JPH0259582B2 - - Google Patents

Info

Publication number
JPH0259582B2
JPH0259582B2 JP58196045A JP19604583A JPH0259582B2 JP H0259582 B2 JPH0259582 B2 JP H0259582B2 JP 58196045 A JP58196045 A JP 58196045A JP 19604583 A JP19604583 A JP 19604583A JP H0259582 B2 JPH0259582 B2 JP H0259582B2
Authority
JP
Japan
Prior art keywords
entrance window
radiation
fiber
reinforced resin
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58196045A
Other languages
Japanese (ja)
Other versions
JPS6089054A (en
Inventor
Juzo Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP58196045A priority Critical patent/JPS6089054A/en
Publication of JPS6089054A publication Critical patent/JPS6089054A/en
Publication of JPH0259582B2 publication Critical patent/JPH0259582B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J47/00Tubes for determining the presence, intensity, density or energy of radiation or particles
    • H01J47/001Details
    • H01J47/002Vessels or containers
    • H01J47/004Windows permeable to X-rays, gamma-rays, or particles

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、放射線断層撮影装置に使用される放
射線検出器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a radiation detector used in a radiation tomography apparatus.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

放射線断層撮影装置の一つとしてコンピユー
タ・トモグラフイ装置(CT装置)がある。この
装置は第1図に示すように例えば偏平な扇状のフ
アンビームX線FXをパルス的に曝射するX線源
1と、このX線を検出する複数の放射線検出素子
Dを並設してなる放射線検出器2とを被検体3を
挾んで対峙させ、かつこれらX線源1及び放射線
検出器2を前記被検体3を中心に互いに同方向に
同一角速度で回転移動させ、被検体3断面の種々
の方向に対するX線吸収データを収集する。そし
て充分なデータを収集した後、このデータを電子
計算機で解析し、被検体断面の個々の位置に対す
るX線吸収率を算出して、その吸収率に応じた階
調度で前記被検体断面を再構成するようにしたも
ので、組成に応じて2000段階にも及ぶ階調度で分
析できるので、軟質組織から硬質組織に至るまで
明確な断層像が得られる。
A computer tomography device (CT device) is one type of radiation tomography device. As shown in Fig. 1, this device includes an X-ray source 1 that emits, for example, flat fan-shaped fan beam X-rays FX in a pulsed manner, and a plurality of radiation detection elements D that detect these X-rays arranged in parallel. The X-ray source 1 and the radiation detector 2 are placed opposite to each other with the subject 3 in between, and the X-ray source 1 and the radiation detector 2 are rotated in the same direction and at the same angular velocity around the subject 3, so that the cross section of the subject 3 is Collect X-ray absorption data for various directions. After collecting sufficient data, this data is analyzed by a computer, the X-ray absorption rate for each position on the cross section of the object is calculated, and the cross section of the object is re-created at a gradation level corresponding to the absorption rate. It is designed to have a unique structure and can perform analysis in as many as 2,000 gradation levels depending on the composition, making it possible to obtain clear tomographic images of everything from soft tissues to hard tissues.

ここで、前記放射線検出器2は、例えばそれぞ
れ電離箱を構成する多数の放射線検出素子からな
りXe(キセノン)等の高圧ガスが封入された放射
線検出器として構成され、被検体3の断面を透過
したX線のエネルギーを電離電流として検出し、
これをX線吸収データとして出力する。
Here, the radiation detector 2 is configured as a radiation detector in which a high-pressure gas such as Xe (xenon) is filled with a large number of radiation detection elements each forming an ionization chamber, and is transmitted through a cross section of the subject 3. The energy of the X-rays is detected as an ionizing current,
This is output as X-ray absorption data.

すなわち、このX線吸収データの収集にあたつ
ては、電離箱を構成する各放射線検出素子とX線
源とを結ぶ線上(これをX線バスという)を透過
してきたX線のエネルギーを電離電流として検出
してこれを所定の時間積分し、その積分値を所定
の時定数の放電回路にて放電してその放電時間値
を各X線バスについてのX線吸収データとするも
のである。
In other words, when collecting this X-ray absorption data, the energy of the X-rays that have passed through the line connecting the X-ray source and each radiation detection element that makes up the ionization chamber (this is called the X-ray bus) is ionized. This is detected as a current and integrated for a predetermined time, and the integrated value is discharged in a discharge circuit with a predetermined time constant, and the discharge time value is used as X-ray absorption data for each X-ray bus.

ところで、最終的な再構成画像の良否は放射線
検出器のもつ、感度、分解能(空間分解能、密度
分解能)で定まるため、優れたCT装置を得るた
めには、高感度、高分解能の放射線検出器を使用
しなければならない。このうち感度はPL値(ガ
ス圧×検出素子奥行長:atm・cm)で規定される
ものであり、一般には60atm・cm程度であり、そ
の時のエネルギー吸収効率は40〜60%である。
又、空間分解能は電極素子の配列ピンチにより規
定されるものであり、0.5mm〜0.6mm径の物質が見
えれば優秀といえる。
By the way, the quality of the final reconstructed image is determined by the sensitivity and resolution (spatial resolution, density resolution) of the radiation detector, so in order to obtain an excellent CT system, it is necessary to use a radiation detector with high sensitivity and high resolution. must be used. Among these, the sensitivity is defined by the PL value (gas pressure x detection element depth: atm cm), and is generally about 60 atm cm, and the energy absorption efficiency at that time is 40 to 60%.
In addition, the spatial resolution is determined by the arrangement of the electrode elements, and it can be said to be excellent if a substance with a diameter of 0.5 mm to 0.6 mm can be seen.

密度分解能とは、臨床においていかに密度差の
小さい物質が識別できるかの能力である。この能
力は放射線検出器の入射窓を透過して検出素子に
到達する低エネルギーフオトンに比例する。何故
ならば、白質と灰白質との線吸収係数(cm-1差は
低エネルギーにおいて有意差を有するからであ
る。
Density resolution is the ability to identify substances with small density differences in clinical practice. This ability is proportional to the low energy photons that pass through the radiation detector's entrance window and reach the detection element. This is because the linear absorption coefficient (cm -1 difference) between white matter and gray matter has a significant difference at low energy.

しかしながら、放射線検出器2は第2図及び第
3図に示すように、円弧状箱形をなし、この箱形
の本体4はフアンビームX線FXの広がり角θに
対応して、その入射面側壁に入射窓4aを有して
いるため、低エネルギーフオトンは検出素子に到
達する前に前記入射窓に吸収されてしまう。通
常、前記箱形の本体4は入射窓4aをも含めて、
X線透過率が良好なアルミニウムで被覆され、然
も入射窓4aは他の部分よりも肉薄になつている
が、低エネルギーフオトンの入射窓での吸収が避
けられなかつた。従つて、高密度分解能を得るた
めには、X線入射窓がないことが理想的である
が、前記箱形の本体4の内部に例えばXe(キセノ
ン)ガス等の高圧ガスを充填する必要上、X線入
射窓の存在は必要なものであつた。
However, as shown in FIGS. 2 and 3, the radiation detector 2 has an arcuate box shape, and the box-shaped main body 4 has an incident surface corresponding to the spread angle θ of the fan beam X-rays FX. Since the side wall has an entrance window 4a, low energy photons are absorbed by the entrance window before reaching the detection element. Usually, the box-shaped main body 4 includes the entrance window 4a,
Although the entrance window 4a is coated with aluminum having good X-ray transmittance and is thinner than other parts, absorption of low energy photons at the entrance window cannot be avoided. Therefore, in order to obtain high-density resolution, it is ideal to have no X-ray entrance window, but it is necessary to fill the inside of the box-shaped main body 4 with high-pressure gas such as Xe (xenon) gas. , the presence of an X-ray entrance window was necessary.

また、箱形の本体4内部にキセノンガス等の高
圧ガスが充填されているため、X線入射窓4aに
はその内部からの応力がかかり、そのかかる応力
も入射窓4aの幅方向すなわちスライス方向たる
0゜方向(第4図参照)と、入射窓4aの長手方向
すなわちチヤンネル方向たる90゜方向(第4図参
照)とでは、第5図に示すように、0゜方向10に
かかる応力の方が90゜方向11にかかるそれより
もほぼ2倍の応力がかかる。従つて、この跛行す
る内部からの応力に対して適切に対処するために
は、入射窓部材自体の強度を90゜方向よりも0゜方
向に2倍の強さを有することが理想的である。
In addition, since the inside of the box-shaped main body 4 is filled with high-pressure gas such as xenon gas, stress is applied from inside the X-ray entrance window 4a, and this stress is also applied in the width direction of the entrance window 4a, that is, in the slice direction. Barrel
Between the 0° direction (see Figure 4) and the 90° direction (see Figure 4), which is the longitudinal direction of the entrance window 4a, the stress applied in the 0° direction 10 is is subjected to almost twice as much stress as that applied in the 90° direction 11. Therefore, in order to appropriately deal with this crippling stress from within, it is ideal for the entrance window member itself to have twice the strength in the 0° direction than in the 90° direction. .

〔発明の目的〕 本発明は前記事情に基づいてなされたものであ
り、高密度分解能を得ることができると共に、内
部から入射窓に発生する応力に対して強度的に安
全な強度を有する放射線検出器を提供することを
目的とする。
[Object of the Invention] The present invention has been made based on the above-mentioned circumstances, and is a radiation detection method that can obtain high-density resolution and has a strength that is safe against stress generated from inside the entrance window. The purpose is to provide equipment.

〔発明の概要〕[Summary of the invention]

上記目的を達成するための本発明の概要は、高
圧ガスを封入した放射線検出器において、一方向
に配向した炭素繊維に樹脂を含浸してなる複数の
樹脂含浸板を、炭素繊維の配向方向がスライス方
向とチヤンネル方向とが相互に直交するように積
層し、スライス方向での強度とチヤンネル方向で
の強度とをほぼ等しくしてなる入射窓部材を備え
たことを特徴とするものである。
The outline of the present invention for achieving the above object is to use a plurality of resin-impregnated plates formed by impregnating carbon fibers oriented in one direction with a resin in a radiation detector filled with high-pressure gas. It is characterized by comprising an entrance window member which is laminated so that the slice direction and the channel direction are orthogonal to each other, and whose strength in the slice direction and the strength in the channel direction are approximately equal.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の実施例を図面を参照しながら具体
的に説明する。
Embodiments of the present invention will be specifically described below with reference to the drawings.

第6図は本発明における放射線検出器の一実施
例を示す断面図である。同図において、13はフ
アンビームX線FXの当たる入射面側壁をくり抜
いた窓部13aを有するケース本体であり、アル
ミニウムにより成形されている。14はこのケー
ス本体13の上部開口部を閉塞している蓋であ
る。15は炭素繊維強化樹脂(以下、CFRPとい
う)からなる入射窓であり、この入射窓15はケ
ース本体13の内側面に前記窓部13aを閉塞す
るように固定されている。16はケース本体13
の内側面に固定された入射窓15を補強するため
の補強部材で、前記入射窓13aに対応する箇所
に穴部16aを有する額縁形状をなしている(第
7図参照)。この補強部材16を用いて入射窓1
5を補強するには、まず、入射窓15をシート状
の接着剤を用いてケース本体13に貼着した後、
第5図に示すように入射窓15を補強部材16の
それぞれの周囲の対応箇所に設けたネジ孔にネジ
17を差し込みネジ止することによつて、ケース
本体13に貼着された入射窓15を強固に補強す
るものである。尚、ここで使用されている入射窓
15及び補強部材16は、いずれも検出器の円弧
形状に合致するように曲率を有している(第7図
参照)。
FIG. 6 is a sectional view showing an embodiment of the radiation detector according to the present invention. In the figure, numeral 13 is a case body having a window portion 13a cut out from the side wall of the entrance surface where the Fan beam X-rays FX hit, and is molded from aluminum. Reference numeral 14 denotes a lid that closes the upper opening of the case body 13. Reference numeral 15 denotes an entrance window made of carbon fiber reinforced resin (hereinafter referred to as CFRP), and this entrance window 15 is fixed to the inner surface of the case body 13 so as to close the window portion 13a. 16 is the case body 13
This is a reinforcing member for reinforcing the entrance window 15 fixed to the inner surface of the frame, and has a frame shape with a hole 16a at a location corresponding to the entrance window 13a (see FIG. 7). By using this reinforcing member 16, the entrance window 1
5, first attach the entrance window 15 to the case body 13 using a sheet of adhesive, then
As shown in FIG. 5, the entrance window 15 is attached to the case body 13 by inserting screws 17 into screw holes provided at corresponding locations around each reinforcing member 16 and fixing the entrance window 15 with the screws. It strongly reinforces the Incidentally, the entrance window 15 and the reinforcing member 16 used here both have a curvature so as to match the arc shape of the detector (see FIG. 7).

ところで、前記入射窓15を構成するCFRP
は、第8図に示すように、一方向に配向した炭素
繊維に樹脂を含浸してなる複数枚のプリプレグ
(樹脂浸透加工材)15A〜15Lを重ね合わせ
て一体化したものである。そして、この重合され
るプリプレグの何枚かは炭素繊維方向を変えてい
る。すなわち、第9図に示すように、まず炭素繊
維方向が0゜方向(以下、0゜方向と略称する)のプ
リプレグ15Aと15Bが重合され、次に炭素繊
維方向が90゜方向(以下、90゜方向と略称する)の
プリプレグ15Cが重合され、次いで0゜方向のプ
リプレグ15Dと15E、90゜方向のプリプレグ
15Fと15G、0゜方向のプリプレグ15Hと1
5Iを順次に重合し、さらに90゜方向のプリプレ
グ15Jを重ね合せ、最後には0゜方向のプリプレ
グ15Kと15Lを重ねて、これらを一体化して
入射窓15の部材たるCFRPが構成されている。
換言すれば、入射窓15は0゜方向のプリプレグが
8枚と90゜方向のプリプレグが4枚とで構成され
ている。従つて、プリプレグの強度は炭素繊維方
向の方が強いため、上記のように0゜方向と90゜方
向のプリプレグの枚数割合を2:1にすれば、こ
れを重合してなる入射窓15の強度も0゜方向の方
が90゜方向よりも2倍の強さを有することになる。
このことは検出器の入射窓に発生する応力に対し
て理想的な強度を有することになり、強度的に安
全なCFRPよりなる入射窓となる。
By the way, the CFRP forming the entrance window 15
As shown in FIG. 8, a plurality of prepregs (resin-impregnated processed material) 15A to 15L made by impregnating carbon fibers oriented in one direction with resin are stacked and integrated. The direction of the carbon fibers in some of the prepregs to be polymerized is changed. That is, as shown in FIG. 9, first prepregs 15A and 15B with the carbon fiber direction in the 0° direction (hereinafter referred to as 0° direction) are polymerized, and then the carbon fiber direction is in the 90° direction (hereinafter referred to as 90° direction). Prepreg 15C in the 0° direction is polymerized, followed by prepregs 15D and 15E in the 0° direction, prepregs 15F and 15G in the 90° direction, and prepregs 15H and 1 in the 0° direction.
5I is sequentially polymerized, and then prepreg 15J in the 90° direction is superimposed, and finally prepregs 15K and 15L in the 0° direction are superimposed, and these are integrated to form the CFRP that is the member of the entrance window 15. .
In other words, the entrance window 15 is made up of eight prepregs in the 0° direction and four prepregs in the 90° direction. Therefore, the strength of the prepreg is stronger in the carbon fiber direction, so if the ratio of the number of prepreg sheets in the 0° direction and the 90° direction is set to 2:1 as described above, the entrance window 15 formed by polymerizing them can be The strength is also twice as strong in the 0° direction as in the 90° direction.
This means that the entrance window of the detector has ideal strength against the stress generated in the entrance window, making the entrance window made of CFRP safe in terms of strength.

ここで、CFRPはアクリル繊維、レーヨン繊維
等を高温(200〜300℃)で炭炎化し、更に昇温
(700〜1800℃)して炭化させた炭素繊維をレジン
(エポキシ樹脂等)で含浸したもので、その体積
含有率は繊維60%、レジン40%が一般的である。
そして、このCFRPの特性としては、X線透過
率がアルミニウム当量で1/10(60KV〜100KV)
引張強度が〜120Kg/mm2(繊維方向)弾性率
が約12000Kg/mm2が上げられる。これは、従来の
入射窓の材質として使用されていたアルミニウム
と比較すると、透過率及び強度において数段も優
れている。従つて、このCFRPを前記実施例の如
く入射窓の材質として使用すれば、入射窓のX線
透過率が増すため、検出素子自身に到達するX線
が増大し、S/Nが向上することは勿論、X線の
低エネルギー側の入射窓での吸収が少なくなるた
め、吸収係数差の微小な白質や灰白質の識別が可
能になり、密度分解度の向上を図ることができ
る。第12図は、この密度分解度の向上を示すた
めに、シミユレーシヨン結果においてX線入射窓
をアルミニウムからCFRPにしたことによる検出
素子でのX線吸収スペクトルの変化を示したグラ
フである。同図において、31はX線入射窓をア
ルミニウムにした場合の検出素子でのX線吸収ス
ペクトルであり、32はX線入射窓をCFRPにし
た場合の検出素子でのX線吸収スペクトルであ
る。この結果、検出素子での低エネルギー側の吸
収はCFRPを用いた場合の方が15〜20%も向上し
ていることがわかる。但し、この結果は入射窓の
厚さをアルミニウムとCFRPを共に同厚にした場
合である。尚、図中において30は入射窓の前面
(入射窓を透過する前)でのX線スペクトルを表
わす。
Here, CFRP is made by carbonizing acrylic fibers, rayon fibers, etc. at high temperatures (200-300℃), and then impregnating the carbon fibers with resin (epoxy resin, etc.). The volume content is generally 60% fiber and 40% resin.
And, as a characteristic of this CFRP, the X-ray transmittance is 1/10 of aluminum equivalent (60KV to 100KV)
The tensile strength is ~120Kg/mm 2 (fiber direction) and the elastic modulus is approximately 12000Kg/mm 2 . This is much superior in transmittance and strength to aluminum, which has been used as a material for conventional entrance windows. Therefore, if this CFRP is used as the material of the entrance window as in the above embodiment, the X-ray transmittance of the entrance window increases, so the amount of X-rays that reach the detection element itself increases, and the S/N improves. Of course, since the absorption of X-rays at the entrance window on the low energy side is reduced, it becomes possible to identify white matter and gray matter with minute differences in absorption coefficients, and it is possible to improve the density resolution. FIG. 12 is a graph showing changes in the X-ray absorption spectrum of the detection element when the X-ray entrance window was changed from aluminum to CFRP in simulation results, in order to show this improvement in density resolution. In the figure, numeral 31 is the X-ray absorption spectrum of the detection element when the X-ray entrance window is made of aluminum, and numeral 32 is the X-ray absorption spectrum of the detection element when the X-ray entrance window is made of CFRP. The results show that absorption on the low energy side in the detection element is improved by 15 to 20% when CFRP is used. However, this result is obtained when the thickness of the entrance window is the same for both aluminum and CFRP. In the figure, 30 represents the X-ray spectrum in front of the entrance window (before passing through the entrance window).

本発明は前記実施例に限定されず、本発明の要
旨の範囲内で変更して実施することができる。例
えば、第10図及び第11図に示すように、
CFRPよりなる入射窓15の周囲を直接にネジ止
により補強するのではなく、入射窓15の周縁を
額緯状の補強部材26により当接することによつ
てケース本体13に入射窓15を補強する形態を
とつている。すなわち、CFRPよりなる入射窓1
5を介在して、補強部材26とケース本体13を
ネジ27により直接にネジ止する構造となつてい
る。補強部材26の外側(入射窓を介在する側と
反対側)の下端26bはテーパ状になつており、
この下端26bはケース本体13の内部底面に形
成されている同様のテーパ状の溝13bに埋め込
まれた状態でネジ止されている。ガスが封入され
て内圧がかかると、補強部材の下端26aには入
射窓の窓厚方向に力が発生する。いわゆるセルフ
シールの構造となつている。尚、CFRPの入射窓
15を補強部材26で補強する際には、前述の実
施例と同様に予め入射窓15をシート状接着剤で
ケース本体13に貼着しておくものとする。第1
0図及び第11図で示した実施例によると、
CFRPよりなる入射窓15にネジ孔をあける必要
がないため、その孔の周囲に応力集中が発生する
ことがないので、強度的にはより安定した構造に
なつている。
The present invention is not limited to the embodiments described above, and can be implemented with modifications within the scope of the gist of the present invention. For example, as shown in FIGS. 10 and 11,
Rather than directly reinforcing the periphery of the entrance window 15 made of CFRP with screws, the entrance window 15 is reinforced on the case body 13 by abutting the periphery of the entrance window 15 with a reinforcing member 26 shaped like a frame. It is taking shape. In other words, the entrance window 1 made of CFRP
5, the reinforcing member 26 and the case body 13 are directly screwed together with screws 27. The lower end 26b of the outer side (the side opposite to the side with the entrance window interposed) of the reinforcing member 26 is tapered.
This lower end 26b is embedded in a similar tapered groove 13b formed on the inner bottom surface of the case body 13 and is screwed. When gas is sealed and internal pressure is applied, a force is generated at the lower end 26a of the reinforcing member in the window thickness direction of the entrance window. It has a so-called self-sealing structure. Incidentally, when reinforcing the CFRP entrance window 15 with the reinforcing member 26, the entrance window 15 is previously attached to the case body 13 with a sheet-like adhesive, as in the previous embodiment. 1st
According to the embodiment shown in FIGS. 0 and 11,
Since there is no need to drill a screw hole in the entrance window 15 made of CFRP, stress concentration does not occur around the hole, resulting in a more stable structure in terms of strength.

また、前記実施例に示したようなプリプレグの
配列状態(第9図参照)に必ずしもする必要はな
く、プリプレグの繊維方向が0゜方向に向いたもの
と90゜方向へ向いたものとの枚数割合を2:1の
比率になるようにプリプレグを重合すれば足り
る。
In addition, it is not necessary to arrange the prepregs as shown in the above example (see Figure 9), and the number of sheets of prepregs with fibers oriented in the 0° direction and those with the fiber direction in the 90° direction is not necessarily required. It is sufficient to polymerize the prepreg at a ratio of 2:1.

〔発明の効果〕〔Effect of the invention〕

本発明は以上説明したように、検出器の入射窓
を複数枚のプリプレグを重合してなる炭素繊維強
化樹脂により構成し、然もプリプレグの配列に工
夫を凝らすことにより、高密度分解能の向上に寄
与できると共に、検出器の入射窓に発生する応力
に対して強度的に安全な強度を有する放射線検出
器を提供することができる。
As explained above, the present invention improves high-density resolution by constructing the entrance window of the detector from a carbon fiber-reinforced resin made by polymerizing multiple sheets of prepreg, and by devising the arrangement of the prepregs. Therefore, it is possible to provide a radiation detector having a strength that is strong and safe against stress occurring in the entrance window of the detector.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はCT装置の概要を示す説明図、第2図
は従来の放射線検出器の一例を示す斜視図、第3
図はその断面図、第4図は検出器の入射窓に発生
する応力を示すための説明図、第5図は検出器の
容器内の内圧と入射窓に発生する応力との関係
図、第6図は本発明に係る放射線検出器の一実施
例を示す断面図、第7図は前記実施例に使用する
入射窓と補強部材を示す斜視図、第8図は本発明
の要部である入射窓の構成を示す概略斜視図であ
り、第9図はその詳細を示すための説明図、第1
0図は本発明の他の実施例を示す断面図、第11
図はその実施例で使用する入射窓と補強部材を示
す斜視図、第12図は本発明における放射線検出
器によるシミユレーシヨン結果を示すグラフであ
る。 15……入射窓(入射窓部材)、15A〜15
L……プリプレグ(樹脂含浸板)。
Fig. 1 is an explanatory diagram showing an overview of a CT device, Fig. 2 is a perspective view showing an example of a conventional radiation detector, and Fig. 3 is an explanatory diagram showing an overview of a CT device.
Figure 4 is a cross-sectional view of the detector, Figure 4 is an explanatory diagram showing the stress generated in the entrance window of the detector, Figure 5 is a diagram showing the relationship between the internal pressure inside the detector container and the stress generated in the entrance window, and FIG. 6 is a sectional view showing an embodiment of the radiation detector according to the present invention, FIG. 7 is a perspective view showing an entrance window and reinforcing member used in the embodiment, and FIG. 8 is a main part of the present invention. FIG. 9 is a schematic perspective view showing the configuration of the entrance window, and FIG. 9 is an explanatory view showing the details;
Figure 0 is a sectional view showing another embodiment of the present invention, No. 11.
The figure is a perspective view showing an entrance window and a reinforcing member used in the embodiment, and FIG. 12 is a graph showing simulation results using a radiation detector according to the present invention. 15...Entrance window (incidence window member), 15A-15
L...Prepreg (resin-impregnated board).

Claims (1)

【特許請求の範囲】 1 外部から放射線を受けて電離する高圧の気体
を封入し、放射線を受ける面に開口部を有する容
器と、前記開口部に固定され、複数の繊維強化樹
脂層を隣接する層の繊維が互いに直交するように
積層し、一方向に平行に繊維が向く繊維強化樹脂
層の合計の厚さとそれに直交する方向に繊維が向
く繊維強化樹脂層の合計の厚さの比が、前記放射
線を受ける面にかかる長手方向と幅方向の応力の
比とほぼ等しくなるような形状を有する入射窓部
材とを備えたことを特徴とする放射線検出器。 2 前記繊維強化樹脂層を炭素繊維強化樹脂層と
したことを特徴とする特許請求の範囲第1項記載
の放射線検出器。
[Claims] 1. A container that encloses a high-pressure gas that ionizes when exposed to radiation from the outside and has an opening on the surface that receives the radiation, and a container that is fixed to the opening and has a plurality of adjacent fiber-reinforced resin layers. The ratio of the total thickness of the fiber-reinforced resin layers in which the fibers of the layers are laminated so as to be orthogonal to each other and the fibers are oriented parallel to one direction and the total thickness of the fiber-reinforced resin layers in which the fibers are oriented in the direction perpendicular to that is: A radiation detector comprising: an entrance window member having a shape that is approximately equal to the ratio of stress in the longitudinal direction and the stress in the width direction applied to the surface receiving the radiation. 2. The radiation detector according to claim 1, wherein the fiber-reinforced resin layer is a carbon fiber-reinforced resin layer.
JP58196045A 1983-10-21 1983-10-21 Radiation detector Granted JPS6089054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58196045A JPS6089054A (en) 1983-10-21 1983-10-21 Radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58196045A JPS6089054A (en) 1983-10-21 1983-10-21 Radiation detector

Publications (2)

Publication Number Publication Date
JPS6089054A JPS6089054A (en) 1985-05-18
JPH0259582B2 true JPH0259582B2 (en) 1990-12-12

Family

ID=16351272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58196045A Granted JPS6089054A (en) 1983-10-21 1983-10-21 Radiation detector

Country Status (1)

Country Link
JP (1) JPS6089054A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8989354B2 (en) * 2011-05-16 2015-03-24 Brigham Young University Carbon composite support structure
US9076628B2 (en) 2011-05-16 2015-07-07 Brigham Young University Variable radius taper x-ray window support structure
WO2013049784A1 (en) * 2011-09-30 2013-04-04 Composite Mirror Applications, Inc. Solar collector having a substrate with multiple composite plies
US9502206B2 (en) 2012-06-05 2016-11-22 Brigham Young University Corrosion-resistant, strong x-ray window

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5749879A (en) * 1980-09-10 1982-03-24 Toshiba Corp Detector for radiation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5749879A (en) * 1980-09-10 1982-03-24 Toshiba Corp Detector for radiation

Also Published As

Publication number Publication date
JPS6089054A (en) 1985-05-18

Similar Documents

Publication Publication Date Title
US6195413B1 (en) Method and arrangement for detecting X-rays
Bierman et al. Search for Dibaryon Resonant States
McTiernan et al. Center-to-limb variations of characteristics of solar flare hard X-ray and gamma-ray emission
JPH0259582B2 (en)
JPH0479433B2 (en)
CA1134066A (en) Device for determining internal body structures by means of scattered radiation
GB2025728A (en) Correction for radiation hardening in tomography
Rodgers et al. The biophysical properties of 3.9-GeV nitrogen ions: II. Microdosimetry
Rapaport et al. A dual-mode industrial CT
Kemerink et al. The nonlinear partial volume effect and computed tomography densitometry of foam and lung
JPS59216076A (en) Radiation detector
Endo et al. Measurement of microdosimetric spectra produced from a 290 MeV/n Spread Out Bragg Peak carbon beam
JPS61172538A (en) X-ray diagnostic apparatus
JPS60170782A (en) Radiation detector
JPS6074253A (en) Radioactive ray detector
EP0027966B1 (en) Radiation diagnosis device for producing tomographic images of an object
JPS60170781A (en) Radiation device
US5273044A (en) Method and apparatus for non-invasive measurements of selected body elements
Burke et al. Absorption analysis of x-ray spectra produced by beryllium window tubes operated at 20 to 50 kVp
De Souza et al. Alpha particle radiography with the CR-39 nuclear track detector
Benton et al. Radiography with heavy particles
Newton et al. X-ray counting efficiencies for plutonium in lungs, derived from studies with inhaled palladium-103
Keane et al. Assessment of dose to the gonads outside diagnostic X-ray beams
Guerra A DETAILED MONTE CARLO STUDY OF MULTIPLE SCATTERING CONTAMINATION IN
EP0033466B1 (en) Radiation diagnosis device