JPH0259602B2 - - Google Patents

Info

Publication number
JPH0259602B2
JPH0259602B2 JP17468783A JP17468783A JPH0259602B2 JP H0259602 B2 JPH0259602 B2 JP H0259602B2 JP 17468783 A JP17468783 A JP 17468783A JP 17468783 A JP17468783 A JP 17468783A JP H0259602 B2 JPH0259602 B2 JP H0259602B2
Authority
JP
Japan
Prior art keywords
current
signal
movable body
coil
magnetic pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17468783A
Other languages
Japanese (ja)
Other versions
JPS6066401A (en
Inventor
Hideo Niwa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanmei Electric Co Ltd
Original Assignee
Sanmei Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanmei Electric Co Ltd filed Critical Sanmei Electric Co Ltd
Priority to JP17468783A priority Critical patent/JPS6066401A/en
Publication of JPS6066401A publication Critical patent/JPS6066401A/en
Publication of JPH0259602B2 publication Critical patent/JPH0259602B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F7/1607Armatures entering the winding

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetically Actuated Valves (AREA)
  • Electromagnets (AREA)

Description

【発明の詳細な説明】 この発明は、振動試験機、インジエクシヨンマ
シン、プレス機、歪取り機などの機械装置に用い
られるサーボ弁及び比例電磁弁に関し、特にそれ
らにおいて弁装置を作動させるようにしているソ
レノイドに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to servo valves and proportional solenoid valves used in mechanical devices such as vibration testing machines, injection machines, press machines, and strain relief machines, and particularly to servo valves and proportional solenoid valves for operating valve devices therein. Regarding the solenoid.

そしてその目的とするところは、可動体を一方
又は他方へ選択移動させることができ、しかもそ
の移動寸法を制御できるようにしたソレノイドを
提供することである。
The object is to provide a solenoid that can selectively move a movable body in one direction or the other, and in which the dimension of the movement can be controlled.

以下本願の実施例を示す図面について説明す
る。ソレノイドバルブは周知の如く弁装置1とソ
レノイド2とから成る。まず弁装置1において、
3は本体で、内部には周知の如く油路が形成され
ている。4はスプールで、周知の如く第1図にお
いて左右方向へ移動自在となつている。5は圧力
ポート、6はタンクポートで、夫々油圧源、タン
クに周如の如く接続される。7,8は周知の油圧
装置接続用のポートである。
The drawings showing the embodiments of the present application will be described below. The solenoid valve consists of a valve device 1 and a solenoid 2, as is well known. First, in the valve device 1,
3 is a main body, and an oil passage is formed inside thereof as is well known. 4 is a spool, which, as is well known, is movable in the left and right directions in FIG. 5 is a pressure port, and 6 is a tank port, which are connected to a hydraulic power source and a tank, respectively. 7 and 8 are ports for connection to a well-known hydraulic system.

次にソレノイド2において、11は本体で、磁
性材料で形成されており、固定用ボルト11aに
よつて弁装置の本体3に着脱自在に取付けてあ
る。この本体において、12は筒状ヨーク部で、
ケースも兼ねる様に構成されている。13は筒状
ヨーク部12の一端に、14は筒状ヨーク部12
の中間部に、15は筒状ヨーク部12の他端部に
夫々内鍔状に連設された鍔状ヨーク部を示す。1
7は筒状の磁極体で、ヨーク部13と一体に(別
体でもよい)形成されている。19,20は鍔状
ヨーク部14の内周端に一体に連設された磁極体
で、何れも環状に形成されている。21は鍔状ヨ
ーク部15の内周端に一体に連設されている磁極
体で、環状に形成してある。22,23は夫々コ
イルを示し、図示される如く逆磁性に接続してあ
つて、一方のコイルの一端と他方のコイルの各一
端が接続端子24a,24bとなつている。16
は磁極体17の内側に備えさせた軸受体で、外周
面を磁極体17の内周面に螺合させてある。16
aは流通孔で、後述の可動体に圧力油によつて加
わる付勢力をバランスさせる為のものである。1
8は嵌合孔で、軸受体16を回動操作する為のレ
ンチを嵌合させる為のものである。25はロツク
ナツトで軸受体16の外周面に螺合させてある。
Next, in the solenoid 2, a main body 11 is made of a magnetic material and is detachably attached to the main body 3 of the valve device with a fixing bolt 11a. In this main body, 12 is a cylindrical yoke part,
It is configured to double as a case. 13 is at one end of the cylindrical yoke portion 12, and 14 is at one end of the cylindrical yoke portion 12.
15 indicates a flange-like yoke portion which is connected to the other end of the cylindrical yoke portion 12 in an inner flange-like manner. 1
Reference numeral 7 denotes a cylindrical magnetic pole body, which is formed integrally with the yoke portion 13 (or may be a separate body). Reference numerals 19 and 20 denote magnetic pole bodies that are integrally connected to the inner circumferential end of the brim-like yoke portion 14, and both are formed in an annular shape. Reference numeral 21 denotes a magnetic pole body integrally connected to the inner circumferential end of the brim-like yoke portion 15, and is formed in an annular shape. Reference numerals 22 and 23 indicate coils, which are connected in a reverse magnetic manner as shown in the figure, and one end of one coil and one end of the other coil serve as connection terminals 24a and 24b, respectively. 16
A bearing body is provided inside the magnetic pole body 17, and its outer circumferential surface is screwed onto the inner circumferential surface of the magnetic pole body 17. 16
Reference character a denotes a flow hole, which is used to balance the urging force applied to the movable body by pressure oil, which will be described later. 1
Reference numeral 8 denotes a fitting hole into which a wrench for rotating the bearing body 16 is fitted. 25 is a lock nut screwed onto the outer peripheral surface of the bearing body 16.

次に26は本体11の内部に備えさせた可動体
を示す。これにおいて、27は基体で、非磁性材
料を用いて丸棒状に形成されており、その一端に
備えさせた軸部28が前記軸受体16によつて進
退自在に支承されている。29は基体27の一端
に一体に設けた鍔、30は基体27に周設した永
久磁石で、筒状に形成されており、図示されるよ
うな極性を有している。この磁石30としては希
土類を用いた磁石(例えばサマリユームコバルト
磁石)のように、大きさに比べて磁力の強いもの
を用いるとよい。31,32は夫々磁極片を示
す。前記永久磁石30とこれらの磁極片31,3
2とは前記鍔29と基体27に螺合させたナツト
33とによつて締め付けられて、基体27と一体
化させてある。尚34は磁極片31,32に備え
させた溝で、油流通用のものである。35,36
は可動体26を中立位置に位置させる為のばねで
夫々圧縮ばねが用いてあり、ばね35は磁極体2
1の一部に形成されたばね座21aと磁極体31
との間に、ばね36は軸受体16と磁極体32と
の間に介設させてある。37は連繋杆で、弁体5
及び可動体26と一体化してある。尚これは弁体
5及び可動体26の基体27と一体に形成しても
あるいは別体形成の後に一体化させてもよい。
Next, 26 indicates a movable body provided inside the main body 11. In this case, a base body 27 is formed in the shape of a round bar using a non-magnetic material, and a shaft portion 28 provided at one end thereof is supported by the bearing body 16 so as to be movable forward and backward. 29 is a collar provided integrally at one end of the base body 27, and 30 is a permanent magnet provided around the base body 27, which is formed in a cylindrical shape and has polarity as shown. As the magnet 30, it is preferable to use a magnet that has a strong magnetic force compared to its size, such as a magnet using rare earth elements (for example, a samarium cobalt magnet). 31 and 32 indicate magnetic pole pieces, respectively. The permanent magnet 30 and these magnetic pole pieces 31, 3
2 is tightened by the collar 29 and a nut 33 screwed onto the base body 27, and is integrated with the base body 27. Note that 34 is a groove provided in the magnetic pole pieces 31 and 32 for oil circulation. 35, 36
are springs for positioning the movable body 26 in the neutral position, and a compression spring is used, and the spring 35 is a spring for positioning the movable body 26 in the neutral position.
Spring seat 21a formed in a part of 1 and magnetic pole body 31
A spring 36 is interposed between the bearing body 16 and the magnetic pole body 32. 37 is a connecting rod, and valve body 5
and is integrated with the movable body 26. Note that this may be formed integrally with the valve body 5 and the base body 27 of the movable body 26, or may be formed separately and then integrated.

次に上記ソレノイドバルブの駆動回路を示す第
4図において、41は制御信号の入力端、42は
誤差増幅器、43は発振器で100Hz〜数kHz程度
ののこぎり波を発振するものである。44は比較
器、45は反転器、46,47は夫々整流器、4
8a〜48dは夫々制御用のトランジスタ、49
a〜49dは逆電圧による電流を通過させる為の
ダイオード、50a,50bは電流検出用の抵
抗、51は電流検出回路で、抵抗50a,50b
からの信号の差を検出する差動回路と、その差信
号を平滑する平滑回路とから成る。尚これは抵抗
50a,50bからの夫々の信号を夫々個別に平
滑する二つの平滑回路と、その平滑された信号の
差を検出する差動回路とで構成してもよい。52
は直流電源を示す。
Next, in FIG. 4 showing a drive circuit for the solenoid valve, 41 is an input terminal for a control signal, 42 is an error amplifier, and 43 is an oscillator that oscillates a sawtooth wave of approximately 100 Hz to several kHz. 44 is a comparator, 45 is an inverter, 46 and 47 are each rectifiers, 4
8a to 48d are control transistors, 49
a to 49d are diodes for passing current due to reverse voltage, 50a and 50b are resistors for current detection, and 51 is a current detection circuit, including resistors 50a and 50b.
It consists of a differential circuit that detects the difference between the signals from and a smoothing circuit that smoothes the difference signal. Note that this may be constructed of two smoothing circuits that individually smooth the respective signals from the resistors 50a and 50b, and a differential circuit that detects the difference between the smoothed signals. 52
indicates a DC power supply.

上記構成のものにあつては、軸受体16を回動
させてそれを第1図において右または左方へ移動
させ、コイル22,23への非導電時には、可動
体26が中立位置に位置してスプールが第1図の
如き位置即ちポート7,8が圧力ポート5及びタ
ンクポート6のいずれにも連通しない位置に存在
するようにする。そしてその状態において軸受体
16をロツクナツト25で固定する。
In the case of the above structure, the bearing body 16 is rotated to move it to the right or left in FIG. so that the spool is in a position as shown in FIG. In this state, the bearing body 16 is fixed with a lock nut 25.

このようなものにおいて端子24aからコイル
22,23を通つて端子24bに至る経路で通電
すると、第1図に矢印で示す如き磁束が生じ可動
体26は図中右方へ移動する。即ち磁極片32は
磁極体19とは反発し磁極体17とは吸引し合う
一方、磁極片31は磁極体21とは反発し磁極体
20とは吸引し合い、その結果可動体26は右方
へ移動する。これにより連繋杆37を介してスプ
ール4は右方へ移動し、ポート5はポート7と、
ポート6はポート8と夫々連通する。上記通電が
断たれると可動体26はばね36の付勢力によつ
て第1図の中立位置に戻り、スプール4も同じく
中立位置に戻る。一方、上記とは逆極性で通電し
た場合は、重複する説明を要するまでもなく、上
記と均等の作用により可動体26は図中左方へ移
動し、スプール4も連繋杆37を介して左方へ移
動する。これによりポート5はポート8と、ポー
ト6はポート7と夫々連通する。
When such a device is energized along a path from the terminal 24a through the coils 22 and 23 to the terminal 24b, a magnetic flux as shown by the arrow in FIG. 1 is generated and the movable body 26 moves to the right in the figure. That is, the magnetic pole piece 32 repels the magnetic pole body 19 and attracts the magnetic pole body 17, while the magnetic pole piece 31 repels the magnetic pole body 21 and attracts the magnetic pole body 20, and as a result, the movable body 26 moves to the right. Move to. As a result, the spool 4 moves to the right via the connecting rod 37, and the port 5 becomes the port 7.
Ports 6 communicate with ports 8, respectively. When the electricity is turned off, the movable body 26 returns to the neutral position shown in FIG. 1 by the biasing force of the spring 36, and the spool 4 also returns to the neutral position. On the other hand, when electricity is supplied with the opposite polarity to that described above, the movable body 26 moves to the left in the figure due to an effect equivalent to that described above, and the spool 4 is also moved to the left via the connecting rod 37. move towards As a result, port 5 communicates with port 8, and port 6 communicates with port 7, respectively.

次に制御信号による上記構成のソレノイドバル
ブの動作を第5図のタイムチヤートに基づいて説
明する。尚第5図のa〜f,jは第4図に同符号
で示される点の電圧信号を、g,h,iは第4図
に矢印で示される電流を夫々示す。先ず入力端4
1には例えばaで示されるような制御信号が加え
られる。この信号はプラスあるいはマイナスの直
流信号のこともあれば最大200Hz程度までの交番
信号の場合もある。上記信号は誤差増幅器42に
おいて後述の電流信号による補正を加えられてb
で示されるような信号となる。一方発振器43は
cに示されるような信号を発振する。尚この信号
の周波数は上記制御信号の周波数の数倍以上とな
る値に選ばれる。上記信号bと信号cは比較器4
4において比較され、比較器44は信号bのレベ
ルがcのレベルを上回つているときにはプラス、
反対のときにはマイナスとなる信号dを出力す
る。この信号dの一部は反転器45で反転された
後整流されて信号eとなる一方、他の一部はその
まま整流されて信号fとなる。これらの信号を受
けて、トランジスタ48a,48bは信号eがH
レベルとなつているときに、トランジスタ48
c,48dは信号fがHレベルとなつているとき
に夫々導通状態となり、コイル22,23にはg
で示されるような電流が流れる。
Next, the operation of the solenoid valve having the above structure based on the control signal will be explained based on the time chart of FIG. Note that a to f, j in FIG. 5 indicate voltage signals at points indicated by the same reference numerals in FIG. 4, and g, h, and i indicate currents indicated by arrows in FIG. 4, respectively. First, input end 4
For example, a control signal as indicated by a is applied to signal 1. This signal may be a positive or negative DC signal, or it may be an alternating signal up to about 200Hz. The above signal is corrected by a current signal, which will be described later, in an error amplifier 42.
The signal will be as shown in . On the other hand, the oscillator 43 oscillates a signal as shown in c. The frequency of this signal is selected to be several times or more the frequency of the control signal. The above signal b and signal c are sent to the comparator 4.
4, the comparator 44 outputs a positive signal when the level of the signal b exceeds the level of the signal c;
In the opposite case, a negative signal d is output. A part of this signal d is inverted by an inverter 45 and then rectified to become a signal e, while the other part is rectified as is and becomes a signal f. In response to these signals, the transistors 48a and 48b change the signal e to H.
level, the transistor 48
c and 48d are respectively conductive when the signal f is at H level, and the coils 22 and 23 have g.
A current as shown flows.

この電流の流れについて詳細に説明すると、先
ず第5図においてイで示すように信号fがHレベ
ルとなるとトランジスタ48c,48dが導通す
るため、電源52からトランジスタ48d、コイ
ル23,22、トランジスタ48c、抵抗50a
を通つて(第5図ロ参照)電源52に戻る経路で
電流が流れる。次に信号eがハに示すようにHレ
ベルとなるとトランジスタ48a,48bが導通
する為、コイル22,23には前記とは逆方向に
電流が流れようとする。しかしコイル22,23
は逆起電力を発生する為、それによる電流(矢印
f方向の電流)が、電源52からトランジスタ4
8aを通してコイル22に向け流れようとする電
流(矢印gとは反対方向の電流)を越えて、コイ
ル22からダイオード49a、電源52、抵抗5
0b、ダイオード49bを通つてコイル23に戻
る経路で流れる。この為、抵抗50bに流れる電
流はニに示すように負の値となる。即ち矢印とは
反対方向に電流が流れる。この逆起電力による電
流はホに示すように時間の経過と共に減少する。
次にヘに示すように信号fが再びHレベルとなる
と上記トランジスタ48c,48dを通る経路で
電流が流れる。この電流はトに示すように時間と
共に増加する。このような動作は繰り返し行なわ
れ、やがて信号eがHレベルとなつている時間
が、信号fがHレベルとなつている時間よりも長
くなると、上記電源52からの電流はトランジス
タ48a,48bを通つてコイル22,23に流
れようとする時間のほうが長くなり、コイル2
2,23には矢印gとは反対方向に電流が流れる
(矢印g方向の電流はチに示す如く負の値)よう
になる。上記のように流れる電流は回路51で検
出されて電流信号jが出力される。その信号は誤
差増幅器42に伝えられ、その信号に基づいて比
例ソレノイド回路において周知の如き補正が加え
られる。その結果、コイル22,23に流れる電
流(平均電流)は制御信号に正しく対応した値と
なる。
To explain this current flow in detail, first, as shown by A in FIG. 5, when the signal f becomes H level, the transistors 48c and 48d become conductive. Resistance 50a
A current flows through it (see FIG. 5B) on a path back to the power supply 52. Next, when the signal e becomes H level as shown in C, the transistors 48a and 48b become conductive, so that current tends to flow through the coils 22 and 23 in the opposite direction. However, coils 22, 23
generates a back electromotive force, the resulting current (current in the direction of arrow f) flows from the power supply 52 to the transistor 4.
8a toward the coil 22 (current in the opposite direction to the arrow g), the current flows from the coil 22 to the diode 49a, the power source 52, and the resistor 5.
0b, flows through the diode 49b and returns to the coil 23. Therefore, the current flowing through the resistor 50b has a negative value as shown in d. That is, the current flows in the direction opposite to the arrow. The current due to this back electromotive force decreases over time as shown in E.
Next, as shown in F, when the signal f becomes H level again, a current flows through the path passing through the transistors 48c and 48d. This current increases with time as shown in (g). Such an operation is repeated, and when the time that the signal e is at the H level becomes longer than the time that the signal f is at the H level, the current from the power supply 52 flows through the transistors 48a and 48b. The time it takes for the current to flow through the coils 22 and 23 is longer, and the coil 2
2 and 23, a current flows in the direction opposite to the arrow g (the current in the direction of the arrow g has a negative value as shown in H). The current flowing as described above is detected by the circuit 51 and a current signal j is output. The signal is passed to an error amplifier 42, and based on the signal, a correction is applied in a proportional solenoid circuit as is known in the art. As a result, the current (average current) flowing through the coils 22 and 23 has a value that correctly corresponds to the control signal.

次に上記のようにしてコイル22,23にgに
示されるような電流が流れる場合の可動体26の
動き及びそれに伴なうスプールの動きを図面第3
図を参照して説明する。尚第3図において横軸は
可動体の中立位置から軸線方向への変位を示し、
縦軸はばね35,36による付勢力(可動体26
を中立位置へ戻そうとする力)を示す。また多数
の斜の実線はコイル22,23に流れる電流値が
各々の値のときにおいて可動体26に及ぶ電磁力
を示し、破線はばね35,36のばね特性を示
す。
Next, the movement of the movable body 26 and the accompanying movement of the spool when a current as shown in g flows through the coils 22 and 23 as described above is shown in Figure 3.
This will be explained with reference to the figures. In Fig. 3, the horizontal axis indicates the displacement of the movable body from the neutral position in the axial direction,
The vertical axis represents the biasing force of the springs 35 and 36 (the movable body 26
force that attempts to return the object to its neutral position). Further, a large number of diagonal solid lines indicate the electromagnetic force exerted on the movable body 26 when the current values flowing through the coils 22 and 23 are respectively different values, and the broken lines indicate the spring characteristics of the springs 35 and 36.

前記の如く電流gがコイル22,23に流れる
と、その平均的な電流値g′によつて可動体26に
加わる電磁力とばね35あるいは36によつて可
動体26に加わる戻し力とが均り合う位置まで可
動体26は移動する。例えば上記平均的な電流値
が0.2Aの場合は第3図の点Pにおいて力が均り
合う為、可動体26は第1図において中立位置か
ら左方へ0.2mmの点まで移動する。これによりス
プール4も同寸法だけ移動し、ポート5とポート
8との間及びポート6とポート7との間は夫々上
記移動寸法に対応した値だけ開く。
When the current g flows through the coils 22 and 23 as described above, the electromagnetic force applied to the movable body 26 by the average current value g' and the return force applied to the movable body 26 by the spring 35 or 36 are balanced. The movable body 26 moves to a position where they meet each other. For example, when the average current value is 0.2A, the forces are balanced at point P in FIG. 3, so the movable body 26 moves 0.2 mm leftward from the neutral position in FIG. 1. As a result, the spool 4 also moves by the same dimension, and the spaces between ports 5 and 8 and between ports 6 and 7 are opened by a value corresponding to the above-mentioned movement dimension.

この状態から上記平均的電流値g′が変化すれば
電磁力もそれに伴なつて変化する為、可動体26
はその変化していく刻々の電磁力とばね力とが
夫々均り合う位置へと第3図のばね特性の破線に
沿つて順次移動する。この場合、可動体26は電
流値g′の変化に正しく追従して移動する。なぜな
らば、コイルに流れる電流gの値は第5図にホ,
トで示されるように絶えず細かく増減している
為、可動体26は上記平均的な電流値g′で定まる
位置を中心に絶えず微振動をしている。従つて上
記電流値g′が変化して可動体26、スプール4が
移動する場合、それらはそれらを支えている部材
に対し摩擦力で引掛つたりすることなく移動する
ことができ、電流値g′の変化に正しく追従して移
動することができる。
If the above-mentioned average current value g' changes from this state, the electromagnetic force will also change accordingly, so the movable body 26
moves sequentially along the broken line of the spring characteristics in FIG. 3 to a position where the ever-changing electromagnetic force and the spring force are balanced. In this case, the movable body 26 moves while correctly following the change in the current value g'. This is because the value of the current g flowing through the coil is shown in Figure 5.
As shown in (g), the movable body 26 constantly vibrates slightly around the position determined by the average current value g' because the current is constantly increasing and decreasing minutely. Therefore, when the above-mentioned current value g' changes and the movable body 26 and spool 4 move, they can move without being caught by frictional force against the member supporting them, and the current value g' changes. ′ can be accurately followed and moved.

以上のようにこの発明にあつては、コイルへの
通電の極性の相違によつて可動体を一方又は他方
へ選択的に移動させることができ、しかもその電
流値に比例して移動寸法を設定できる特長があ
る。
As described above, in this invention, the movable body can be selectively moved to one side or the other depending on the polarity of the current applied to the coil, and the movement dimension is set in proportion to the current value. There are features that can be used.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本願の実施例を示すもので、第1図はソ
レノイドバルブの縦断面図、第2図は−線断
面図、第3図は特性図、第4図は制御回路のブロ
ツク図、第5図はタイムチヤート。 11……本体、22,23……コイル、26…
…可動体、35,36……ばね。
The drawings show an embodiment of the present application, and FIG. 1 is a longitudinal cross-sectional view of a solenoid valve, FIG. 2 is a cross-sectional view taken along the line - FIG. The figure is a time chart. 11... Main body, 22, 23... Coil, 26...
...Movable body, 35, 36...spring.

Claims (1)

【特許請求の範囲】[Claims] 1 本体には、コイルと、そのコイルへの通電に
よつて進退するようにした可動体と、その可動体
を中立位置へ戻すようにしたばねとを備えさせ、
上記コイルへの通電の極性の相違によつて上記可
動体が中立位置から一方又は他方へ移動し、かつ
その移動寸法は上記コイルに流れる電流値に比例
するようにしたことを特徴とするソレノイド。
1. The main body is equipped with a coil, a movable body that moves forward and backward when the coil is energized, and a spring that returns the movable body to a neutral position,
The solenoid is characterized in that the movable body moves from a neutral position to one side or the other due to a difference in the polarity of energization to the coil, and the size of the movement is proportional to the value of the current flowing through the coil.
JP17468783A 1983-09-21 1983-09-21 Solenoid Granted JPS6066401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17468783A JPS6066401A (en) 1983-09-21 1983-09-21 Solenoid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17468783A JPS6066401A (en) 1983-09-21 1983-09-21 Solenoid

Publications (2)

Publication Number Publication Date
JPS6066401A JPS6066401A (en) 1985-04-16
JPH0259602B2 true JPH0259602B2 (en) 1990-12-13

Family

ID=15982925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17468783A Granted JPS6066401A (en) 1983-09-21 1983-09-21 Solenoid

Country Status (1)

Country Link
JP (1) JPS6066401A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3934287A1 (en) * 1989-10-13 1991-04-18 Eckehart Schulze MAGNETIC VALVE
GB9218610D0 (en) * 1992-09-03 1992-10-21 Electro Hydraulic Technology L Linear motor valve

Also Published As

Publication number Publication date
JPS6066401A (en) 1985-04-16

Similar Documents

Publication Publication Date Title
JP3633166B2 (en) Linear solenoid
US6259179B1 (en) Magnetic bearing system
US3040217A (en) Electromagnetic actuator
US4088379A (en) Variable permanent magnet suspension system
JP2003206908A (en) Air servo valve
SE431927B (en) ELECTRONIC ENGINE FOR CREATING A LINER MOVEMENT
JPH0217854A (en) Electromagnetic actuator
JP2019100524A (en) Servo valve
US3181559A (en) Electromagnetic and fluid pressure operated valve and anti-hysteresis control circuit therefor
US4417772A (en) Method and apparatus for controlling the energization of the electrical coils which control a magnetic bearing
US4527108A (en) Linear actuator with magnets
JPH0259602B2 (en)
US4544129A (en) Direct-acting servo valve
US6225713B1 (en) Electromagnetic force motor and method of manufacturing the same
JPS5940612Y2 (en) Solenoid proportional control valve
US4756286A (en) Device for regulating the idling speed of an internal combustion engine
JP3268843B2 (en) Variable spring constant linear actuator
JPS6311536B2 (en)
JPH0538915A (en) Electromagnetic suspension device
GB1587772A (en) Polarized electromagnetic drive
JPS6319891B2 (en)
JPS58191386A (en) Solenoid valve
JPS6161409A (en) Driving circuit for solenoid
JPS626660Y2 (en)
JPS61165013A (en) Controlling method of magnetic bearing