l二旦 焼結添加物の添加量を種々に変えて上記実施例1と同様
にしてAuN焼結体を製造し、それぞれについて、同様
に、評価を行なった。
AuN sintered bodies were produced in the same manner as in Example 1 with various addition amounts of the second sintering additive, and each was evaluated in the same manner.

夾産五立ニヱ 焼結添加物の添加量および焼結温度を種々に変えて上記
実施例1と同様にしてA旦N焼結体を製造し、それぞれ
について同様に評価を行なった。
AdanN sintered bodies were produced in the same manner as in Example 1 above by varying the amount of additives added and the sintering temperature, and each was evaluated in the same manner.

失五五l二l 焼結温度を種々に変えて上記実施例1と同様にしてAf
LN焼結体を製造し、それぞれについて同様の評価を行
なった。
Af
LN sintered bodies were manufactured and the same evaluations were performed on each of them.

失直旌胆 A!1.N原料粉末の粒径、不純物酸素量および焼結温
度を変えて上記実施例1と同様にしてAfiN焼結体を
製造し、同様の評価を行なった。
Loss of directness A! 1. AfiN sintered bodies were produced in the same manner as in Example 1, except that the particle size of the N raw material powder, the amount of impurity oxygen, and the sintering temperature were changed, and the same evaluations were performed.

叉1舅旦二■ 焼結添加物の添加量、焼結温度および焼結雰囲気および
雰囲気圧力を種々に変えて上記実施例1と同様にしてA
!;LN焼結体を製造し、それぞれについて同様の評価
を行なった。
A was carried out in the same manner as in Example 1 by varying the amount of sintering additives, sintering temperature, sintering atmosphere, and atmospheric pressure.
! ;LN sintered bodies were manufactured and the same evaluation was performed on each of them.

来適五胆 焼結添加物の添加量、焼結温度および焼結時間を変えて
上記実施例1と同様にしてALN焼結体を製造し、同様
の評価を行なった。
ALN sintered bodies were produced in the same manner as in Example 1, except that the amount of the sintering additive added, the sintering temperature, and the sintering time were changed, and the same evaluation was performed.

寒直涯旦二且 焼結時間を種々に変えて上記実施例1と同様にしてAu
N焼結体を製造し、それぞれについて同様の評価を行な
った。
Au
N sintered bodies were manufactured and the same evaluations were performed on each.

11涯丘 不純物としての酸素を3重量%含有し、平均粒径が1.
8−のAsLN粉末に、添加物として平均粒径0.9−
のY2O2をイツトリウム元素の重量換算で2重量%添
加した。成形、脱脂までの行程および焼成用容器は上記
実施例と同様である。窒化ガス10気圧の加圧中180
0℃、2時間で焼結した。得られた焼結体は上記実施例
1と同様に評価を行なった。
11 Contains 3% by weight of oxygen as an impurity, and has an average particle size of 1.
8- AsLN powder with an average particle size of 0.9- as an additive.
Y2O2 was added in an amount of 2% by weight in terms of the weight of yttrium element. The steps from molding to degreasing and the firing container were the same as in the above example. 180 during pressurization of nitriding gas at 10 atmospheres
Sintering was carried out at 0°C for 2 hours. The obtained sintered body was evaluated in the same manner as in Example 1 above.

ス11引1 焼結時間を変えた点を除き、上記実施例17と同様にし
てA、dN焼結体を製造し、同様の評価を行なった。
S11 1 A, dN sintered body was produced in the same manner as in Example 17 above, except that the sintering time was changed, and the same evaluation was performed.

失10■旦 不純物としての酸素を0.5重量%含有し、平均粒径が
2.9.のAiN粉末に、添加物として平均粒径0.9
−のY2O,をイツトリウム元素の重量換算で4重量%
添加した。成形、脱脂までの行程および焼成用容器は上
記実施例1と同様である。窒化ガス減圧雰囲気中(0,
1気圧) 1900℃において2時間焼結し、同様の評
価を行なった。
It contains 0.5% by weight of oxygen as an impurity and has an average particle size of 2.9. AiN powder with an average particle size of 0.9 as an additive.
- Y2O, 4% by weight in terms of the weight of yttrium element
Added. The steps from molding to degreasing and the firing container were the same as in Example 1 above. In a nitriding gas reduced pressure atmosphere (0,
1 atm)) Sintered at 1900° C. for 2 hours and evaluated in the same way.

失凰五刈二並 添加物の陽イオンを種々の希土類元素に変えて上記実施
例1と同様にしてA!;LN焼結体を製造し、それぞれ
について同様の評価を行なった。
A! A! ;LN sintered bodies were manufactured and the same evaluation was performed on each of them.

1直舊互二堕 不純物としての酸素を0.48重量%含有し、平均粒径
が2.9−のALN粉末に、添加物として平均粒径0.
9−のYII02をイツトリウム元素の重量換算で4重
量%添加した。焼成用容器を種々に変えて。
Additives to ALN powder containing 0.48% by weight of oxygen as an impurity and having an average particle size of 2.9% are added as additives.
9-YII02 was added in an amount of 4% by weight in terms of the weight of yttrium element. By changing the firing container.

上記実施例1と同様にしてON焼結体を製造し、それぞ
れについて同様の評価を行なった。
ON sintered bodies were manufactured in the same manner as in Example 1 above, and the same evaluations were performed on each.

叉産五胆二用 不純物としての酸素を0.26重量%含有し、平均粒径
が5.8pのAiN粉末に、添加物として平均粒径0.
9.のY、0.をイツトリウム元素の重量換算で2.5
重量%添加した。焼成用容器を種々に変えて、上記実施
例1と同様にしてiN焼結体を製造しそれぞれについて
同様の評価を行なった。
AiN powder containing 0.26% by weight of oxygen as an impurity and having an average particle size of 5.8p was added as an additive with an average particle size of 0.26% by weight.
9. Y, 0. is 2.5 in terms of weight of yttrium element.
% by weight was added. iN sintered bodies were produced in the same manner as in Example 1, using various firing containers, and the same evaluations were conducted for each.

失適五■二昇 不純物としての酸素を0.59重量%含有し、平均粒径
が2.0−のAiN粉末に、添加物として平均粒径0.
9pのY2O,をイツトリウム元素の重量換算で2.5
重量%添加した。焼成用容器を種々に変えて、上記実施
例1と同様にしてAQN焼結体を製造し、それぞれにつ
いて同様の評価を行なった。
An additive having an average particle size of 0.5% is added to the AiN powder containing 0.59% by weight of oxygen as an impurity and having an average particle size of 2.0.
9p of Y2O, converted to the weight of yttrium element, is 2.5
% by weight was added. AQN sintered bodies were produced in the same manner as in Example 1, using various firing containers, and the same evaluations were conducted for each.

崖較五エニュ 実施例1と同様な方法により得たAユN脱脂体を、比較
例1では内側の全体がカーボン製の容器(焼結容器A)
、比較例2では内側の全体がiNgの容器、比較例3で
は内側の全体がタングステン製の容器を用い、1850
℃、2hr、N、気流中で常圧焼結し、焼結体を得た。
In Comparative Example 1, a degreased body obtained by the same method as in Example 1 was placed in a container whose entire inside was made of carbon (sintered container A).
, Comparative Example 2 uses a container whose inside is entirely made of iNg, and Comparative Example 3 uses a container whose inside is entirely made of tungsten.
C. for 2 hours under atmospheric pressure in a N air stream to obtain a sintered body.

これらの焼結体の特性を表2表に示す、また、得られた
焼結体は、表面が粗で、変形していた。この結果より、
少なくとも、内部の一部がアルミナよりなる焼結容器を
用いない場合は、高強度を有する。表面状態の良好なi
N焼結体が得られず、アルミナ雰囲気の有効さがわかる
The properties of these sintered bodies are shown in Table 2, and the surfaces of the obtained sintered bodies were rough and deformed. From this result,
At least when a sintered container whose interior is partially made of alumina is not used, it has high strength. i with good surface condition
No N sintered body was obtained, demonstrating the effectiveness of an alumina atmosphere.

(以下余白) 〔発明の効果ノ 以上述べた如く、本発明の窒化アルミニウム焼結体の製
造方法は、Jl密で焼き上がり状態の良好な、高強度を
有するという優れた窒化アルミニウム焼結体を提供する
ものであり、その工業的価値は極めて大きいものである
(Left below) [Effects of the Invention] As described above, the method for producing an aluminum nitride sintered body of the present invention produces an excellent aluminum nitride sintered body that is Jl dense, has a good firing state, and has high strength. and its industrial value is extremely large.

代理人 弁理士 則 近 憲 佑 同  松山光之Agent: Patent Attorney Noriyuki Chika Same as Mitsuyuki Matsuyama

Claims (2)

【特許請求の範囲】[Claims] (1)a)不純物酸素量が5重量%以下であり、平均粒
径が0.05〜10μmである窒化アルミニウム粉末と
、IIa族、IIIa族及びCa、SrなどのIIa族化合物
、Y、LaなどのIIIa族化合物および希土類元素を重
量換算で0.01〜15重量%の含有するIIa族化合物
、IIIa族化合物及び/又は希土類元素化合物とを混合
したのち成形した成形体を b)Al_2O_3製容器中、もしくは、Al_2O_
3焼結体またはAl_2O_3粉末で焼成中に(Al−
O)ガス雰囲気をつくり出す容器中で c)非酸化性ガス雰囲気、1550〜2050℃の条件
で焼成することを特徴とした窒化アルミニウム焼結体の
製造方法。
(1) a) Aluminum nitride powder with an impurity oxygen content of 5% by weight or less and an average particle size of 0.05 to 10 μm, and group IIa, group IIIa, and group IIa compounds such as Ca and Sr, Y, and La. b) A container made of Al_2O_3, which is formed by mixing a group IIIa compound such as a group IIIa compound and a rare earth element containing 0.01 to 15% by weight of a rare earth element, a group IIIa compound, and/or a rare earth element compound. Medium or Al_2O_
3 sintered body or Al_2O_3 powder during firing (Al-
O) A method for producing an aluminum nitride sintered body, characterized by firing in a container that creates a gas atmosphere, c) in a non-oxidizing gas atmosphere, at a temperature of 1550 to 2050°C.
(2)相対密度85%以上、抗折強度20kgcm^−
^2以上である特許請求の範囲第1項記載の窒化アルミ
ニウム焼結体の製造方法。
(2) Relative density 85% or more, bending strength 20kgcm^-
The method for producing an aluminum nitride sintered body according to claim 1, wherein the aluminum nitride sintered body is ^2 or more.
JP62110809A 1987-05-08 1987-05-08 Production of sintered aluminum nitride Pending JPS63277572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62110809A JPS63277572A (en) 1987-05-08 1987-05-08 Production of sintered aluminum nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62110809A JPS63277572A (en) 1987-05-08 1987-05-08 Production of sintered aluminum nitride

Publications (1)

Publication Number Publication Date
JPS63277572A true JPS63277572A (en) 1988-11-15

Family

ID=14545207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62110809A Pending JPS63277572A (en) 1987-05-08 1987-05-08 Production of sintered aluminum nitride

Country Status (1)

Country Link
JP (1) JPS63277572A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03126673A (en) * 1989-10-12 1991-05-29 Fujitsu Ltd Production of sintered aluminum nitride
JP2008074643A (en) * 2006-09-19 2008-04-03 Tokuyama Corp Method for burning aluminum nitride
JP2012036090A (en) * 2011-10-26 2012-02-23 Tokuyama Corp Method for producing aluminum nitride sintered compact

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03126673A (en) * 1989-10-12 1991-05-29 Fujitsu Ltd Production of sintered aluminum nitride
JP2008074643A (en) * 2006-09-19 2008-04-03 Tokuyama Corp Method for burning aluminum nitride
JP2012036090A (en) * 2011-10-26 2012-02-23 Tokuyama Corp Method for producing aluminum nitride sintered compact

Similar Documents

Publication Publication Date Title
KR960006250B1 (en) High thermal conductive silicon nitride sintered body and the method of producing the same
IE43834B1 (en) Sintered silicon carbide ceramic body
JPH0925166A (en) Aluminum nitride sintered compact and its production
US4539298A (en) Highly heat-conductive ceramic material
JP2871410B2 (en) High thermal conductive silicon nitride sintered body and method for producing the same
JPH11322433A (en) Production of composite ceramic sintered body containing boron nitride, and the sintered body
JPH02204313A (en) Calcineable ceramic powder and its production method, silicic nitride ceramic made of said powder and its production method and use
JPS5953234B2 (en) Manufacturing method of high-strength silicon nitride sintered body
JPS63277572A (en) Production of sintered aluminum nitride
JP2000302553A (en) Corrosion resistant fluoride based combined ceramics sintered compact
JP3454994B2 (en) Silicon nitride sintered body and method for producing the same
JP2742600B2 (en) Aluminum nitride sintered body and method for producing the same
JPS6212663A (en) Method of sintering b4c base fine body
JPH0254297B2 (en)
JP2541150B2 (en) Aluminum nitride sintered body
JPH09175867A (en) Aluminum nitride sintered product
JPS6337064B2 (en)
JPS63277571A (en) Production of sintered aluminum nitride having high thermal conductivity
JP2536448B2 (en) Aluminum nitride sintered body
JPH11322438A (en) High thermal conductive silicon nitride sintered compact and its production
JPH0678195B2 (en) Aluminum nitride sintered body
JPH013075A (en) Method for manufacturing aluminum nitride sintered body
JPH02233560A (en) High-strength calcined sialon-based compact
JPS62270468A (en) Aluminum nitride base sintered body
JP2975490B2 (en) Method for producing high thermal conductivity β-type silicon carbide sintered body