JPH0259592B2 - - Google Patents

Info

Publication number
JPH0259592B2
JPH0259592B2 JP58181485A JP18148583A JPH0259592B2 JP H0259592 B2 JPH0259592 B2 JP H0259592B2 JP 58181485 A JP58181485 A JP 58181485A JP 18148583 A JP18148583 A JP 18148583A JP H0259592 B2 JPH0259592 B2 JP H0259592B2
Authority
JP
Japan
Prior art keywords
lithium aluminate
wood pulp
electrolyte
lithium
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58181485A
Other languages
Japanese (ja)
Other versions
JPS6072172A (en
Inventor
Junji Nakamura
Ikumasa Nishimura
Goro Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd, Fuji Electric Corporate Research and Development Ltd filed Critical Toppan Printing Co Ltd
Priority to JP58181485A priority Critical patent/JPS6072172A/en
Publication of JPS6072172A publication Critical patent/JPS6072172A/en
Publication of JPH0259592B2 publication Critical patent/JPH0259592B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • H01M8/0295Matrices for immobilising electrolyte melts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 本発明は燃料電池用電解質タイルの製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing electrolyte tiles for fuel cells.

従来の燃料電池用電解質タイル保持体としての
セラミツクス多孔質体としては、各々気孔の性状
は異なるが、素焼きの陶器や発泡性ガラスのセラ
ミツクスやセラミツクスフオームがある。しか
し、これらは燃料電池用電解質タイル保持材とし
て使用するセラミツクスとして、セラミツクスに
要求される硬さや緻密さに欠けている。また、気
孔部に各種の無機物質や電解質を充填して使用す
る場合に、イオン通過性、電子伝導性が不足する
ものがかなりある。また、イオン通過性、電子伝
導性は満足しても、気孔に充填した各種の無機物
質や電解質が気孔部から流失してしまう欠点ある
いはセラミツクスの骨格だけでは、十分な強度が
でないという欠点を持つものが多かつた。
Conventional ceramic porous bodies used as electrolyte tile holders for fuel cells include unglazed pottery, foamable glass ceramics, and ceramic foam, although the properties of their pores are different. However, these lack the hardness and compactness required of ceramics used as electrolyte tile holding materials for fuel cells. Furthermore, when used with the pores filled with various inorganic substances or electrolytes, there are quite a few that lack ion permeability and electron conductivity. In addition, even if the ion permeability and electron conductivity are satisfied, there are drawbacks such as the various inorganic substances and electrolytes filled in the pores being washed away from the pores, or the fact that the ceramic skeleton alone does not have sufficient strength. There were many things.

更に、セラミツクスのシートを作る場合に、抄
紙方法を用いないで作る方法が、射出成形法、押
出成形法、静水圧プレス法等としてある。しか
し、これらの方法では、30cm平方以上の大面積の
セラミツクスシートを作ると、表面が、割れた
り、ソツたりして均一なものとならない。
Furthermore, when producing ceramic sheets, there are methods such as injection molding, extrusion molding, and isostatic pressing that do not use papermaking methods. However, when using these methods to make a ceramic sheet with a large area of 30 cm square or more, the surface may crack or loosen and the surface will not be uniform.

また、従来、多孔質焼結体の作り方で、焼結性
物質の粉体としてのα−アルミナに、繊維質とし
て木材パルプを51〜70重量%添加して得たシート
状物を焼成することにより、薄くて緻密な多孔質
体を得る方法がある。しかし、この方法では、高
い気孔率を得るために、木材パルプの含有量が多
く、しかも、α−アルミナを使用しているため、
焼結物質を得るのに、1500〜1600℃の高温で焼成
する必要があつた。
In addition, conventional methods for making porous sintered bodies include adding 51 to 70% by weight of wood pulp as a fibrous material to α-alumina as a sinterable material powder and then firing a sheet-like product. There is a method to obtain a thin and dense porous body. However, in this method, in order to obtain high porosity, the content of wood pulp is high and α-alumina is used.
To obtain the sintered material, it was necessary to fire at high temperatures of 1500-1600°C.

本発明では、前記のような欠点を除去し、ある
いはこれらの欠点を補なうのに十分な、緻密で強
度があり、気孔率が高く、細孔の迷路のようにな
つているセラミツクスの多孔質体を製造する方法
として、焼結性無機物質として、γ−リチウムア
ルミネートで粒径が20μ以下のものを使用し、木
材パルプの添加量を3〜15重量%と少量にして、
アルミナを使用する方法より低温で焼結可能と
し、気孔率が、焼結物の全体積の40〜80%である
ような多孔質体を得、これに電解質成分を含浸す
る燃料電池用電解質タイルの製造方法である。
In the present invention, the porosity of the ceramic is sufficiently dense, strong, and has a high porosity to eliminate or compensate for the above-mentioned drawbacks, and has a labyrinth-like structure of pores. As a method for manufacturing the compact, γ-lithium aluminate with a particle size of 20μ or less is used as the sinterable inorganic material, and the amount of wood pulp added is as small as 3 to 15% by weight.
Electrolyte tile for fuel cells that enables sintering at a lower temperature than the method using alumina, obtains a porous body with a porosity of 40 to 80% of the total volume of the sintered product, and impregnates this with electrolyte components. This is a manufacturing method.

溶融炭酸塩燃料電池用電解質タイルの保持材と
しては、アルミナが緻密質で電気絶縁性等に優れ
ている。しかしながら、アルミナは燃料電池の電
解質として使用する炭酸リチウムと反応し、リチ
ウムアルミネートに変つてしまう。そこで、本発
明では、リチウムアルミネートの中で一番安定な
構造であるγ−リチウムアルミネートを製造し、
これを焼結性無機物質として使用する。
As a holding material for electrolyte tiles for molten carbonate fuel cells, alumina is dense and has excellent electrical insulation properties. However, alumina reacts with lithium carbonate, which is used as an electrolyte in fuel cells, and turns into lithium aluminate. Therefore, in the present invention, γ-lithium aluminate, which has the most stable structure among lithium aluminates, is manufactured,
This is used as a sinterable inorganic material.

以下さらに詳細に説明すれば、焼結性無機物質
として、γ−リチウムアルミネートを粉砕し、粒
径を20μ以下にして使用し、補強材としての機能
と気孔率を上る目的で、各種の有機繊維質の中か
ら木材パルプを選択し、木材パルプの添加量を焼
結前の乾燥時のシート全重量に対して3〜15重量
%としている。
More specifically, as the sinterable inorganic material, γ-lithium aluminate is crushed and used with a particle size of 20μ or less, and various organic Wood pulp is selected from among fibrous materials, and the amount of wood pulp added is 3 to 15% by weight based on the total weight of the sheet when dry before sintering.

焼結物質の製造方法は先ず、3〜15重量%の繊
維質と焼結性無機物質との粉体から成る固形分に
対して5〜30倍程度の重量の水を加えて湿式混合
し、抄造に適する水性スラリーに調整し、凝集剤
を添加し凝集させ、抄造機にて抄造し、シート
状、板状に成形する。この成形物を焼成炉に入
れ、酸化雰囲気で焼成する。焼成は、常温から、
木材パルプが焼失気化されて、細孔で迷路の様な
気孔を造り、その後、リチウムアルミネートが焼
結する1000〜1400℃まで、1時間あたり50〜200
℃の昇温速度で昇温し、焼結が行なわれる1000〜
1400℃で1〜3時間焼成を行なう。以上のよう
に、γ−リチウムアルミネートを使用することに
より、より低温で、しかも、木材パルプ量が3〜
15%程度の添加で、気孔率が大きく、細孔が迷路
のようになつた緻密質で強度の大きな燃料電池用
電解質タイル用保持材が製造可能となる。
The method for manufacturing the sintered material is as follows: First, 5 to 30 times the weight of water is added to the solid content, which is a powder of 3 to 15% by weight of fibrous material and sinterable inorganic material, and wet-mixed. Adjust the slurry to an aqueous slurry suitable for papermaking, add a coagulant to coagulate it, make it using a papermaking machine, and form it into a sheet or plate. This molded product is placed in a firing furnace and fired in an oxidizing atmosphere. Firing starts at room temperature,
The wood pulp is burnt and vaporized to create a labyrinth of pores, and then the lithium aluminate is sintered at 1000-1400°C at 50-200°C per hour.
The temperature is increased at a temperature increase rate of 1000 °C and sintering takes place.
Calcination is performed at 1400°C for 1 to 3 hours. As mentioned above, by using γ-lithium aluminate, it is possible to achieve lower temperature and wood pulp content of 3 to 30%.
By adding about 15%, it is possible to produce a dense and strong holding material for electrolyte tiles for fuel cells with high porosity and maze-like pores.

前記工程で得られたγ−リチウムアルミネート
多孔質体に共晶組成電解質成分を500°〜650℃の
温度範囲で含浸することで燃料電池用電解質タイ
ルを得ることができる。
An electrolyte tile for a fuel cell can be obtained by impregnating the γ-lithium aluminate porous body obtained in the above step with a eutectic composition electrolyte component at a temperature range of 500° to 650°C.

以下に本発明の具体的な実施例を述べる。な
お、組成は全て重量比である。
Specific examples of the present invention will be described below. In addition, all compositions are weight ratios.

〈実施例 1〉 (A) 試料の調整 γ−リチウムアルミネート(平均粒径15μ)
30部 木材パルプ 5部 水 1000部 (B) 凝集剤 硫酸バンド15%水溶液 30部 ポリアクリルアミド系高分子凝集剤0.2%水溶
液 (三洋化成(株)製商品名「サリポリN−500」)
20部 2程度の容器に水1000部と木材パルプ5部を
入れ、20分ほど撹拌して水に十分分散させて、そ
こへ、γ−リチウムアルミネート30部を加えて1
分ほど撹拌し、水性スラリーを作る。その中へあ
らかじめ作つておいた硫酸バンド(15%水溶液)
を30部加えて2分ほど撹拌し、PHが4以下になつ
たことをPH試験紙で確認して、これもあらかじめ
作つておいたポリアクリルアミド高分子凝集剤
(サンポリN−500の0.2%水溶液)を20部添加し、
1分ほど撹拌して凝集させる。
<Example 1> (A) Sample preparation γ-lithium aluminate (average particle size 15μ)
30 parts wood pulp 5 parts water 1000 parts (B) Flocculant band sulfate 15% aqueous solution 30 parts polyacrylamide polymer flocculant 0.2% aqueous solution (trade name "Saripoli N-500" manufactured by Sanyo Kasei Co., Ltd.)
20 parts Put 1,000 parts of water and 5 parts of wood pulp in a 2-sized container, stir for about 20 minutes to fully disperse it in the water, and add 30 parts of γ-lithium aluminate to it.
Stir for about a minute to make an aqueous slurry. Sulfuric acid band (15% aqueous solution) made in advance in it
Add 30 parts of polyacrylamide polymer flocculant (0.2% aqueous solution of Sunpoly N-500) and stir for about 2 minutes. Use PH test paper to confirm that the pH has become 4 or less. ) and add 20 parts of
Stir for about 1 minute to coagulate.

以上のようにして凝集した試料は、抄造機で抄
造して10〜30cm角で、1〜5mm厚のシート状にな
る。これを乾燥した後に電気炉に入れて、酸化雰
囲気中で、必要ならば空気を流しながら、常温か
ら、100℃/Hの速度で加熱し、木材パルプが焼
失気化されて、細孔で迷路のような気孔ができ、
その後、リチウムアルミネートが焼結する1300℃
まで昇温し、電気炉の温度が1300℃になつたら、
この温度で2時間保持して、γ−リチウムアルミ
ネートを焼結させて、気孔率が58%の燃料電池用
電解質保持材としての多孔質体を製造した。この
多孔質体の曲げ強さは55Kg/cm2であつた。γ−リ
チウムアルミネート多孔質に対する共晶組成電解
質融体(47.5重量%炭酸リチウム−52.5重量%炭
酸カリウム)の含浸は酸化雰囲気中の電気炉にお
いて60℃/Hの昇温速度で550℃まで到達させ、
550℃で1時間保持して行つた。この工程で得ら
れた電解質タイルの保持材と電解質の割合は45:
55(重量比)であり、その曲げ強さは1100Kg/cm2
となつて従来知られている値と同等かそれ以上で
あつた。本実施例の電解質タイルを用いて溶融炭
酸塩燃料電池を構成し、以下の条件で単セル試験
を実施した。
The agglomerated sample as described above is made into a sheet with a sheet size of 10 to 30 cm square and 1 to 5 mm thick using a paper making machine. After drying, it is placed in an electric furnace and heated at a rate of 100°C/H from room temperature in an oxidizing atmosphere, with air flowing if necessary. Pores like this are formed,
Then the lithium aluminate is sintered at 1300℃
When the temperature of the electric furnace reaches 1300℃,
This temperature was maintained for 2 hours to sinter the γ-lithium aluminate to produce a porous body having a porosity of 58% as an electrolyte holding material for a fuel cell. The bending strength of this porous body was 55 Kg/cm 2 . Impregnation of eutectic composition electrolyte melt (47.5 wt% lithium carbonate - 52.5 wt% potassium carbonate) into γ-lithium aluminate porous material reached 550 °C at a heating rate of 60 °C/H in an electric furnace in an oxidizing atmosphere. let me,
The temperature was maintained at 550°C for 1 hour. The ratio of retention material and electrolyte of the electrolyte tile obtained in this process is 45:
55 (weight ratio), and its bending strength is 1100Kg/cm 2
This value was equal to or higher than previously known values. A molten carbonate fuel cell was constructed using the electrolyte tile of this example, and a single cell test was conducted under the following conditions.

電極:多孔質ニツケル板 試験温度:650℃ カソードガス:Air+30%CO2 マノードガス:H2+20%CO2 上記試験条件において、電流密度が150mA/
cm2の時の電圧は0.75Vとなり、従来例と同等かそ
れ以上であり、本発明の燃料電池電解質タイルの
有効性が実証された。また、この単セル試験およ
び別に行つたヒートサイクル試験でも電解質タイ
ルに欠陥の発生は認められず、本発明の電解質タ
イルは耐久性、寿命特性の面でもすぐれているこ
とが裏付けられた。
Electrode: Porous nickel plate Test temperature: 650℃ Cathode gas: Air + 30% CO 2 Manode gas: H 2 + 20% CO 2 Under the above test conditions, the current density was 150 mA/
The voltage at cm 2 was 0.75V, which was equal to or higher than the conventional example, demonstrating the effectiveness of the fuel cell electrolyte tile of the present invention. Furthermore, no defects were observed in the electrolyte tile in this single cell test or a separate heat cycle test, confirming that the electrolyte tile of the present invention is excellent in terms of durability and life characteristics.

〈実施例 2〉 A 試料の調整 γ−リチウムアルミネート(平均粒径10μm)
30部 木材パルプ 1部 水 1000部 B 凝集剤 硫酸バンド15%水溶液 20部 高分子凝集剤0.2%水溶液 30部 (三洋化成(株)製商品名「サンポリN−500」) 以上のような組成(A),(B)を用いて、以下は実施
例1と全く同様にしてシート状の燃料電池用電解
質タイルが得られた。
<Example 2> A Sample preparation γ-lithium aluminate (average particle size 10 μm)
30 parts wood pulp 1 part water 1000 parts B Flocculant band sulfate 15% aqueous solution 20 parts Polymer flocculant 0.2% aqueous solution 30 parts (trade name "Sanpoly N-500" manufactured by Sanyo Chemical Co., Ltd.) Composition as above ( Using A) and (B), a sheet-shaped fuel cell electrolyte tile was obtained in exactly the same manner as in Example 1.

これの電池出力性能は実施例1の場合と同様で
あつた。
The battery output performance of this was similar to that of Example 1.

以上、述べたようにγ−リチウムアルミネート
多孔質体を作る工程は、従来の薄型で、気孔のな
い、緻密質の金属酸化物を作る方法と発泡性多孔
質体を作る方法の両方法の長所をとり入れてお
り、気孔率の調整も木材パルプの添加量によつて
任意に制御できる。しかもセラミツクフオーム製
造における問題の、ポリウレタンによる発泡を施
した後の複雑な処理工程が除去されるので、多孔
質体の製造工程が簡略化される。また、より低温
で、緻密で強度の高いγ−リチウムアルミネート
多孔質体が得られるため、省エネルギーの効果が
生ずる。
As mentioned above, the process of making a γ-lithium aluminate porous body involves two methods: the conventional method of making a thin, pore-free, dense metal oxide, and the method of making a foamable porous body. The porosity can be adjusted arbitrarily by adjusting the amount of wood pulp added. Moreover, since the complicated processing step after foaming with polyurethane, which is a problem in the production of ceramic foam, is eliminated, the production process of the porous body is simplified. Further, since a dense and strong γ-lithium aluminate porous body can be obtained at a lower temperature, an energy saving effect is produced.

さらに、本発明の方法で得たγ−リチウムアル
ミネート多孔質体の細孔は迷路のようになつてい
るので、熱応力にも強く、電解質の含浸性、保持
能力がすぐれている。そして、電解質タイルとし
ての機械的強度も向上してくる。
Furthermore, since the pores of the γ-lithium aluminate porous material obtained by the method of the present invention are shaped like a labyrinth, it is resistant to thermal stress and has excellent electrolyte impregnation and retention ability. The mechanical strength of the electrolyte tile also improves.

したがつて、本発明の方法、すなわち抄紙法で
製造した電解質タイルを用いたことによつて、電
池性能と経済性にすぐれた溶融炭酸塩燃料電池を
構成することができた。
Therefore, by using the electrolyte tile manufactured by the method of the present invention, that is, the papermaking method, it was possible to construct a molten carbonate fuel cell with excellent cell performance and economical efficiency.

この発明によれば、燃料電池用電解質タイルの
大型化も容易であるので、高温型燃料電池の開発
促進に寄与するところ大である。
According to the present invention, it is easy to increase the size of electrolyte tiles for fuel cells, so it greatly contributes to promoting the development of high-temperature fuel cells.

Claims (1)

【特許請求の範囲】[Claims] 1 粒径20μ以下のγ−リチウムアルミネートの
粉体と木材パルプを水中で混合して抄造に適する
水性スラリーとなし、凝集剤を添加して粉体をパ
ルプに吸着凝集せしめ、抄造することにより、焼
成前の乾燥全重量に対して3〜15%木材パルプを
含有するシート状もしくは板状の成形物を得、該
成形物を酸化雰囲気中で焼成して木材パルプ分を
焼失気化させ、しかる後、γ−リチウムアルミネ
ートの粉体を焼結してγ−リチウムアルミネート
多孔質体とし、これに炭酸リチウムと炭酸カリウ
ムからなる電解質成分を含浸することを特徴とす
る燃料電池用電解質タイルの製造方法。
1 By mixing γ-lithium aluminate powder with a particle size of 20μ or less and wood pulp in water to create an aqueous slurry suitable for papermaking, adding a flocculant to adsorb and agglomerate the powder to the pulp, and then producing paper. A sheet-like or plate-like molded product containing 3 to 15% wood pulp based on the total dry weight before firing is obtained, and the molded product is fired in an oxidizing atmosphere to burn off and vaporize the wood pulp, and then Thereafter, the γ-lithium aluminate powder is sintered to form a γ-lithium aluminate porous body, which is then impregnated with an electrolyte component consisting of lithium carbonate and potassium carbonate. Production method.
JP58181485A 1983-09-28 1983-09-28 Manufacture of electrolyte tile for fuel cell Granted JPS6072172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58181485A JPS6072172A (en) 1983-09-28 1983-09-28 Manufacture of electrolyte tile for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58181485A JPS6072172A (en) 1983-09-28 1983-09-28 Manufacture of electrolyte tile for fuel cell

Publications (2)

Publication Number Publication Date
JPS6072172A JPS6072172A (en) 1985-04-24
JPH0259592B2 true JPH0259592B2 (en) 1990-12-12

Family

ID=16101581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58181485A Granted JPS6072172A (en) 1983-09-28 1983-09-28 Manufacture of electrolyte tile for fuel cell

Country Status (1)

Country Link
JP (1) JPS6072172A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62133676A (en) * 1985-12-06 1987-06-16 Toppan Printing Co Ltd Manufacture of electrolytic tile for molten carbonate type fuel cell
US7234661B2 (en) 2004-07-21 2007-06-26 Shimano Inc. Drag adjustment device for a dual-bearing reel

Also Published As

Publication number Publication date
JPS6072172A (en) 1985-04-24

Similar Documents

Publication Publication Date Title
JP4990468B2 (en) Method for manufacturing temperature-stable conductive electrode
JPH0258744B2 (en)
JPH02293384A (en) Production of electrically conductive porous ceramic tube
JPH0259592B2 (en)
JP3323029B2 (en) Fuel cell
Cho et al. Fabrication and Characterization of γ‐LiAlO2 Matrices Using an Aqueous Tape‐Casting Process
JPS58129781A (en) Fused salt type fuel cell
JPH0261095B2 (en)
JPH0548581B2 (en)
JPS62176063A (en) Manufacture of electrolyte tile of molten carbonate fuel cell
JPS58129777A (en) Fuel battery
JPH0134955B2 (en)
JPH0258743B2 (en)
JPH09132459A (en) Porous ceramic sintered compact
JPH01120774A (en) Manufacture of electrolyte tile of molten carbonate fuel cell
JPS63289772A (en) Manufacture of electrolyte tile for fused carbonate type fuel cell
JPH0350387B2 (en)
JPS63138662A (en) Manufacture of electrolyte tile for fused carbonate type fuel cell
JPH0280319A (en) Production of lithium aluminate having large specific surface area
KR100187430B1 (en) Method of manufacturing electrolyte matrix for phosphorus fuel cell made of sic whisker
JPS6089074A (en) Manufacture of electrolyte tile for fuel cell
JPS60121679A (en) Manufacturing method of electrolytic tile for fuel cell
JPS62145663A (en) Manufacture of electrolyte plate for molten carbonate fuel cell
JPS6032251A (en) Gas electrode for fuel cell
JPH06290799A (en) Manufacture of electrolytic sheet for fused carbonate type fuel cell