JPH0261525B2 - - Google Patents

Info

Publication number
JPH0261525B2
JPH0261525B2 JP61246762A JP24676286A JPH0261525B2 JP H0261525 B2 JPH0261525 B2 JP H0261525B2 JP 61246762 A JP61246762 A JP 61246762A JP 24676286 A JP24676286 A JP 24676286A JP H0261525 B2 JPH0261525 B2 JP H0261525B2
Authority
JP
Japan
Prior art keywords
fluidized bed
heat treatment
cooling
temperature
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61246762A
Other languages
Japanese (ja)
Other versions
JPS63100124A (en
Inventor
Suetsugi Kitamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIMIZU DENSETSU KOGYO KK
Original Assignee
SHIMIZU DENSETSU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIMIZU DENSETSU KOGYO KK filed Critical SHIMIZU DENSETSU KOGYO KK
Priority to JP24676286A priority Critical patent/JPS63100124A/en
Publication of JPS63100124A publication Critical patent/JPS63100124A/en
Publication of JPH0261525B2 publication Critical patent/JPH0261525B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は高速度鋼の焼入れ恒温熱処理を非酸化
性雰囲気中で能率良く行なうことのできる熱処理
装置に関するものである。 [従来の技術] 高速度鋼の焼入れ処理に当たつては一旦加熱し
た鋼材を所定の温度に保持した冷却炉に投入して
冷却する必要がある。ここで採用される冷却方式
としては真空炉で行なう加圧ガス冷却方式と水、
油あるいは塩浴等による液体冷却方式がある。前
者は非酸化性雰囲気で冷却を行なうものである為
鋼材表面を酸化させることがないという長所を有
するが、冷却能力が低いので急速冷却が困難であ
り焼入れ時の急冷処理に不向であるという欠点が
ある。一方水・油焼入れや塩浴焼入れの場合は急
冷処理が可能であり、焼入れ時の冷却手段として
主流を占めているが、通常は大気中で行なわれる
為鋼材の表面酸化、油煙発生、塩浴から発生する
塩化水素等による環境汚染等の問題がある。 一方複雑な形状の工具、金型、治具等の熱処理
に際しては形状効果に伴う焼割れや歪等が発生し
易く、これらの防止対策として恒温変態処理が行
なわれている。この恒温変態処理においては、高
温焼戻油、溶融鉛、溶融塩等が熱媒体として使用
されるが、この場合も処理環境が大気中である為
浴温度が高い分だけ上述の水・油焼入れや塩浴焼
入れ時の問題が増幅されて発生する他、鉛公害、
高温多湿による作業環境の悪化等の問題も発生
し、処理方法の改善が強く望まれている。上述の
恒温変態処理に限らず、一般に焼鈍、焼入れ、焼
戻し、焼準などの処理においても同様の問題があ
る。 [発明が解決しようとする問題点] 本発明はこうした事情に着目してなされたもの
であつて、下記の要請に答え得る様な熱処理装置
を提供しようとするものである。 焼入れ及び恒温変態処理のいずれにおいても
良好な処理効果を得ようとすれば所定温度まで
速やかに冷却する必要がある。即ち所定の冷却
スピード、殊に加圧ガス冷却に比べて早く、油
冷却等と同等の冷却スピードを得ることが必要
となる。 処理に際して鋼材表面が酸化されるのを防止
しようとすれば非酸化性雰囲気下における冷却
処理が不可欠である。 有害物質や有害ガスの発生がなく作業環境悪
化や公害の恐れがない。 自動制御が可能で安全に且つ低コストで冷却
処理を行なうことができる。 [問題点を解決する為の手段] しかして上記課題を解決した本発明の熱処理装
置は高速度鋼の恒温熱処理に使用される熱処理装
置であつて、セラミツク微粒子流動床を、不活性
ガス雰囲気の密閉可能容器内に形成すると共に、
前記流動床を隔壁によつて被処理品収納部流動床
と温度制御部流動床に分割し、該温度制御部流動
床にはヒーターと水冷管からなる温度制御手段を
設けると共に、ノズル口を下向きにした不活性ガ
ス噴出ノズルを配設し、さらに前記被処理品収納
部流動床の下部には該流動床内のセラミツク微粒
子を上方へ移動させるガス吹出口を設け、前記セ
ラミツク微粒子を上記温度制御部流動床と被処理
品収納部流動床との間で循環流動させることによ
つて前記セラミツク微粒子流動床の均熱化を図る
様に構成した点に要旨を有するものである。 [作用] 本発明者等は、前記要請に答え得る様な熱媒体
を見出すべくかねてより研究を重ねてきた。まず
熱伝達率の面から考えるとガス体よりも液体の方
が有利であり早い冷却スピードを得られるが、液
体の場合には蒸散、浸炭、脱炭及び熔着という現
象を防止することができず、前述の不都合が生じ
る。しかしながらガス体では熱媒体としての密度
が小さく例え加圧したとしても液体に匹敵し得る
熱伝達率を得ることができない。 そこで本発明者等は固体殊に高温の被熱処理品
と接触しても物理的及び化学的に変化をきたさな
い耐熱性を有し且つ不活性な固体に着目し、これ
を熱媒体として利用することを検討した。即ち固
体の熱伝達率は液体と同程度に高く高速冷却も不
可能ではない。また液体では避けられなかつた蒸
散という現象も固体媒体では回避することができ
る。しかしながら固体の場合は被処理品(以下ワ
ークという)に対して如何に緊密に固体媒体を接
触させワークと固体媒体との間の熱伝達を効率良
く行なうかという問題がある。また大きな固体媒
体であると熱容量が大き過ぎるという問題もあ
り、且つワークとの全面接触を保証する必要もあ
るので小さな固体媒体を多数流動床状態にして使
用するということが考えられたが、このときは固
体媒体同士間の熱伝達についても配慮を払わなけ
ればならない。これらの点について更に研究を重
ねた結果、本発明者は耐熱・不活性固体の微粒子
代表的にはセラミツク微粒子を熱媒体として選択
するという結論に至つた。そして本発明ではセラ
ミツク微粒子(以下単に固体微粒子という)を熱
媒体として使用する熱処理装置について検討し、
前記構成で示される熱処理装置を完成したのであ
る。 即ち本発明装置は、非酸化性雰囲気下での熱処
理を達成する為の密閉可能容器内に固体微粒子を
収納すると共に、該容器内をN2等の不活性ガス
で置換することによりワークの表面酸化を防止す
ることに成功したのである。又固体微粒子はワー
クの冷却を速やかに且つ均一に進行させる為に流
動床を形成しており、冷却された固体微粒子が絶
えずワークの全面に接触することとなり速やかな
冷却が行なわれる。尚固体微粒子流動床を形成さ
せる手段として、本発明では後に詳述する様に、
雰囲気ガスと同じN2等の不活性ガスを固体微粒
子貯留部内に隔壁を介して上方向および下方向に
噴射させて該噴射ガスによつて循環流動させ、流
動床の均熱化を図つた。さらに本発明装置では固
体微粒子流動床の温度を所定の温度に維持する為
にヒーターと水冷管からなる温度制御手段を流動
床の上記隔壁外側に配設しており、、流動床の過
昇温あるいは過冷却を防止している。尚冷却速度
即ち奪熱速度については固体微粒子流動循環速度
を制御することによつて調整することができ、例
えば不活性ガスの噴出速度を変化させることによ
り調整は可能となる。 本発明装置において使用される固体微粒子とし
ては前述の通り物理的及び化学的に安定で耐熱性
を有するものであれば特に制限はないが、代表的
にはAl2O3、SiC、ZrO2、BeO等のセラミツクス
の微粒子が挙げられ、又その粒度分布は40〜120
メツシユ程度にピークを有するものが望ましい。
固体→微粒子の種類によつて若干の変動はある
が、該微粒子の粒度分布におけるピークが120メ
ツシユ未満の場合は粒度が小さすぎる為に流動状
態が悪化する。一方ピーク粒度が40メツシユを超
える場合は固体微粒子と被処理品あるいは固体微
粒子同士の間の隙間が大きくなり熱伝達が悪化し
て所望の冷却スピードを得ることが困難となる。 [実施例] 第1図は本発明実施例の熱処理装置を示す断面
説明図で、熱処理装置1は大きく分けて加熱室
A、予備室B、恒温室Cの3つに区分されてい
る。加熱室AはワークWを焼入温度まで加熱する
部分であつて、耐火壁2に囲まれた空間A′にヒ
ーター3を配設してなり、下部耐火壁2aは加熱
室Aと予備室Bを気密状態に区画する中間扉4と
一体的に形成されている。又耐火壁2の上部には
ラツクピニオン機構によつて上下に摺動する吊下
げバー5が配設されている。次に予備室Bは図面
左側に予備室扉6を有すると共に図面右側に懐状
の小室7を設け、小室7には中間扉4を矢印方向
に進退(開閉)させる為のシリンダー8が取付け
られている。又予備室BにはワークWを載置する
受け台9が配設され、受け台9は、小室7に設け
たシリンダー10で連結軸11を回転させること
によつて予備室B内で退避し得る様に構成されて
いる。さらに恒温室Cは予備室Bと区切ることな
く形成され、ワークW収納部の両側に隔壁12
a,12bを設けると共に、隔壁12a,12b
と恒温槽壁13a,13bに挟まれる空間部には
水冷管14、ヒーター15、不活性ガス噴射ノズ
ル16を配設しており、且つ恒温槽C内には隔壁
12a,12bや水冷管14等が浸漬される様に
セラミツク微粒子を装填している。 ワークWの熱処理に当たつては、まず予備室扉
6を開放し、予備室B内の受け台9上にワークW
を配置した後、予備室扉6を閉鎖し、真空ポンプ
Pによつて室内の空気を排気する。予備室B内の
圧力が加熱室Aの圧力と同一になつたところでシ
リンダー8を後退させて中間扉4を開放し、ラツ
クピニオン機構により吊下げバー5を降下させて
ワークWを把持し、吊上げて加熱室AへワークW
を移送した後中間扉4を閉鎖し、所定の焼入温度
まで加熱する。他方恒温槽Cにおいては水冷管1
4及びヒーター15により恒温槽C内のセラミツ
ク微粒子温度を調整し、所定の温度に到達したら
真空ポンプPによる排気を停止し、恒温槽C下部
のガス吹出口17及び第1図の如くノズル口を下
向きにした噴射ノズル16より槽内に不活性ガス
を上方向および下方向に吹込み、前記隔壁12
a,12bと恒温槽壁13b,13bに挟まれる
空間部に形成される流動床と、前記ワーク収納部
に形成される流動床とが循環流動する様にされ、
セラミツクス微粒子層(流動床)の均熱化を図
る。尚予備室Bには圧力調整弁18を介設した抜
出し管19が付設され、恒温槽内を所定の圧力に
調整しつつ不活性ガスの排出を行なう。そして加
熱室Aにおける焼入加熱保持が終了すると、不活
性ガスの導入により加熱室Aと予備室Bの圧力が
等しくなつた時点で中間扉4を開放すると共にシ
リンダー8を作動させて受け台9を退避させ、吊
下げバー5を降下させてワークWを恒温槽C内の
セラミツク微粒子流動床へ投入する。こうして焼
入れあるいは恒温変態処理を行なう。 上記操業方法に従い第2図に示す寸法のワーク
(材質SKH51)の熱処理を行なつた。尚ワークの
中央孔部には直径3.2mm〓、長さ3mのシース型熱
電対を挿入し温度変化を記録した。熱処理パター
ンは第3図に示す通りであり、1160℃で10分間加
熱した後300℃まで急冷し同温度で5時間保持し
て恒温変態処理を行ない空冷した。その後550℃
×4時間の熱処理を2回繰返して焼戻しを行なつ
た。恒温変態処理後の硬度及び焼戻し硬度は下記
の通りであつた。恒温変態処理時における1160℃
から550℃までの冷却時間は1分30秒(平均)で
あつた。 恒温変態処理後の硬度 HRC 54〜55 焼戻し後の硬度 HRC 63〜64 又本実施例データからセラミツク微粒子流動床
による冷却性能を求め、他の冷却手段によるとき
の冷却性能と比較したところ第1表に示す結果が
得られた。又該冷却性能の比較結果をグラフ化す
ると第4図が得られた。
[Industrial Application Field] The present invention relates to a heat treatment apparatus that can efficiently perform constant temperature quenching heat treatment of high-speed steel in a non-oxidizing atmosphere. [Prior Art] In quenching high-speed steel, it is necessary to cool the steel by placing it in a cooling furnace maintained at a predetermined temperature. The cooling methods used here include pressurized gas cooling in a vacuum furnace and water,
There are liquid cooling methods using oil or salt baths. The former has the advantage of not oxidizing the steel surface because it is cooled in a non-oxidizing atmosphere, but its low cooling capacity makes rapid cooling difficult, making it unsuitable for rapid cooling during quenching. There are drawbacks. On the other hand, in the case of water/oil quenching and salt bath quenching, rapid cooling treatment is possible and is the mainstream cooling method during quenching, but since it is usually carried out in the atmosphere, surface oxidation of the steel material, oil smoke generation, and salt bathing can occur. There are problems such as environmental pollution due to hydrogen chloride etc. generated from On the other hand, when heat treating tools, molds, jigs, etc. with complex shapes, quench cracking, distortion, etc. are likely to occur due to the shape effect, and constant temperature transformation treatment is performed as a measure to prevent these. In this isothermal transformation treatment, high-temperature tempering oil, molten lead, molten salt, etc. are used as heating media, but in this case as well, the treatment environment is in the air, so the water/oil quenching described above is used to compensate for the high bath temperature. In addition to amplifying problems during salt bath quenching, lead pollution,
Problems such as deterioration of the working environment due to high temperature and humidity have also occurred, and there is a strong desire for improvement in processing methods. Similar problems occur not only in the above-mentioned isothermal transformation treatment but also in general treatments such as annealing, hardening, tempering, and normalizing. [Problems to be Solved by the Invention] The present invention has been made in view of these circumstances, and aims to provide a heat treatment apparatus that can meet the following requirements. In both quenching and isothermal transformation treatments, it is necessary to quickly cool the material to a predetermined temperature in order to obtain good treatment effects. That is, it is necessary to obtain a predetermined cooling speed, especially a cooling speed that is faster than pressurized gas cooling and equivalent to oil cooling. In order to prevent the steel surface from being oxidized during treatment, cooling treatment in a non-oxidizing atmosphere is essential. There is no generation of harmful substances or gases, and there is no risk of deterioration of the working environment or pollution. Automatic control is possible, and cooling processing can be performed safely and at low cost. [Means for Solving the Problems] The heat treatment apparatus of the present invention that solves the above problems is a heat treatment apparatus used for isothermal heat treatment of high-speed steel, and is a heat treatment apparatus that processes a ceramic fine particle fluidized bed in an inert gas atmosphere. Formed in a sealable container and
The fluidized bed is divided by a partition wall into a fluidized bed in a storage part for the processed material and a fluidized bed in a temperature control part, and the fluidized bed in the temperature control part is provided with a temperature control means consisting of a heater and a water cooling pipe, and the nozzle opening is directed downward. An inert gas ejection nozzle is disposed at the bottom of the fluidized bed in the article storage section, and a gas outlet is provided at the bottom of the fluidized bed for moving the ceramic fine particles in the fluidized bed upward. The main feature is that the ceramic particulate fluidized bed is configured to be heated uniformly by circulating the fluidized bed between the part fluidized bed and the workpiece storage part fluidized bed. [Function] The present inventors have been conducting research for some time in order to find a heat medium that can meet the above requirements. First of all, from the standpoint of heat transfer coefficient, liquids are more advantageous than gases and can provide faster cooling speed, but liquids can prevent the phenomena of transpiration, carburization, decarburization, and welding. However, the above-mentioned inconvenience occurs. However, a gas body has a low density as a heat medium, and even if it is pressurized, it is not possible to obtain a heat transfer coefficient comparable to that of a liquid. Therefore, the present inventors focused on solids, especially heat-resistant and inert solids that do not physically or chemically change even when they come into contact with high-temperature heat-treated products, and used this as a heat medium. I considered it. That is, the heat transfer coefficient of a solid is as high as that of a liquid, and rapid cooling is not impossible. In addition, the phenomenon of evaporation, which cannot be avoided with liquids, can be avoided with solid media. However, in the case of a solid medium, there is a problem in how closely the solid medium can be brought into contact with the workpiece (hereinafter referred to as the workpiece) to efficiently transfer heat between the workpiece and the solid medium. There is also the problem that large solid media have too large a heat capacity, and it is also necessary to ensure full contact with the workpiece, so it was considered to use a large number of small solid media in a fluidized bed state. In some cases, consideration must also be given to heat transfer between solid media. As a result of further research on these points, the present inventor came to the conclusion that heat-resistant, inert solid particles, typically ceramic particles, should be selected as the heating medium. In the present invention, we have studied a heat treatment apparatus that uses ceramic fine particles (hereinafter simply referred to as solid fine particles) as a heat medium.
A heat treatment apparatus having the above configuration was completed. That is, the apparatus of the present invention stores fine solid particles in a sealable container to achieve heat treatment in a non-oxidizing atmosphere, and replaces the inside of the container with an inert gas such as N 2 to clean the surface of the workpiece. They succeeded in preventing oxidation. In addition, the solid particles form a fluidized bed in order to rapidly and uniformly cool the workpiece, and the cooled solid particles constantly come into contact with the entire surface of the workpiece, resulting in rapid cooling. In addition, as a means for forming a solid fine particle fluidized bed, in the present invention, as described in detail later,
An inert gas such as N 2 or the like, which is the same as the atmospheric gas, was injected upward and downward into the solid particulate storage section through the partition wall, and the injected gas was used to circulate and flow the fluidized bed to equalize the temperature of the fluidized bed. Furthermore, in the apparatus of the present invention, in order to maintain the temperature of the solid particulate fluidized bed at a predetermined temperature, a temperature control means consisting of a heater and a water-cooled pipe is disposed outside the partition wall of the fluidized bed. Or it prevents overcooling. The cooling rate, that is, the heat removal rate, can be adjusted by controlling the flow circulation rate of solid fine particles, for example, by changing the jetting rate of the inert gas. The solid particles used in the apparatus of the present invention are not particularly limited as long as they are physically and chemically stable and heat resistant as described above, but typical examples include Al 2 O 3 , SiC, ZrO 2 , Examples include fine particles of ceramics such as BeO, and the particle size distribution is 40 to 120.
It is desirable to have a peak at the mesh level.
There is some variation depending on the type of solid → fine particles, but if the peak in the particle size distribution of the fine particles is less than 120 mesh, the particle size is too small and the fluidity condition deteriorates. On the other hand, if the peak particle size exceeds 40 meshes, the gap between the solid fine particles and the object to be treated or between the solid fine particles becomes large and heat transfer deteriorates, making it difficult to obtain the desired cooling speed. [Embodiment] FIG. 1 is a cross-sectional explanatory diagram showing a heat treatment apparatus according to an embodiment of the present invention, and the heat treatment apparatus 1 is roughly divided into three parts: a heating chamber A, a preliminary chamber B, and a constant temperature chamber C. The heating chamber A is a part where the work W is heated to the quenching temperature, and a heater 3 is arranged in a space A' surrounded by a fireproof wall 2. It is integrally formed with an intermediate door 4 that partitions the area in an airtight manner. Further, a hanging bar 5 is disposed at the upper part of the fireproof wall 2 and is slidable up and down by a rack and pinion mechanism. Next, the preliminary chamber B has a preliminary chamber door 6 on the left side of the drawing, and a pocket-shaped small chamber 7 on the right side of the drawing, and a cylinder 8 is attached to the small chamber 7 for moving the intermediate door 4 forward and backward (opening and closing) in the direction of the arrow. ing. Further, a pedestal 9 on which a workpiece W is placed is arranged in the auxiliary chamber B, and the pedestal 9 is retracted in the auxiliary chamber B by rotating a connecting shaft 11 with a cylinder 10 provided in the small chamber 7. It is structured so that you can get Furthermore, the thermostatic chamber C is formed without being separated from the preliminary chamber B, and there are partition walls 12 on both sides of the work W storage area.
a, 12b are provided, and partition walls 12a, 12b are provided.
A water-cooled pipe 14, a heater 15, and an inert gas injection nozzle 16 are arranged in the space sandwiched between the constant-temperature chamber C and the walls 13a and 13b. Ceramic particles are loaded so that they are immersed. When heat-treating the workpiece W, first open the preliminary chamber door 6 and place the workpiece W on the pedestal 9 in the preliminary chamber B.
After arranging the preliminary chamber door 6, the vacuum pump P exhausts the air in the room. When the pressure in the preliminary chamber B becomes the same as the pressure in the heating chamber A, the cylinder 8 is moved back, the intermediate door 4 is opened, and the hanging bar 5 is lowered by the rack and pinion mechanism to grasp the workpiece W and lift it up. Workpiece W to heating chamber A
After transferring, the intermediate door 4 is closed and heated to a predetermined quenching temperature. On the other hand, in thermostatic chamber C, water cooling pipe 1
4 and heater 15 to adjust the temperature of the ceramic fine particles in the thermostatic chamber C. When the temperature reaches a predetermined temperature, the exhaust by the vacuum pump P is stopped, and the gas outlet 17 at the bottom of the thermostatic chamber C and the nozzle opening as shown in Fig. 1 are adjusted. Inert gas is blown upward and downward into the tank from the downward facing injection nozzle 16, and the partition wall 12 is
a, 12b and the constant temperature chamber walls 13b, 13b, the fluidized bed formed in the space between them and the workpiece storage section is configured to circulate and flow,
Aims to equalize the temperature of the ceramic fine particle bed (fluidized bed). An extraction pipe 19 with a pressure regulating valve 18 interposed therein is attached to the preliminary chamber B, and the inert gas is discharged while adjusting the pressure inside the thermostatic chamber to a predetermined value. When the quenching heating and holding in the heating chamber A is completed, the pressure in the heating chamber A and the preparatory chamber B are equalized by the introduction of inert gas, and the intermediate door 4 is opened and the cylinder 8 is activated. is evacuated, the hanging bar 5 is lowered, and the workpiece W is put into the ceramic fine particle fluidized bed in the thermostatic chamber C. In this way, quenching or isothermal transformation treatment is performed. A workpiece (material: SKH51) having the dimensions shown in FIG. 2 was heat treated according to the above operating method. A sheathed thermocouple with a diameter of 3.2 mm and a length of 3 m was inserted into the central hole of the workpiece to record temperature changes. The heat treatment pattern was as shown in FIG. 3. After heating at 1160°C for 10 minutes, the sample was rapidly cooled to 300°C, held at the same temperature for 5 hours, and subjected to isothermal transformation treatment, followed by air cooling. then 550℃
The heat treatment for 4 hours was repeated twice to perform tempering. The hardness and tempering hardness after constant temperature transformation treatment were as follows. 1160℃ during constant temperature transformation treatment
The cooling time from 1 to 550°C was 1 minute and 30 seconds (average). Hardness after isothermal transformation treatment: HRC 54-55 Hardness after tempering: HRC 63-64 In addition, the cooling performance of the ceramic fine particle fluidized bed was determined from the data of this example, and compared with the cooling performance of other cooling means, as shown in Table 1. The results shown are obtained. Furthermore, when the comparison results of the cooling performance were graphed, FIG. 4 was obtained.

【表】 第1表並びに第4図に示す様に、本発明装置に
よるセラミツク微粒子流動床では、油浴あるいは
塩浴に近い冷却性能を得ることができた。 [発明の効果] 本発明は以上の様に構成されており、不活性ガ
ス雰囲気中で熱処理を行なうので被処理品が酸
化・変色等を起こすことがなく、且つセラミツク
微粒子流動床を利用することにより油浴あるいは
塩浴等と同等の冷却性能を得ることができる。
[Table] As shown in Table 1 and FIG. 4, the ceramic fine particle fluidized bed manufactured by the apparatus of the present invention was able to obtain cooling performance close to that of an oil bath or a salt bath. [Effects of the Invention] The present invention is constructed as described above, and since the heat treatment is carried out in an inert gas atmosphere, the product to be treated does not undergo oxidation or discoloration, and a ceramic fine particle fluidized bed is used. It is possible to obtain cooling performance equivalent to that of an oil bath or a salt bath.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例装置を示す断面説明図、
第2図はワークの形状を示す正面図及び側面図、
第3図は熱処理スケジユールを示すグラフ、第4
図は各種熱媒体の冷却性能比較グラフである。 1……熱処理装置、2……耐火壁、3……ヒー
ター、4……中間扉、6……予備室扉、7……小
室、8……シリンダー、9……受け台、11……
連結軸、12……隔壁、13……恒温槽、14…
…水冷管、15……ヒーター、16……噴射ノズ
ル、A……加熱室、B……予備室、C……恒温
室。
FIG. 1 is a cross-sectional explanatory diagram showing an apparatus according to an embodiment of the present invention;
Figure 2 is a front view and side view showing the shape of the workpiece,
Figure 3 is a graph showing the heat treatment schedule; Figure 4 is a graph showing the heat treatment schedule;
The figure is a graph comparing the cooling performance of various heat media. 1...Heat treatment equipment, 2...Fireproof wall, 3...Heater, 4...Intermediate door, 6...Preliminary room door, 7...Small room, 8...Cylinder, 9...Pass, 11...
Connection shaft, 12... Partition wall, 13... Constant temperature chamber, 14...
...Water cooling pipe, 15...Heater, 16...Injection nozzle, A...Heating chamber, B...Preliminary room, C...Thermostatic chamber.

Claims (1)

【特許請求の範囲】[Claims] 1 高速度鋼における焼入れ時の恒温熱処理に使
用される熱処理装置であつて、セラミツク微粒子
流動床を、不活性ガス雰囲気の密閉可能容器内に
形成すると共に、前記流動床を隔壁によつて被処
理品収納部流動床と温度制御部流動床に分割し、
該温度制御部流動床にはヒーターと水冷管からな
る温度制御手段を設けると共に、ノズル口を下向
きにした不活性ガス噴出ノズルを配設し、さらに
前記被処理品収納部流動床の下部には該流動床内
のセラミツク微粒子を上方へ移動させるガス吹出
口を設け、前記セラミツク微粒子を上記温度制御
部流動床と被処理品収納部流動床との間で循環流
動させることによつて前記セラミツク微粒子流動
床の均熱化を図る様に構成したことを特徴とする
熱処理装置。
1 A heat treatment apparatus used for isothermal heat treatment during quenching of high-speed steel, in which a fluidized bed of ceramic fine particles is formed in a sealable container in an inert gas atmosphere, and the fluidized bed is separated by a partition wall to be treated. Divided into a fluidized bed in the product storage area and a fluidized bed in the temperature control area.
The fluidized bed in the temperature control section is provided with a temperature control means consisting of a heater and a water-cooled pipe, and is also provided with an inert gas jetting nozzle with a nozzle opening facing downward. A gas outlet is provided for moving the ceramic fine particles in the fluidized bed upward, and the ceramic fine particles are circulated between the temperature control section fluidized bed and the workpiece storage section fluidized bed. A heat treatment apparatus characterized in that it is configured to uniformize the temperature of a fluidized bed.
JP24676286A 1986-10-16 1986-10-16 Heat treatment device Granted JPS63100124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24676286A JPS63100124A (en) 1986-10-16 1986-10-16 Heat treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24676286A JPS63100124A (en) 1986-10-16 1986-10-16 Heat treatment device

Publications (2)

Publication Number Publication Date
JPS63100124A JPS63100124A (en) 1988-05-02
JPH0261525B2 true JPH0261525B2 (en) 1990-12-20

Family

ID=17153283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24676286A Granted JPS63100124A (en) 1986-10-16 1986-10-16 Heat treatment device

Country Status (1)

Country Link
JP (1) JPS63100124A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363717A (en) * 2001-06-04 2002-12-18 Asahi Tec Corp METHOD FOR HEAT-TREATING Al ALLOY
WO2020012221A1 (en) * 2018-07-11 2020-01-16 Arcelormittal Method of heat transfer and associated device
WO2020012222A1 (en) * 2018-07-11 2020-01-16 Arcelormittal Method to control the cooling of a metal product

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5217305A (en) * 1975-05-30 1977-02-09 Degussa Furnace construction for tempering and quenching of blank
JPS5616846A (en) * 1979-07-20 1981-02-18 Hitachi Ltd Mask for microcell
JPS61143513A (en) * 1984-12-14 1986-07-01 Taihoo Kogyo Kk Method and device for vacuum heating

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5217305A (en) * 1975-05-30 1977-02-09 Degussa Furnace construction for tempering and quenching of blank
JPS5616846A (en) * 1979-07-20 1981-02-18 Hitachi Ltd Mask for microcell
JPS61143513A (en) * 1984-12-14 1986-07-01 Taihoo Kogyo Kk Method and device for vacuum heating

Also Published As

Publication number Publication date
JPS63100124A (en) 1988-05-02

Similar Documents

Publication Publication Date Title
JP4428268B2 (en) Heat treatment furnace
JP4645592B2 (en) Two-chamber heat treatment furnace
JPH06302523A (en) Vertical thermal treatment equipment
WO1994013841A1 (en) Multipurpose atmosphere heat treatment apparatus
JPS589806B2 (en) Sintering furnace for powder metallurgy
CN105593394A (en) Method for nitriding steel member
US4160680A (en) Vacuum carburizing
JP2006266615A (en) Heat treatment furnace
JPS63148088A (en) Continuous type vacuum heat treating furnace
JPH08178535A (en) Multi-chamber type heat processing furnace
JPH0261525B2 (en)
US4730811A (en) Heat treatment apparatus with a fluidized-bed furnace
US3168607A (en) Methods of heat treating articles
JPH05196365A (en) Heat treatment furnace device
JP2582554B2 (en) Method of carburizing steel
JPS58130270A (en) Continuous vacuum carburizing furnace and its operation method
JP2009091638A (en) Heat-treatment method and heat-treatment apparatus
JP2572017B2 (en) Cooling method of treated material in Matsufuru furnace
GB2492135A (en) A fluidised bed heat-treatment furnace
JP3368341B2 (en) Method and apparatus for quenching steel
CN109321718A (en) A kind of heat treatment method of large thin-wall element
JPS5916924A (en) Method for rapidly quenching metal piece
JPH11310819A (en) Vacuum oil quenching method
JP7398032B2 (en) industrial furnace
JP3147614B2 (en) Case for heat treatment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term