JPH0261074A - Electroless copper plating method - Google Patents

Electroless copper plating method

Info

Publication number
JPH0261074A
JPH0261074A JP21392788A JP21392788A JPH0261074A JP H0261074 A JPH0261074 A JP H0261074A JP 21392788 A JP21392788 A JP 21392788A JP 21392788 A JP21392788 A JP 21392788A JP H0261074 A JPH0261074 A JP H0261074A
Authority
JP
Japan
Prior art keywords
plating
copper plating
electroless
electroless copper
objects
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21392788A
Other languages
Japanese (ja)
Inventor
Isao Akashi
明石 功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21392788A priority Critical patent/JPH0261074A/en
Publication of JPH0261074A publication Critical patent/JPH0261074A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/181Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating
    • H05K3/187Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating means therefor, e.g. baths, apparatus
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/422Plated through-holes or plated via connections characterised by electroless plating method; pretreatment therefor

Abstract

PURPOSE:To form good electroless Cu plating films by supplying a hydrogen intermediate to objects to be plated at the time of immersing the objects to be plated into an electroless Cu plating liquid and subjecting the objects to electroless Cu plating. CONSTITUTION:Meshed cages 1 into which plural sheets of printed circuit boards 2 and substrates 3 with Cu foil thereunder are installed are subjected to pretreatments such as degreasing, conditioning, catalyst imparting, and stabilizing and are then immersed into the electroless Cu plating liquid 5 in a plating cell 4 at the time of subjecting the printed circuit boards to electroless copper plating. The hydrogen intermediate is generated by Cu plating reaction from the Cu surfaces of the substrates 3 with the Cu foil and comes into contact with the surfaces of the objects 2 to be plates such as printed circuit boards installed in the upper part. The deposition of the electroless Cu plating on the surfaces of the objects 2 is thus accelerated and the uniform Cu plating films are formed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、基体に良好な銅の析出が得られる無電解銅め
っきの方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method of electroless copper plating that allows good copper deposition to be obtained on a substrate.

従来の技術 無電解銅めっきを行う基体のなかで、たとえば、銅スル
ーホール印刷配線板を製造する場合において、無電解銅
め−きは最も重要な技術のひとつであり、スルーホール
壁面へのめつき析出性は、印刷配線板のヌル−ホール特
性に大きな影響を与える。
Conventional technology Among substrates that undergo electroless copper plating, electroless copper plating is one of the most important technologies when manufacturing copper through-hole printed wiring boards, for example, and is used to coat through-hole walls. The deposition properties have a great influence on the null-hole characteristics of printed wiring boards.

従来、印刷配線板のスルーホールに無電解鋼めっきを施
す場合、かごあるいはう・ツク状の容器に入れた被めっ
き基板を、脱脂、コンディショニング、触媒付与、安定
化等の一連の前処理液で処理した後、種々の成分濃度を
調整した無電解銅めっき液に浸漬し、無電解銅めっきを
実施していた。
Conventionally, when electroless steel plating is applied to through-holes on printed wiring boards, the substrate to be plated is placed in a cage, wall, or container and is subjected to a series of pretreatment solutions such as degreasing, conditioning, catalysis, and stabilization. After the treatment, electroless copper plating was performed by immersing it in an electroless copper plating solution with various component concentrations adjusted.

しかしながら無電解銅めっき液の初期の反応性は低く、
充分な反応が開始されるまで長い時間を要しており、各
処理液の処理時間が決まっている設備においては、投入
初期の基板のスルーホールへの無電解銅めっきの析出性
は非常に悪く、銅の被覆が均一になされず、スルーホー
ルのボイド、ピンホール等の析出不良が発生しやすい状
況にあった。このため、スルーホールの電気的な接続不
良や、周囲環境の経時変化によるヌル−ホールの接続信
頼性の低下、あるいは、はんだ付は時のブローホール等
の欠陥等を招く原因となっていた。
However, the initial reactivity of electroless copper plating solution is low;
It takes a long time for a sufficient reaction to start, and in equipment where the processing time for each processing solution is fixed, the deposition of electroless copper plating into the through-holes of the board at the initial stage of application is very poor. However, the copper coating was not uniform, and deposition defects such as through-hole voids and pinholes were likely to occur. This has led to poor electrical connection of the through holes, reduced reliability of the null-hole connection due to changes in the surrounding environment over time, or defects such as blowholes caused by soldering.

また、無電解銅めっきを施す基板を投入する前に、めっ
き液の反応性を高めるために、先行して数かご分、ダミ
ー基板を投入する方法も実施されているが、この場合に
おいても、ダミー基板へのめ−きを実施した後、被めっ
き基板を投入する時間的間隔が長かったり、あるいはめ
つき液に対する基板負荷量、すなわちロードファクター
が小さくなったときは、無電解銅めっき液の反応性が再
び落ちこみ、銅めっきの被覆が均一になされず、スルー
ホールのボイド、ピンホール等の析出不良が生じていた
Additionally, in order to increase the reactivity of the plating solution, several baskets of dummy substrates are placed in advance before placing the substrates for electroless copper plating, but in this case as well, After plating the dummy substrate, if the time interval between introducing the substrate to be plated is long, or if the load factor of the substrate on the plating solution is small, use the electroless copper plating solution. The reactivity dropped again, and the copper plating was not uniformly coated, resulting in defects such as through-hole voids and pinholes.

また初期の反応性を増大させるため、めっき液の温度を
上げたり、あるいはめつき液の成分を調整して高濃度で
管理するような方法の場合も、析出性は向上するが、め
っき液の安定性が悪くなり浴の分解、異常反応につなが
ったり、あるいは析出した無電解銅めっき皮膜の物性が
悪くなり、スルーホール信頼性の低下を招くといった問
題につながる危険性をはらんでいた。
In addition, methods that increase the initial reactivity of the plating solution by increasing the temperature of the plating solution or adjusting the components of the plating solution to maintain a high concentration also improve precipitation, but There was a risk that stability would worsen, leading to bath decomposition and abnormal reactions, or that the physical properties of the deposited electroless copper plating film would deteriorate, leading to a decrease in through-hole reliability.

発明が解決しようとする課題 以上の従来の技術に示したように、ヌル−ホールに無電
解銅めっきを行う場合、投入初期の銅めっきの反応、あ
るいはロードファクターの小さい場合の銅めっきの反応
を高め、ヌル−ホールに安定して銅を均一に被覆するこ
とは非常に困難であり、スルーホールのボイド、ピンホ
ール等の析出不良が発生しやすい状況にあった。
Problems to be Solved by the Invention As shown in the prior art above, when performing electroless copper plating on null holes, the reaction of copper plating at the initial stage of charging or the reaction of copper plating when the load factor is small is It is very difficult to stably and uniformly coat copper in the null holes, and deposition defects such as voids and pinholes in the through holes are likely to occur.

本発明はこのような問題点を解決するもので、無電解銅
めっきの反応性が低い場合に、液の安定性を損なうこと
なく、スルーホールへの無電解銅めっきの析出性を向上
させることを目的とするものである。
The present invention solves these problems, and aims to improve the deposition properties of electroless copper plating on through holes without impairing the stability of the solution when the reactivity of electroless copper plating is low. The purpose is to

課題を解決するだめの手段 本発明は、上記の問題点を解決するだめに、無電解銅め
っきを行う基体に水素中間体を供給することを特徴とす
る無電解銅め−き方法である。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention is an electroless copper plating method characterized in that a hydrogen intermediate is supplied to a substrate on which electroless copper plating is to be performed.

作用 上記方法とすることにより、反応の初期段階においても
均一な無電解銅めっきの析出が得られることになる。
Effect: By using the above method, uniform electroless copper plating can be deposited even in the initial stage of the reaction.

実施例 以下、本発明の実施例を添付の図面を用いて説明する。Example Embodiments of the present invention will be described below with reference to the accompanying drawings.

まず、本発明の基本原理について説明する。First, the basic principle of the present invention will be explained.

無電解銅めっきの反応においてパラジウム等の触媒表面
、あるいは銅表面での水素中間体はめつき反応の促進に
大きな影響があシ、めっき液中に反応水素の量が多いと
、銅めっきの反応が加速される。
In the electroless copper plating reaction, hydrogen intermediates on the surface of catalysts such as palladium or on the copper surface have a large effect on the promotion of the plating reaction, and if the amount of reactive hydrogen in the plating solution is large, the copper plating reaction will be delayed. be accelerated.

一般的にいわれている無電解銅めっきの反応は(1)式
のような形であられされる。
Generally speaking, the reaction of electroless copper plating is expressed in the form shown in equation (1).

Ou”+ 40H+ 2HcHO− Cu0−4−2HCOO+2(H)+H20−川−・(
1)この式に従うと銅めっきの反応は液温、液のかくは
ん状態を別にすると、アルカリ濃度とホルマリン濃度の
みに依存するようであるが実際は、他にも反応スピード
を決定する要因があり、そのなかで水素中間体(反応水
素)が大きく影響し、(2)式のように銅の還元に寄与
している。
Ou"+ 40H+ 2HcHO- Cu0-4-2HCOO+2(H)+H20-kawa-・(
1) According to this formula, the copper plating reaction seems to depend only on the alkali concentration and formalin concentration, apart from the liquid temperature and the stirring state of the liquid, but in reality, there are other factors that determine the reaction speed, and the Among them, the hydrogen intermediate (reactive hydrogen) has a large influence and contributes to the reduction of copper as shown in equation (2).

Cu2++2(H)+20H−Cu0+2H20−−−
−−−(2)従ってこの水素中間体が、被めっき基体に
充分に接触し、その結果、無電解銅めっきの析出性が改
善される。
Cu2++2(H)+20H-Cu0+2H20---
---(2) Therefore, this hydrogen intermediate comes into sufficient contact with the substrate to be plated, and as a result, the deposition properties of electroless copper plating are improved.

以下、本発明の具体的な実施例を図面と共に説明する。Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.

(実施例1) 第1図はプリント配線板の銅めっき用かと1に、被めっ
き基板・2と、その下部に銅はく付き基板3を設置した
ものである。これを、脱脂、コンデ、イショニング、触
媒付与、安定化等の常法による一連のめっき前処理で処
理した後、第2図の銅めっき糟4に入れた無電解銅めっ
き液6に浸漬して無電解銅めっきを実施した。このとき
、銅はく付き基板3の銅表面から銅めっき反応により水
素中間体が発生し、上部に設置した被めっき基板2に接
触し、その結果、無電解銅めっきの析出が促進され、被
めっき基板2に均一な無電解銅めっきの析出が得られた
。ボイド発生率の比較においては、穴径が小さくなるに
従い効果が顕著に現われる傾向にあり特にφ0.3以下
の小径穴に有効な結果が得られ、銅はく付き基板3がな
い場合に比較するとボイド発生率が約殆〜協に低減した
(Example 1) FIG. 1 shows a copper plated plate 1 for a printed wiring board, in which a substrate 2 to be plated and a substrate 3 with a copper foil attached thereto are installed. After this is treated with a series of conventional plating pretreatments such as degreasing, conditioning, ionizing, catalyst application, and stabilization, it is immersed in the electroless copper plating solution 6 placed in the copper plating bath 4 shown in Fig. 2. Electroless copper plating was carried out. At this time, a hydrogen intermediate is generated from the copper surface of the copper foil-attached substrate 3 by a copper plating reaction and comes into contact with the substrate to be plated 2 installed above, which promotes the precipitation of electroless copper plating and Uniform electroless copper plating was deposited on the plating substrate 2. In comparing the void generation rate, the effect tends to become more pronounced as the hole diameter becomes smaller, and particularly effective results were obtained for small diameter holes of φ0.3 or less, and when compared with the case without the copper-plated board 3. The void occurrence rate has been reduced to about almost 100%.

銅はく付き基板3のめつき面積としては被めっき基板2
のめっき面積の約A以上になるように設定するのが良い
が、特に限定するものでなく、めっき条件、設備等によ
って適切な値に設定されるペきものである。まだ銅めっ
きかどの形状は、被めっき基板2に反応水素が接触しや
すい形状のものであれば特に限定するものでなく、例え
ば、メツシュ状のかご等、種々の形状の容器に適用でき
る。
The plating area of the copper-plated substrate 3 is the plated substrate 2.
It is preferable to set the value to be approximately A or more of the plating area, but there is no particular limitation, and the value should be set to an appropriate value depending on the plating conditions, equipment, etc. The shape of the copper plating corner is not particularly limited as long as it is a shape that allows reactive hydrogen to easily come into contact with the substrate 2 to be plated, and can be applied to containers of various shapes, such as a mesh-like cage, for example.

(実施例2) 実施例1においてはめつきかごに反応水素供給源として
の銅はく付き基板を設置したが、これはめっき糟自体に
設置しても良く、第3図において、被め−き基板2を設
置しためつきかと1を、実施例1と同様に前処理液で処
理を行い、これを銅板6を設置しためつき糟4に入れた
銅めっき液6に浸漬し、無電解銅めっきを実施した。こ
のとき、めっき糟4に設置した銅板6から反応水素が発
生し、上部の被めっき基板2に接触し、その結果、無電
解銅めっきの析出性が改善され、ボイドのない均一な無
電解銅めっきの析出が得られた。
(Example 2) In Example 1, a copper plated substrate was installed as a reactive hydrogen supply source in the plating cage, but it may also be installed in the plating bath itself. The mating plate 1 on which the substrate 2 is installed is treated with a pretreatment solution in the same manner as in Example 1, and then immersed in the copper plating solution 6 placed in the mating pot 4 on which the copper plate 6 is installed. Plating was carried out. At this time, reactive hydrogen is generated from the copper plate 6 placed in the plating bath 4 and comes into contact with the upper plated substrate 2. As a result, the deposition properties of electroless copper plating are improved, and uniform electroless copper without voids is formed. A plating deposit was obtained.

(実施例3) 第4図に示すように被め−き基板2を設置しため−きか
ご1を、実施例1と同じく前処理液で処理した後、メツ
シュ状銅板了を設置しためつき槽4に入れた銅めっき液
5に浸漬し、無電解銅めっきを実施した。このとき、メ
ツシュ状銅板7から反応水素が発生し、上部の被め−き
基板2に接触し、その結果、無電解銅めっきの析出性が
改善され、ボイドのない均一な無電解銅めっきの析出が
得られた。
(Example 3) As shown in Fig. 4, after installing the plated substrate 2 and treating the basket 1 with the pretreatment liquid as in Example 1, a mesh-like copper plate was installed. It was immersed in copper plating solution 5 placed in tank 4 to perform electroless copper plating. At this time, reactive hydrogen is generated from the mesh-like copper plate 7 and comes into contact with the upper plated substrate 2. As a result, the deposition properties of electroless copper plating are improved, and uniform electroless copper plating without voids is achieved. A precipitate was obtained.

発明の効果 以上、実施例で述べたように本発明によれば、被め−き
基体への無電解銅めっきの析出性が改善され、反応の初
期段階においても、均一な無電解銅め−きの析出が得ら
れる。特にスルーホールプリント配線板においては、ス
ルーホールのボイド。
As described in the examples, according to the present invention, the deposition properties of electroless copper plating on the substrate to be plated are improved, and uniform electroless copper plating is achieved even in the initial stage of the reaction. Precipitation of mushrooms is obtained. Especially in through-hole printed wiring boards, voids in through-holes.

ピンホール等の析出不良が抑制でき、スルーホールの接
続信頼性の向上、はんだ付は時のプローホール発生の低
減等のスルーホール特性の向上の効果が得られる。
It is possible to suppress precipitation defects such as pinholes, improve through-hole connection reliability, and improve through-hole characteristics such as reducing the occurrence of plow holes during soldering.

また無電解銅めっき液の温度、成分濃度等を変える必要
がないので、めっき液の安定性の確保。
Additionally, there is no need to change the temperature, component concentration, etc. of the electroless copper plating solution, ensuring stability of the plating solution.

異常反応の抑制等の効果がある。It has the effect of suppressing abnormal reactions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例1における銅めっき用かどの斜
視図、第2図は第1図のめつきかごを無電解銅め−き液
に浸漬した状態の断面図、第3図は実施例2における銅
めっきかとを無電解銅めっき液に浸漬した状態の断面図
、第4図は実施例3における銅めっきかとを無電解銅め
っき液に浸漬した状態の断面図である。 1・・・・・・めっきかご、2・・・・・・被めっき基
板、3・・・・・銅はく付き基板、4・・・・・・めつ
き槽、6・・・・・・銅めっき液、6・・・・・・銅板
、7・・・・・・メツシュ状銅板。 代理人の氏名 弁理士 粟 野 重 孝 ほか1名第1
図 / −めフきDゝユ ?−腋のっさ基板 3 ・−グ(よくイ1さ基板 第2図 4・−〇っき糟 s−*pのつき液
Fig. 1 is a perspective view of a corner for copper plating in Example 1 of the present invention, Fig. 2 is a sectional view of the plating basket shown in Fig. 1 immersed in an electroless copper plating solution, and Fig. 3 is a perspective view of a corner for copper plating in Example 1 of the present invention. FIG. 4 is a sectional view of the copper plating head in Example 2 immersed in an electroless copper plating solution, and FIG. 4 is a sectional view of the copper plating head in Example 3 immersed in the electroless copper plating solution. 1... Plating basket, 2... Substrate to be plated, 3... Substrate with copper foil, 4... Plating tank, 6...・Copper plating solution, 6...Copper plate, 7...Mesh-like copper plate. Name of agent: Patent attorney Shigetaka Awano and 1 other person 1st
Figure/ - Mefuki Dゝyu? - Armpit Nosa Substrate 3 ・-gu (well ai 1 sa board Fig. 2 4.

Claims (1)

【特許請求の範囲】[Claims]  無電解銅めっきを行う基体に水素中間体を供給するこ
とを特徴とする無電解銅めっき方法。
An electroless copper plating method characterized by supplying a hydrogen intermediate to a substrate on which electroless copper plating is performed.
JP21392788A 1988-08-29 1988-08-29 Electroless copper plating method Pending JPH0261074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21392788A JPH0261074A (en) 1988-08-29 1988-08-29 Electroless copper plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21392788A JPH0261074A (en) 1988-08-29 1988-08-29 Electroless copper plating method

Publications (1)

Publication Number Publication Date
JPH0261074A true JPH0261074A (en) 1990-03-01

Family

ID=16647349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21392788A Pending JPH0261074A (en) 1988-08-29 1988-08-29 Electroless copper plating method

Country Status (1)

Country Link
JP (1) JPH0261074A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5990597A (en) * 1989-02-10 1999-11-23 Nikon Corporation Ultrasonic motor having high drive efficiency
CN102131372A (en) * 2010-01-20 2011-07-20 Abb公司 Cooling element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5990597A (en) * 1989-02-10 1999-11-23 Nikon Corporation Ultrasonic motor having high drive efficiency
CN102131372A (en) * 2010-01-20 2011-07-20 Abb公司 Cooling element

Similar Documents

Publication Publication Date Title
EP0176736B1 (en) Process for selective metallization
US5648125A (en) Electroless plating process for the manufacture of printed circuit boards
US4639380A (en) Process for preparing a substrate for subsequent electroless deposition of a metal
US5391421A (en) Additive plating process
JP3337802B2 (en) Direct plating method by metallization of copper (I) oxide colloid
US4066809A (en) Method for preparing substrate surfaces for electroless deposition
EP0446522B2 (en) Electroless copper plating process
US5425873A (en) Electroplating process
US4671968A (en) Method for electroless deposition of copper on conductive surfaces and on substrates containing conductive surfaces
JPS6257120B2 (en)
JPH0261074A (en) Electroless copper plating method
US4938853A (en) Electrolytic method for the dissolution of copper particles formed during electroless copper deposition
US4459184A (en) Method for continuous metal deposition from a non-autocatalytic electroless plating bath using electric potential
US5547559A (en) Process for plating metals onto various substrates in an adherent fashion
AU547410B2 (en) Method for continuous metal deposition from a non- autocatalytic electroless plating bath using electric potential
JPH032358B2 (en)
JPS62149884A (en) Pretreatment for electroless copper plating
JPH01176079A (en) Electroless plating method
EP0079975A1 (en) Copper colloid and method of activating insulating surfaces for subsequent electroplating
WO1983001794A1 (en) Copper colloid and method of activating insulating surfaces for subsequent electroplating
JPH02138484A (en) High phosphorus-content nickel plating method
WO2000050230A1 (en) Board with nickel-plated thru-holes and/or blind vias
JPH07173638A (en) Pretreatment of electroless copper plating
JPH08199368A (en) Electroless plating
EP0228664A1 (en) Copper deposition from electroless plating bath