JPS61165013A - Controlling method of magnetic bearing - Google Patents

Controlling method of magnetic bearing

Info

Publication number
JPS61165013A
JPS61165013A JP20160184A JP20160184A JPS61165013A JP S61165013 A JPS61165013 A JP S61165013A JP 20160184 A JP20160184 A JP 20160184A JP 20160184 A JP20160184 A JP 20160184A JP S61165013 A JPS61165013 A JP S61165013A
Authority
JP
Japan
Prior art keywords
value
shaft
current
magnetic bearing
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20160184A
Other languages
Japanese (ja)
Inventor
Eiji Sato
英治 佐藤
Yozo Nakamura
中村 庸蔵
Nobuo Tsumaki
妻木 伸夫
Tamio Fukuda
福田 民雄
Masaharu Ishii
石井 雅治
Mitsuru Nakamura
満 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20160184A priority Critical patent/JPS61165013A/en
Publication of JPS61165013A publication Critical patent/JPS61165013A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0459Details of the magnetic circuit
    • F16C32/0461Details of the magnetic circuit of stationary parts of the magnetic circuit
    • F16C32/0463Details of the magnetic circuit of stationary parts of the magnetic circuit with electromagnetic bias, e.g. by extra bias windings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets
    • F16C32/0446Determination of the actual position of the moving member, e.g. details of sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets
    • F16C32/0451Details of controllers, i.e. the units determining the power to be supplied, e.g. comparing elements, feedback arrangements with P.I.D. control
    • F16C32/0455Details of controllers, i.e. the units determining the power to be supplied, e.g. comparing elements, feedback arrangements with P.I.D. control including digital signal processing [DSP] and analog/digital conversion [A/D, D/A]

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Signal Processing (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE:To perform stable feedback control by detecting both the position of a shaft and an electric current which flows across an electromagnet and making calculation by the use of a digital circuit. CONSTITUTION:ON-OFF operation of each of switches SW1 and SW2 is performed via solenoid driving circuits 14 and 15 in response to an output signal of a micro-processor 13. The position of a shaft 1 is detected by a displacement gauge 16 and then input to the mircro-processor 13 via an A/D converter 17. Values of electric currents across coils 4 and 6 are also input to the micro- processor 13 via the A/D converter 17. The current across the coils of the electromagnet is detected and the value of the current across the coils are restricted in accordance with a load which is applied to the shaft, whereby enabling stable feedback control.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は一般に使用される制御形磁気軸受に関する。[Detailed description of the invention] [Field of application of the invention] The present invention relates to commonly used controlled magnetic bearings.

〔発明の背景〕[Background of the invention]

従来の制御形磁気軸受たとえば特開48−31339号
に開示のものは制御目標値とフィードバック要素の出力
値の差を増幅器を通して電磁石のコイルに通電している
アナログ制御装置である。
A conventional controlled magnetic bearing, for example, disclosed in Japanese Patent Laid-Open No. 48-31339, is an analog control device in which the difference between a control target value and an output value of a feedback element is used to energize an electromagnetic coil through an amplifier.

このようなアナログ制御形磁気軸受は増幅器が高価なた
め一般の機械に利用されることはなかった。
Such analog-controlled magnetic bearings have not been used in general machinery because the amplifiers are expensive.

またフィードバック要素はアナログ回路で構成されてい
るので理想的なフィードバックが行えず、軸受剛性を高
めようとすると制御系の安定性が低下するという欠点が
あった。
Furthermore, since the feedback element is composed of an analog circuit, it is not possible to provide ideal feedback, and when trying to increase bearing rigidity, the stability of the control system decreases.

〔発明の目的〕[Purpose of the invention]

本発明の目的は制御系の安定性が高くしかも安価な制御
形磁気軸受を提供することにある。
An object of the present invention is to provide a controlled magnetic bearing that has a highly stable control system and is inexpensive.

〔発明の概要〕[Summary of the invention]

電磁石のコイルに定電圧をパルス状に印加することは制
御系において増幅器に近い作用を持つ。
Applying a constant voltage in pulses to the electromagnetic coil has an effect similar to that of an amplifier in the control system.

定電圧源とスイッチング回路は増幅器に比べるとかなり
安価である。アナログフィードバック要素はマイクロプ
ロセッサ等のディジタル回路を採用することにより理想
に近いフィードバック要素枠にすることができる。近年
ディジタル回路も安価になっているので、制御装置全体
として安価なものを提供することができる。しかし、磁
気軸受は不安定要素(負の剛性)を持っているので、単
にディジタル回路によるフィードバック値と制御目標値
の差によって電磁石をON、OFFさせたのでは制御系
が発散し軸受として使用できない。これは電磁石のコイ
ルの電流が大きくなるためである。そこで、コイルに流
れる電流を制限すると制御系は安定する。電流の制限値
は、軸に作用する荷重が大きいときには大きくシ、小さ
いときには小さくする。
Constant voltage sources and switching circuits are considerably cheaper than amplifiers. The analog feedback element can be made into a nearly ideal feedback element frame by employing a digital circuit such as a microprocessor. Since digital circuits have become cheaper in recent years, it is possible to provide an inexpensive control device as a whole. However, magnetic bearings have an unstable element (negative stiffness), so simply turning the electromagnet on and off based on the difference between the feedback value by the digital circuit and the control target value will cause the control system to diverge and cannot be used as a bearing. . This is because the current in the electromagnet coil increases. Therefore, by limiting the current flowing through the coil, the control system becomes stable. The current limit value is increased when the load acting on the shaft is large, and decreased when it is small.

このように本発明の第1の特徴は、電磁石のコイルの電
流を検出し、軸に作用する荷重に相応してコイルの電流
値を制限することである。第2の特徴は、制御回路にマ
イクロプロセッサ等のディジタル回路を用いることであ
る。マイクロプロセッサ等のディジタル回路は、コイル
の電流の制限値全容易に変更できるので一同価格で目的
に応じた多株多様な制御装置を提供することができる。
Thus, the first feature of the present invention is to detect the current in the coil of the electromagnet and limit the current value in the coil in accordance with the load acting on the shaft. The second feature is that a digital circuit such as a microprocessor is used for the control circuit. Digital circuits such as microprocessors can easily change the limit value of the coil current, so it is possible to provide a variety of control devices at the same price to suit different purposes.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図により説明する。軸1
は電磁石2.3ではさまれ、上下方向にだけ移動可能に
なっている。これはスラスト軸受であるが、軸1の左右
にも電磁石を設ければラジアル軸受になる。電磁石2に
はコイル4,5が巻かれ、電磁石3にはコイル6.7が
巻かれている。
An embodiment of the present invention will be described below with reference to FIG. axis 1
is sandwiched between electromagnets 2.3 and is movable only in the vertical direction. This is a thrust bearing, but if electromagnets are provided on the left and right sides of the shaft 1, it becomes a radial bearing. Coils 4 and 5 are wound around the electromagnet 2, and coils 6 and 7 are wound around the electromagnet 3.

コイル4.6は制御用コイルであり、コイル5゜7は軸
1の自重や軸1に作用する静荷重を均合わすことや制御
系の線形性を高めるために設けられている。例えば軸1
の自重を均合わすためにはコイル5には大きな電流を流
し、コイル7には小さな電流を流すようにすればよい。
The coil 4.6 is a control coil, and the coil 5.7 is provided to balance the weight of the shaft 1 and the static load acting on the shaft 1 and to improve the linearity of the control system. For example, axis 1
In order to balance out the weight of the coil 5, a large current may be passed through the coil 5, and a small current may be passed through the coil 7.

電源8はコイル4〜6に通電する定電圧源である。コイ
ル4には直列にスイッチ9(SWI)、電流計10が設
けられ、コイル6にはスイッチ10(SW2)、電流計
12が設けられている。単純な電流計としては、抵抗を
直列に設けてこの抵抗間の電位差を計測する方法がある
。消費電力を小さくしたい場合は市販の電流計を用いれ
ばよい。SWlとSW2の0N−OFFはマイクロプロ
セッサ13の出力信号によりンレノイド私動回路14.
15’i介して行われる。軸1の位置は変位計16で検
出し、A/D変換器17を介してマイクロプロセッサ1
3に入力される。コイル4.6の電流値もA/D変換器
17を介してマイクロプロセッサ13に入力される。
The power source 8 is a constant voltage source that energizes the coils 4-6. The coil 4 is provided with a switch 9 (SWI) and an ammeter 10 in series, and the coil 6 is provided with a switch 10 (SW2) and an ammeter 12. A simple ammeter is a method in which resistors are connected in series and the potential difference between the resistors is measured. If you want to reduce power consumption, you can use a commercially available ammeter. ON-OFF of SWl and SW2 is turned on by the output signal of the microprocessor 13 in the renoid private circuit 14.
15'i. The position of the shaft 1 is detected by a displacement meter 16, and the position is detected by the microprocessor 1 via an A/D converter 17.
3 is input. The current value of coil 4.6 is also input to microprocessor 13 via A/D converter 17.

次に第2図により制御ループを説明する。まず制御目標
値Y”を設定する。次にコイル4の上限電流値Hとコイ
ル6の上限亀流値工;を設定する。これらの設定はあら
かじめマイクロプロセッサ13内のROMに記憶させて
おいてもよい。設定後は変位計16により軸1の位置X
1’r入力し、次に電流計10.11によりコイル4.
6の電流値11 、I2 k入力する。現在の軸1の位
置Xlを入力する以前に入力した軸1の位置X2又はそ
れ以前に入力した軸1の位置を用いて軸1の速度に比例
する値Kk計算する。この例ではAt定数としに=A 
(X+  X2 )として速度に比例する値を計算して
いる。比較値YはBを定数とし、BXt+にとして計算
している。IYIが制御目標値Y申より小さいときはS
Wl、SWzともにOFFにする。IYIが制御目標値
Y申より大きい場合はコイル4.6の電流値によって8
Wl。
Next, the control loop will be explained with reference to FIG. First, set the control target value Y''. Next, set the upper limit current value H of the coil 4 and the upper limit current value of the coil 6. These settings are stored in the ROM in the microprocessor 13 in advance. After setting, the position X of axis 1 is determined by the displacement meter 16.
1'r input, then coil 4.1' by ammeter 10.11.
Input the current value 11 of 6 and I2k. A value Kk proportional to the speed of the axis 1 is calculated using the position X2 of the axis 1 inputted before inputting the current position Xl of the axis 1 or the position of the axis 1 inputted before that. In this example, the At constant = A
A value proportional to the speed is calculated as (X+X2). The comparison value Y is calculated using B as a constant and BXt+. When IYI is smaller than the control target value Y, S
Turn off both Wl and SWz. If IYI is larger than the control target value Y, the current value of coil 4.6
Wl.

SWlの0N−OFFを判定する。Yが正の場合には、
コイル6の電流値工2が上限値工;より大きいときに8
W1.SWz ともにOFFにし、工2がI;より小さ
いときには5Wxt”OFF。
Determine ON-OFF of SW1. If Y is positive,
When the current value of coil 6 is larger than the upper limit value, 8
W1. Turn both SWz OFF, and when W2 is smaller than I, turn 5Wxt'' OFF.

5WztONにする。Yが負の場合には、コイル4の電
流値11が上限値エフより太きいときには8Wt をO
N、SWzをOFF’にする。そして再び軸1の位置X
1’に入力する。ここまでの制御ループの所要時間をT
とすると、Yは現在位置からT時間後の軸1の位置の予
測定に相当している。
5WztON. When Y is negative, when the current value 11 of the coil 4 is larger than the upper limit value F, 8Wt is set to O.
N, turn SWz OFF'. And again axis 1 position
Enter 1'. The time required for the control loop up to this point is T
Then, Y corresponds to the predicted position of axis 1 after T time from the current position.

したがってTや定数A、Bは、軸の重量等によって適当
に設定するが、一般的にTはできるだけ短かい方が制御
系の安定性が高くなる。コイ/174゜6の電流上限値
B 、 工:は電磁石の鉄心の磁束密度が飽和しないよ
うに設定するが、Tや定数A。
Therefore, T and the constants A and B are appropriately set depending on the weight of the shaft, etc., but in general, the stability of the control system will be higher if T is as short as possible. The upper limit value of the current B for Coil/174°6 is set so that the magnetic flux density of the electromagnet's iron core does not saturate, but T and the constant A.

Bと同様に制御系の安定性に影響を与えるので電磁石の
電気特性や軸1の重量軸に作用する荷重等を考慮して設
定する。通常工: 、 I:は等しくするが制御系の安
定性を高めるために異なった値に設定してもよい。
Like B, it affects the stability of the control system, so it is set in consideration of the electrical characteristics of the electromagnet, the load acting on the weight axis of the shaft 1, etc. Normally, I: and I: are set equal, but they may be set to different values in order to improve the stability of the control system.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によれば、軸の位置と電磁石に流
れる電流を検出し、マイクロプロセッサ等のディジタル
回路を用いて計算を行うことにより理想的なフィードバ
ックが行え、電磁石のコイルに流れる電流の増大を防止
できるので、定電圧源とスイッチを用いた安価で安定性
の高い磁気軸受ができる。
As described above, according to the present invention, ideal feedback can be performed by detecting the position of the axis and the current flowing through the electromagnet and performing calculations using a digital circuit such as a microprocessor. Since it is possible to prevent an increase in , it is possible to create an inexpensive and highly stable magnetic bearing using a constant voltage source and a switch.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は磁気軸受の制御回路図、第2図は磁気軸受の制
御ループ図である。 1・・・軸、2.3・・・′電磁石、8・・・定電圧源
、9゜10・・・スイッチ、11.12・・・電流計、
13・・・マイクロプロセッサ、14.15・・・ンレ
ノイド駆動第1図 VJ Z  図
FIG. 1 is a control circuit diagram of the magnetic bearing, and FIG. 2 is a control loop diagram of the magnetic bearing. 1... Axis, 2.3...'electromagnet, 8... Constant voltage source, 9°10... Switch, 11.12... Ammeter,
13... Microprocessor, 14.15... Renoid drive Figure 1 VJ Z Figure

Claims (1)

【特許請求の範囲】 1、正の方向に吸引力が発生する第1の電磁石(2)と
負の方向に吸引力が発生する第2の電磁石(3)、磁気
を通す軸、軸の位置を検出する変位計から成る磁気軸受
において、両電磁石(2)、(3)のコイルに流れる電
流を検出する電流計(10)、(12)、電磁石を作動
させる電源、電磁石(2)、(3)のコイルに電源電圧
を印加させるスイツチ(9)、(11)を設け、変位計
と電流計(10)、(12)の検出値を用いてスイツチ
(9)、(11)をON、OFFすることにより軸の変
位を制御することを特徴とする磁気軸受の制御方法。 2、特許請求の範囲第1項において、軸の速度に比例す
る値を変位計の検出値を用いて計算機で演算し、この値
に変位計の検出値に比例する値を加算した結果Yが制御
目標値以内のときとはスイツチ(9)、(11)をOF
Fにし、Yが目標値より大きく電流計(12)の検出値
が設定値より大きいときはスイツチ(10)、(12)
をOFFにし、Yが目標値より大きく電流計(12)の
検出値が設定値より小さいときはスイツチ(9)をOF
F、スイツチ(11)をONにし、Yが目標値より小さ
く電流計(10)の検出値が設定値より大きいときはス
イツチ(9)、(11)をOFFにし、Yが目標値より
小さく電流計(10)の検出値が設定値より小さいとき
はスイツチ(9)をON、スイツチ(11)をOFFに
して軸の変位を制御することを特徴とする磁気軸受の制
御方法。 3、特許請求の範囲第3項において、両電磁石(2)、
(3)のコイルにバイアス電流を流すことを特徴とする
磁気軸受の制御方法。
[Claims] 1. A first electromagnet (2) that generates an attractive force in the positive direction, a second electromagnet (3) that generates an attractive force in the negative direction, an axis through which the magnetism passes, and the position of the axis In a magnetic bearing consisting of a displacement meter that detects, ammeters (10) and (12) that detect the current flowing through the coils of both electromagnets (2) and (3), a power source that operates the electromagnets, and electromagnets (2) and ( Switches (9) and (11) are provided to apply power supply voltage to the coils in step 3), and the switches (9) and (11) are turned on and off using the detected values of the displacement meter and ammeter (10) and (12). A method for controlling a magnetic bearing, characterized in that the displacement of a shaft is controlled by turning it off. 2. In claim 1, Y is the result of calculating a value proportional to the speed of the shaft using a computer using the detected value of the displacement meter, and adding a value proportional to the detected value of the displacement meter to this value. When it is within the control target value, turn switches (9) and (11) OFF.
F, and when Y is larger than the target value and the detected value of the ammeter (12) is larger than the set value, switch (10), (12)
When Y is larger than the target value and the detected value of the ammeter (12) is smaller than the set value, turn the switch (9) OFF.
F. Turn on the switch (11), and when Y is smaller than the target value and the detected value of the ammeter (10) is larger than the set value, turn off the switches (9) and (11), and when Y is smaller than the target value and the current A method for controlling a magnetic bearing, characterized in that when the detected value of the meter (10) is smaller than a set value, a switch (9) is turned ON and a switch (11) is turned OFF to control the displacement of the shaft. 3. In claim 3, both electromagnets (2),
(3) A method for controlling a magnetic bearing, characterized by passing a bias current through the coil.
JP20160184A 1984-09-28 1984-09-28 Controlling method of magnetic bearing Pending JPS61165013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20160184A JPS61165013A (en) 1984-09-28 1984-09-28 Controlling method of magnetic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20160184A JPS61165013A (en) 1984-09-28 1984-09-28 Controlling method of magnetic bearing

Publications (1)

Publication Number Publication Date
JPS61165013A true JPS61165013A (en) 1986-07-25

Family

ID=16443752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20160184A Pending JPS61165013A (en) 1984-09-28 1984-09-28 Controlling method of magnetic bearing

Country Status (1)

Country Link
JP (1) JPS61165013A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0395116A2 (en) * 1989-04-28 1990-10-31 Nippon Ferrofluidics Corporation Magnetic bearing device
US5682071A (en) * 1994-05-25 1997-10-28 Mecos Traxler Ag Magnetic bearing with constant-current source
CN106090012A (en) * 2016-08-19 2016-11-09 珠海格力节能环保制冷技术研究中心有限公司 The control method of magnetic suspension bearing and device
CN109099062A (en) * 2018-09-11 2018-12-28 西安交通大学 A kind of Self-sensing Electromagnetic bearing based on coil ripple current slop estimation

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0395116A2 (en) * 1989-04-28 1990-10-31 Nippon Ferrofluidics Corporation Magnetic bearing device
US5682071A (en) * 1994-05-25 1997-10-28 Mecos Traxler Ag Magnetic bearing with constant-current source
CH689808A5 (en) * 1994-05-25 1999-11-30 Mecos Traxler Ag A method for contact-free supporting objects and device for performing this method.
CN106090012A (en) * 2016-08-19 2016-11-09 珠海格力节能环保制冷技术研究中心有限公司 The control method of magnetic suspension bearing and device
CN106090012B (en) * 2016-08-19 2018-11-16 珠海格力电器股份有限公司 control method and device for magnetic suspension bearing
CN109099062A (en) * 2018-09-11 2018-12-28 西安交通大学 A kind of Self-sensing Electromagnetic bearing based on coil ripple current slop estimation
CN109099062B (en) * 2018-09-11 2020-02-11 西安交通大学 Self-sensing electromagnetic bearing based on coil ripple current slope estimation

Similar Documents

Publication Publication Date Title
US4088379A (en) Variable permanent magnet suspension system
KR920017329A (en) Adaptive voltage regulator
US2552952A (en) Magnetic amplifier
JPS61165013A (en) Controlling method of magnetic bearing
US3003698A (en) Ratio computing apparatus
US2809343A (en) Amplifiers
Banerjee et al. Design, implementation, and testing of a single axis levitation system for the suspension of a platform
US2707253A (en) Control system for reel motor
JP2001248640A (en) Control type magnetic bearing
US2272772A (en) Electrical measuring apparatus
US2802169A (en) Magnetic amplifier control apparatus
US3258654A (en) Electrical current sensing means
US3406332A (en) Galvanomagnetic resistance device with feedback coupled excitation winding
JPH06201731A (en) Magnetic balance type current measuring device
JPWO2012046537A1 (en) Current sensor
JPH067536B2 (en) Wide range current transformer
US2993158A (en) Motor voltage regulator with adjustable rate control
JPS61295877A (en) Pwm inverter
JPH05312839A (en) Current sensor
JPH02275112A (en) Controlling device for magnetic bearing
JPH05272589A (en) Vibration control device
JPS6421615A (en) Current controller
JP3045633B2 (en) Current power supply for electromagnet
JPH10141373A (en) Magnetic bearing
JPS62163974A (en) Electric current sensor