JPH0261826A - Production of ultra-specular surface disk - Google Patents

Production of ultra-specular surface disk

Info

Publication number
JPH0261826A
JPH0261826A JP21317688A JP21317688A JPH0261826A JP H0261826 A JPH0261826 A JP H0261826A JP 21317688 A JP21317688 A JP 21317688A JP 21317688 A JP21317688 A JP 21317688A JP H0261826 A JPH0261826 A JP H0261826A
Authority
JP
Japan
Prior art keywords
stock
disk substrate
ultra
cutting
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21317688A
Other languages
Japanese (ja)
Inventor
Tomiharu Matsushita
富春 松下
Suguru Motonishi
本西 英
Hiroshi Fukunaga
浩 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP21317688A priority Critical patent/JPH0261826A/en
Publication of JPH0261826A publication Critical patent/JPH0261826A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To produce the disk substrate having the surface roughness smaller than 0.02mum Rmax. by forming a casting stock having a unidirectionally solidified structure from a molten Al alloy having a prescribed compsn. and forming a stock plate having a prescribed shape and accuracy by cutting out, then finishing the stock plate by ultra-specular cutting. CONSTITUTION:The Al-Mg alloy consisting of 4.1% Mg, 0.5% Fe, 0.4% Si, 0.2% Mn, 0.25% ZnO, 0.05% CrO, and the balance Al is used as the Al alloy of the magnetic disk substrate. This molten alloy is poured into a mold hole 3 having a heater 2 of a resistance heating system on the graphite inside surface of a casting mold 1 by closing the aperture side with a holder 4 and is heated at 750 deg.C heating temp. Cooling water is circulated through a pipe 5 to unidirectionally solidify the mold 1 and the holder 4, by which the stock is obtd. The stock plate having the prescribed shape and accuracy is formed by cutting out of the stock and is finished by the ultra-specular cutting. The disk substrate having the surface roughness smaller than 0.02mum Rmax. is thus obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、情報記憶媒体として使用される磁気ディスク
、その他超鏡面を要する精密金型等の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing magnetic disks used as information storage media, precision molds, etc. that require a super mirror surface.

(従来の技術) 前記種類のアルミニウム合金製磁気ディスクは、従来、
次の(1)〜(■)の工程により製造される。すなわち
、 (1)第5図(イ)のように該当組成のアルミニウム合
金溶湯(a)から連続鋳造により鋳塊素材働)を形成し
、 (If)この鋳塊素材[有])の外表層は溶湯が鋳型(
C)表面に接して冷却される部分から凝固を開始し、い
わゆる柱状晶(d)が鋳造方向に対し直角に発達した組
織になっているので、この偏析層を切削して除去し、 (I[[)このインゴット(e)を第5図(ロ)のよう
に熱間で粗圧延し、 (IV)さらに第5図(ハ)のように熱間で仕上圧延し
て厚さ2〜3胴の薄板(f)とし、(V)これを第5図
(ニ)のように打抜いて所望の形状精度の円板((至)
とし、 (Vl)円板(6)のゆがみを除去するため高温下で矯
正を施し、 (■)矯正円板をダイヤモンドバイトによる切削を行っ
て超鏡面仕上げの磁気ディスク基板を得ている。
(Prior Art) The above type of aluminum alloy magnetic disk has conventionally
It is manufactured by the following steps (1) to (■). That is, (1) Form an ingot material by continuous casting from a molten aluminum alloy (a) of the corresponding composition as shown in Figure 5 (a), and (If) form an ingot material (if) the outer surface layer of this ingot material. The molten metal is in the mold (
C) Solidification starts from the part that is in contact with the surface and is cooled, resulting in a structure in which so-called columnar crystals (d) are developed perpendicular to the casting direction, so this segregated layer is removed by cutting (I [[) This ingot (e) is hot roughly rolled as shown in Figure 5 (b), (IV) and further hot finished rolled as shown in Figure 5 (c) to a thickness of 2 to 3 mm. A thin plate (f) of the body is made, and (V) is punched out as shown in Fig. 5 (d) to form a disc with the desired shape accuracy ((to)
(Vl) The disc (6) is straightened at high temperature to remove distortion, and (■) The straightened disc is cut with a diamond cutting tool to obtain a magnetic disk substrate with an ultra-mirror finish.

(発明が解決しようとする問題点) 従来技術の磁気ディスク基板の製造法では、前記のよう
に多くの塑性変形工程を経由することにより結晶組織を
変形させて多方位結晶集合組織とした上で、最終工程の
ダイヤモンドバイトによる切削により超鏡面に仕上げて
いる。この場合、仕上表面には、第6図の写真に示すよ
うに、結晶粒界が明確に認められ、結晶粒界に段差が生
じ、段差の大きさは2/100〜3/100μmに達す
る。そのため超鏡面仕上げに最大の注意を払っても、段
差より小さい表面粗さに到達させることは実際上できな
い。
(Problems to be Solved by the Invention) In the conventional method of manufacturing a magnetic disk substrate, the crystal structure is deformed into a multi-oriented crystal texture by going through many plastic deformation steps as described above. The final step is cutting with a diamond cutting tool to create an ultra-mirror finish. In this case, as shown in the photograph of FIG. 6, grain boundaries are clearly recognized on the finished surface, and steps are formed at the grain boundaries, and the size of the steps reaches 2/100 to 3/100 μm. Therefore, even if maximum attention is paid to ultra-mirror finishing, it is practically impossible to achieve a surface roughness smaller than a step difference.

表面平滑度をさらに向上させることが必要な場合には、
さらにラッピング、ボリシング、電解を伴わせた研磨な
どを施すことが考えられるが、何れの方法によっても、
粒界をはさむ結晶粒に方位差があって各結晶粒の変形能
が異なるため、粒界段差の影響を受けないようにするこ
とができず、依然2/100μm程度の段差が残り、表
面粗さをこの段差の高さ以下にすることば不可能に近<
 、0.02μm Rmaxが到達できる限度であった
If it is necessary to further improve the surface smoothness,
Furthermore, it is possible to perform lapping, borishing, polishing with electrolysis, etc., but with any method,
Because the crystal grains sandwiching grain boundaries have different orientations and the deformability of each grain differs, it is impossible to avoid the influence of the grain boundary step, and a step of about 2/100 μm still remains, resulting in surface roughness. It is almost impossible to reduce the height to below the height of this step.
, 0.02 μm Rmax was the limit that could be reached.

また単結晶を用いて加工すれば、粒界段差は生じなくな
るが機械的強度が低下し、コストも割高となる。また表
面コーティングにより平滑化を図ることが考えられるが
、通常用いられる非晶質メツキは耐熱性に欠け、さらに
硬度が高いために工具の摩耗が著しく形状精度が出にく
い。
Further, if a single crystal is used for processing, grain boundary steps will not occur, but the mechanical strength will decrease and the cost will be relatively high. It is also possible to smooth the surface by coating it, but the commonly used amorphous plating lacks heat resistance, and its high hardness causes significant tool wear, making it difficult to achieve shape accuracy.

一方、第7図の経年傾向図に示されるように、磁気ディ
スクの面記憶密度(KB/in”)は、第8図のように
、ディスク(i)の表面粗さを小さくして磁気ヘッド(
M)を近接させ浮上高さ(H)を減少させるのに伴って
増加する傾向にあることが認められるので、面記憶密度
の向上を実現するには、前記の従来技術の多結晶材を用
いて鏡面加工を施した場合の到達限界を超えて表面粗さ
を向上させることが要望される。本発明はこれを可能に
する技術を提供することを目的とする。
On the other hand, as shown in the secular trend chart in Figure 7, the areal storage density (KB/in'') of the magnetic disk is increased by decreasing the surface roughness of the disk (i) as shown in Figure 8. (
It is recognized that there is a tendency to increase as the flying height (H) is reduced by bringing M) closer to each other, so in order to improve the areal memory density, it is necessary to use the polycrystalline material of the prior art described above. It is desired to improve the surface roughness beyond the limit achieved by mirror finishing. The present invention aims to provide technology that makes this possible.

(問題点を解決するための手段) 前記目的を達成するため、本発明においては、磁気ディ
スクが一定しない結晶方位を有する多結晶組織材からつ
くられる場合に結晶粒界に生ずる段差が鏡面加工表面粗
さに対して持つ限界的影響を軽減するため、加工手段の
工夫に依存しないで加工素材そのものにつき結晶方位が
一方向に揃うようにする。そのため、溶湯から一方向凝
固組織を有する鋳造素材をつくり、これに結晶方位を変
える塑性加工を加えることをしないで、直接に切出して
結晶方位をそのままに保つ、た所定形状精度を有する素
板をつくり、これに鏡面切削加工を施して磁気ディスク
製品とする。
(Means for Solving the Problems) In order to achieve the above object, in the present invention, when a magnetic disk is made from a polycrystalline material having an inconsistent crystal orientation, the step that occurs at the grain boundary is reduced to a mirror-finished surface. In order to reduce the marginal influence on roughness, the crystal orientation of the processed material itself is aligned in one direction, regardless of the ingenuity of the processing means. Therefore, we create a cast material with a unidirectional solidification structure from the molten metal, and then directly cut it without applying plastic working to change the crystal orientation to keep the crystal orientation as it is. This is then subjected to a mirror cutting process to create a magnetic disk product.

すなわち、本発明の超鏡面ディスクの製造法は、次の3
工程からなり、(1)所定組成のアルミニウム合金溶湯
から一方向凝固組織を有する鋳造素材を作成し、(II
)この鋳造素材から切出し加工により所定の形状精度を
有する基板をつくり、(I[[)該素材に超鏡面切削加
工を施して仕上げる、ことを特徴とする。
That is, the method for manufacturing a super-mirrored disk of the present invention includes the following three steps.
The process consists of (1) creating a cast material having a unidirectional solidification structure from a molten aluminum alloy of a predetermined composition, and (II)
) A substrate having a predetermined shape accuracy is made by cutting from this cast material, and the material is finished by performing ultra-mirror cutting.

本発明によれば、一方向凝固組織をそのまま有するアル
ミニウム合金からなり、その表面粗さが0.02μm 
Rmax以下の程度に小さい磁気ディスク基板が得られ
る。
According to the present invention, the aluminum alloy is made of an aluminum alloy that has a unidirectional solidification structure as it is, and its surface roughness is 0.02 μm.
A magnetic disk substrate as small as Rmax or less can be obtained.

(作 用) 本発明方法によれば、結晶粒界の段差の影響が少なくな
ることにより表面粗さが0.02μm Rmax以下の
小さいディスク基板を製造でき、従来よりも高性能で記
憶密度の高い磁気ディスクが製造できる。
(Function) According to the method of the present invention, it is possible to manufacture a small disk substrate with a surface roughness of 0.02 μm Rmax or less by reducing the influence of steps at grain boundaries, and it has higher performance and storage density than conventional methods. Magnetic disks can be manufactured.

一方向凝固組織を用いるので、例えばダイヤモンドバイ
トによる切削のみで2/100μm Rmax以下の超
々鏡面が得られる。そのため従来技術では特殊な研磨を
必要としたものが不要になる。
Since a unidirectionally solidified structure is used, an ultra-super mirror surface of 2/100 μm Rmax or less can be obtained only by cutting with a diamond cutting tool, for example. This eliminates the need for special polishing in the prior art.

(実施例) 以下、本発明を第1〜4図を参照し実施例に即して詳細
に説明する。
(Example) Hereinafter, the present invention will be described in detail based on an example with reference to FIGS. 1 to 4.

(1)第1工程 磁気ディスク基板のアルミニウム合金としては、Mg 
4.1%、Fe O,5%、Si O,4%、Mn O
,2%、ZnO,25%、Cr0.05%、残りAj2
のA ff−Mg合金を使用する。これは従来技術で第
6図の結晶組織のもとに粒界段差を生じたものである。
(1) As the aluminum alloy for the first step magnetic disk substrate, Mg
4.1%, FeO, 5%, SiO, 4%, MnO
,2%, ZnO, 25%, Cr0.05%, remainder Aj2
A ff-Mg alloy is used. This is because grain boundary steps are created in the conventional technique based on the crystal structure shown in FIG.

この溶湯を第1図の横形の鋳型(1)の黒鉛内面の抵抗
加熱方式のヒータ(2)を有する高さ5薗、幅100m
mの型孔(3)内にその開口側をホルダ(4)で閉じて
注入し、その加熱温度を750°Cに維持し、ホルダ(
4)に冷却水バイブ(5)を通じて冷却水を循環させ、
その側から冷却して凝固を開始させながら鋳型(1)と
ホルダ(4)とを相対的に0.5mm/分の相対速度で
横方向に離隔移動させることにより溶湯をホルダ(4)
から一方向に凝固させることを継続しながらホルダ(4
)により鋳型(1)から鋳塊として引抜き、全長にわた
り一方向凝固組織の鋳造素材を得た。得られた素材は集
合組織エッチビット法により調べた結果、はぼ<100
 >に結晶粒が成長していることを確認した。
This molten metal is then placed in the horizontal mold (1) shown in Figure 1, which has a graphite inner surface and a resistance heating type heater (2).
The opening side of the mold hole (3) is closed with a holder (4), and the heating temperature is maintained at 750°C.
4) circulate the cooling water through the cooling water vibrator (5),
The molten metal is transferred to the holder (4) by moving the mold (1) and the holder (4) apart laterally at a relative speed of 0.5 mm/min while cooling and starting solidification from that side.
Holder (4) while continuing to solidify in one direction from
) was pulled out as an ingot from the mold (1) to obtain a cast material with a unidirectionally solidified structure over the entire length. The obtained material was examined by the texture etch bit method, and it was found that the texture was <100
It was confirmed that crystal grains were growing.

(II)第2工程 得られた鋳造素材に粗切削加工を施して厚さ4胴、径9
5胴の所定の形状精度を有する円板状の素材を製作した
(II) Second step The obtained casting material is roughly cut to a thickness of 4 mm and a diameter of 9 mm.
A disk-shaped material with a predetermined shape accuracy of 5 cylinders was manufactured.

(III)第3工程 この素板の表面をダイヤモンドバイトを用い448 m
/分の切削速度で鏡面加工を行って仕上げ、磁気ディス
ク基板を製作した。
(III) Third step The surface of this blank plate was cut by 448 m using a diamond tool.
A magnetic disk substrate was manufactured by performing mirror finishing at a cutting speed of /min.

(IV)ディスク基板の組織及び表面粗さ得られたディ
スク基板の表面粗さをタリサーフ、クリステツブで測定
したが、粒界段差は測定できないほど小さいものであっ
た。そこで、光学式粗さ計を用いて測定した。その結果
を第2図に示す。粒界段差は図中記入のように約8nm
(0,008μm)で、従来技術の到達限界の2/10
0μmより顕著に小さい、第2図中のG、B、は結晶粒
界の位置を示す。第3図の写真は第2図と同じ測定個所
の結晶組織を示し、GBは対応する。
(IV) Structure and surface roughness of disk substrate The surface roughness of the obtained disk substrate was measured using Talysurf and Cristeb, but the grain boundary step was so small that it could not be measured. Therefore, an optical roughness meter was used to measure the roughness. The results are shown in FIG. The grain boundary step is approximately 8 nm as shown in the figure.
(0,008 μm), which is 2/10 of the limit achieved by conventional technology.
G and B in FIG. 2, which are significantly smaller than 0 μm, indicate the positions of grain boundaries. The photograph in FIG. 3 shows the crystal structure at the same measurement location as in FIG. 2, and GB corresponds.

第2図は第3図の矢印の方向にスキャンして得たもので
ある。また得られた基板の表面粗さは0.010〜0.
020 μm Rmaxの範囲に入り、従来技術の限界
を超えていることが確認された。
FIG. 2 was obtained by scanning in the direction of the arrow in FIG. 3. Moreover, the surface roughness of the obtained substrate was 0.010 to 0.0.
It was confirmed that it fell within the range of 0.020 μm Rmax and exceeded the limits of the conventional technology.

(V)変形例 前記第1工程は特公昭55−46265号記載の方法に
準じても実施することができる。第4図において上記と
同じ組成のA 1−Mg合金の溶湯をタンデイツシュ(
6)からそれに接続した溶湯の凝固温度とほぼ同じ温度
に加熱した水平鋳型(7)の高さ5M、幅50mmの黒
鉛の型孔に注ぎ、−力比口側の板表面にノズル(8)か
ら冷却水を噴霧することにより一方向凝固させながら鋳
造素材をダミーバー(9)、ピーンチロールqωにより
引抜いてゆくことにより一方向凝固鋳造素材をつくる。
(V) Modification The first step can also be carried out according to the method described in Japanese Patent Publication No. 55-46265. In Fig. 4, a molten metal of A1-Mg alloy having the same composition as above is poured into a tundish (
6) into a graphite mold hole with a height of 5M and a width of 50mm in a horizontal mold (7) heated to approximately the same temperature as the solidification temperature of the molten metal connected to it, and a nozzle (8) on the plate surface on the -force ratio mouth side. A unidirectionally solidified casting material is produced by unidirectionally solidifying the casting material by spraying cooling water thereon and pulling it out using a dummy bar (9) and a pinch roll qω.

鋳型の型孔の全外周にヒータ(11)を設けて全体を6
60°Cに保温している。合金溶湯温度は690°Cで
あり、出口側での冷却水は1.542/分で供給し、引
抜速度を40柵/分とした。この条件により、得られた
鋳造素材は組織調査の結果、一方向凝固組織となり、結
晶粒の成長方向はほぼ<100>であることを確認した
A heater (11) is provided around the entire outer periphery of the mold hole, and the entire mold is heated to 6.
It is kept warm at 60°C. The temperature of the molten alloy was 690°C, the cooling water on the outlet side was supplied at a rate of 1.542/min, and the drawing speed was 40 bars/min. Under these conditions, the resulting cast material was found to have a unidirectionally solidified structure, and the crystal grain growth direction was approximately <100>.

第2工程および第3工程を前記と同様な条件で実施した
結果、得られた厚さ4胴、径45@mのディスク基板は
、表面粗さは0.018 μm Rmaxで、粒界段差
は5〜10nmの範囲であった。
As a result of performing the second and third steps under the same conditions as above, the obtained disk substrate with a thickness of 4 cylinders and a diameter of 45@m has a surface roughness of 0.018 μm Rmax and a grain boundary step. It was in the range of 5 to 10 nm.

(発明の効果) 本発明方法によると、従来技術に較べて少ない工程で表
面粗さの小さい面記憶密度を高くすることのできるディ
スク基板を得ることができ、しかもその超鏡面加工はダ
イヤモンド工具切削加工で足り特殊な研磨工程の付加を
要しない等の効果を得ることができる。
(Effects of the Invention) According to the method of the present invention, a disk substrate with a small surface roughness and a high areal memory density can be obtained with fewer steps than the conventional technique, and its ultra-mirror finishing can be achieved by cutting with a diamond tool. Effects such as machining is sufficient and no special polishing process is required.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の第1工程の実施状況を示す装置の
縦断側面図、第2図は本発明方法によって得たディスク
基板の光学式粗さ計による測定結果を示す図表、第3図
はその表面の結晶組織写真図、第4図は本発明方法の第
1工程の変形実施状況を示す装置の縦断側面図、第5図
(イ)は従来技術の第1工程の略示図、第5図(ロ)は
その第3工程の略示図、第5図(ハ)はその第4工程の
略示図、第5図(ニ)はその第5工程の略示図、第6図
は従来技術による磁気ディスク基板の結晶組織写真図、
第7図は従末技術の磁気ディスク基板の面記憶密度およ
び浮上高さの経年傾向図、第8図はその浮上高さを示す
図である。 (1)・・・鋳型、(2)・・・ヒータ、(3)・・・
型孔、(4)・・・ホルダ、(5)・・・冷却水パイプ
、(6)・・・タンデイツシュ、(7)・・・鋳型、(
8)・・・ノズル、(9)・・・ダミーバー、00)・
・・ピンチロール、(I卜・・ヒータ、(a)・・・溶
湯、(b)・・・鋳塊素材、(C)・・・鋳型、(d)
・・・柱状晶、(e)・・・インゴット、(f)・・・
薄板、(縛・・・円板、(M)・・・磁気ヘッド、(H
)・・・浮上高さ、(i)・・・ディスク。 茄3図 蔀6ン1
Fig. 1 is a longitudinal cross-sectional side view of an apparatus showing the implementation status of the first step of the method of the present invention, Fig. 2 is a chart showing the measurement results of a disk substrate obtained by the method of the present invention using an optical roughness meter, and Fig. 3 4 is a longitudinal cross-sectional side view of the device showing a modified state of implementation of the first step of the method of the present invention, and FIG. 5 (a) is a schematic diagram of the first step of the prior art. FIG. 5(b) is a schematic diagram of the third step, FIG. 5(c) is a schematic diagram of the fourth step, FIG. 5(d) is a schematic diagram of the fifth step, and FIG. The figure is a photographic diagram of the crystal structure of a magnetic disk substrate according to the conventional technology.
FIG. 7 is a graph showing trends over time in areal storage density and flying height of magnetic disk substrates according to the prior art, and FIG. 8 is a graph showing the flying height. (1)...Mold, (2)...Heater, (3)...
Mold hole, (4)...Holder, (5)...Cooling water pipe, (6)...Tandish, (7)...Mold, (
8)... Nozzle, (9)... Dummy bar, 00)
...pinch roll, (I.. heater, (a) ... molten metal, (b) ... ingot material, (C) ... mold, (d)
... Columnar crystal, (e) ... Ingot, (f) ...
Thin plate, (bound...disk, (M)...magnetic head, (H
)... Flying height, (i)... Disk. 3 eggplants 6 in 1

Claims (1)

【特許請求の範囲】[Claims] 所定組成のアルミニウム合金溶湯から一方向凝固組織を
有する鋳造素材を作成し、この鋳造素材から切出し加工
により所定の形状精度を有する素板をつくり、該素板に
超鏡面切削加工を施して仕上げることからなる3工程に
より、表面粗さが0.02μmR_m_a_xより小さ
いディスク基板を製造することを特徴とする超鏡面ディ
スクの製造法。
A casting material having a unidirectional solidification structure is created from a molten aluminum alloy of a predetermined composition, a blank plate having a predetermined shape accuracy is made by cutting from the casting blank, and the blank plate is finished by performing ultra-mirror cutting. A method for manufacturing a super-mirrored disk, characterized in that a disk substrate having a surface roughness of less than 0.02 μmR_m_a_x is manufactured through three steps consisting of the following steps.
JP21317688A 1988-08-26 1988-08-26 Production of ultra-specular surface disk Pending JPH0261826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21317688A JPH0261826A (en) 1988-08-26 1988-08-26 Production of ultra-specular surface disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21317688A JPH0261826A (en) 1988-08-26 1988-08-26 Production of ultra-specular surface disk

Publications (1)

Publication Number Publication Date
JPH0261826A true JPH0261826A (en) 1990-03-01

Family

ID=16634803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21317688A Pending JPH0261826A (en) 1988-08-26 1988-08-26 Production of ultra-specular surface disk

Country Status (1)

Country Link
JP (1) JPH0261826A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5248662A (en) * 1991-01-31 1993-09-28 Sumitomo Electric Industries Laser ablation method of preparing oxide superconducting films on elongated substrates

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5248662A (en) * 1991-01-31 1993-09-28 Sumitomo Electric Industries Laser ablation method of preparing oxide superconducting films on elongated substrates

Similar Documents

Publication Publication Date Title
JPS58192656A (en) Manufacture of metallic casting and supporter used for said method
JPH0261826A (en) Production of ultra-specular surface disk
JPH02165849A (en) Cooling roll for reducing twin roll type rapidly cooled strip
JP2002069623A (en) Co-Cr-Pt-B BASED TARGET AND MAGNETIC RECORDING MEDIUM
US5144999A (en) Apparatus for making amorphous metal strips
JPS5857260B2 (en) Method for manufacturing ribbon-shaped sendust alloy
JPH02209439A (en) Manufacture of precision member having mirror-like surface
JPS60194050A (en) Production of aluminum alloy substrate for magnetic disk
JPH0264502A (en) Production of precision member having specular surface
JPS6072649A (en) Producing apparatus for quickly cooled light-gauge metallic strip
JP2002059245A (en) Rapidly cooling roll for producing rare earth metal base alloy
JPH01501455A (en) Apparatus and method for continuously casting steel slabs
JPH108243A (en) Production of low permeability sputtering cobalt base target material for magnetic recording medium
JP2003503205A (en) Mold disk manufactured by centrifugal casting
JPS61120350A (en) Production of magnetic recording medium
JPH05277657A (en) Method for controlling inclined angle of columnar crystal structure in cast strip in twin roll casting
CA1178181A (en) Method of making permanent magnets and product
JPH03151141A (en) Method for producing slow cooled thin strip in rare earth metal series anisotropy magnetic material
JPH0366455A (en) Cooling drum for continuous casting apparatus for cast strip
JPH0225215A (en) Finish working method for rolling material and blank material for magnetic disk obtained by using the method
JPS5937706B2 (en) Nozzle for amorphous metal production
JP2001262327A (en) Sputtering target material for forming magnetic recording medium and magnetic recording medium
JPH02247308A (en) Method and device for adjusting outer peripheral surface of cooling drum for manufacturing nd alloy flake
JPH01138618A (en) Production of magnetic disk substrate
CN115780778A (en) Method for controlling mixed crystal defects of abrupt cross section of single crystal high temperature alloy casting through secondary orientation